Установка для прожига силового кабеля

Что такое прожиг кабеля и как его делают?

При повреждении силовых кабелей необходимо точно определить место, где произошла авария. В большинстве случаев для локализации пробоя изоляции применяется акустический или индукционный поиск, но данные методики эффективны только в случае низкоомных замыканий. При высоких переходных сопротивлениях потребуется прожиг кабеля. О том, что представляет собой эта технология, Вы узнаете из материалов нашей статьи.

Что такое прожиг кабеля и для чего его применяют?

Если на высоковольтном кабеле имело место повреждение изоляции, то необходимо локализовать аварийный участок, после чего приступить к устранению аварии. Важным условием для применения методик поиска дефектной изоляции является уровень переходного сопротивления в месте аварии, оно не должно быть больше 3,0-5,0 кОм. В противном случае с локализацией повреждения возникнут проблемы.

В некоторых случаях не поможет даже низкое переходное сопротивление. Например, эффективный акустический метод может дать сбой при большой глубине прокладки кабеля или в случае проблем с определением ее прохождения. В таких случаях применяется аппарат прожига оболочки кабеля. С помощью прожигающей установки можно из однофазных замыканий жил кабеля создать межфазные, и локализировать их индукционным методом. Подробно о различных способах поиска повреждений, в том числе и обрывов в кабельных линиях, можно узнать на нашем сайте.

Читайте также:  Теплоизоляция кабеля от теплопровода

Прожиг осуществляется энергией, которая выделяется в месте КЗ (то есть, принцип работы такой же, как у нагревательного кабеля). В результате обугливается оболочка и понижается переходное сопротивление там, где имеется дефект изоляции.

Заметим, что с помощью данной методики можно определить повреждения на кабельных муфтах, концевиках. Если кабельная трасса незакрыта, то обнаружить проблемное место не составит труда тактильным способом или по выделяемой гари.

Типы установок для прожига кабелей

В России и странах ближнего зарубежья рассматриваемые установки принято классифицировать по назначению. В связи с этим аппараты для прожига разделяют на следующие три вида:

  • Устройства, используемые как в процессе испытаний, так и при высоковольтном прожиге. Пиковое напряжение таких аппаратов около 60,0-70,0 киловольт.
  • Приборы с рабочим диапазоном до 20,0-25,0 киловольт. Как правило, на них устанавливаются несколько высоковольтных источников и один низкого напряжения. Прожигающий аппарат АПУ 1-3 М
  • Дожигающие аппараты, разрушают контакт (металлический мост), образующийся при однофазном КЗ одной из жил на оболочку кабеля. Для этой цели через поврежденный кабель пропускается ток величиной до 300,0 Ампер.

УД-300 — аппарат для дожига

Соответственно, делая выбор между моделями устройств для прожига, необходимо принимать во внимание, что оборудование различных производителей может быть несовместимо и отличаться эксплуатационными характеристиками.

Перечень основных характеристик

Из текста выше становится понятно, что основными показателями устройств прожига является выходное напряжение и ток. Не менее значимая характеристика – количество ступеней. Здесь необходимо дать пояснение.

Дело в том, что рассчитывать на эффективность прожига прибором можно только в тех случаях, когда внутреннее сопротивление аппарата и значение переходного сопротивления в проблемном месте примерно одного порядка. То есть, на практике невозможен прибор, способный поддерживать пиковое напряжение при небольшом внутреннем сопротивлении.

Единственный выход из создавшегося положения – многоступенчатая методика. Она заключается в переключении на источник с меньшим напряжением при понижении переходного сопротивления. Современные аппараты для прожига могут быть оснащены тремя-шестью ступенями прожига.

Ниже приведен фрагмент таблицы с основными характеристиками различных многоступенчатых моделей.

Сравнительные характеристики устройств для прожига кабеля

Технология выполнения процесса прожига

На практике чаще всего применяется три методики:

  • Для прожига соединительных муфт.
  • Снижения сопротивления изоляции кабеля.
  • Разрушение спайки однофазного КЗ.

Рассмотрим каждую из них.

Прожиг муфт

Муфты, надеваемые на концы кабеля, могут подвергнуться разрушению. Причиной этого может быть как неправильный монтаж, так и деструктивное воздействие внешней среды. Для обнаружения таких повреждений регулярно проводятся испытания кабельных сетей с целью профилактики.

Методика испытаний следующая:

  • Используя высоковольтный прибор на одну из жил подается напряжение пробоя. После серии пробоев должно уменьшиться напряжение и электрическая прочность. В противном случае все свидетельствует о том, что возникли проблемы с соединительными или концевыми муфтами (последнее маловероятно, чаще всего неисправность происходит в месте наращивания кабеля).
  • Непрерывный прожиг продолжается до 10-и минут, если за этот период напряжение разряда не понизится, испытания прекращают и приступают к локализации повреждения.

Выбранный метод поиска места повреждения подбирается в зависимости от того, какая установилась величина сопротивления в месте пробоя.

Проверка кабеля

Как и в предыдущей методике проблемы с оболочкой кабеля чаще всего обнаруживают при профилактике, которую необходимо регулярно делать даже для внешне исправных кабелей. Если при проверке наблюдается серия разрядов с постепенным снижением напряжения, все указывает на повреждение изоляции, например, прокол кабеля. Как только установится минимальное напряжение разряда, выполняется прожиг на максимальной ступени, то есть повышенным напряжением.

В результате изоляция обуглиться и высохнет, высоковольтные импульсы разрядов сменяться устойчивым протеканием тока в месте КЗ, при этом будет наблюдаться падение сопротивления в аварийной точке. Это потребует понижения напряжения источника, то есть, снизить ступень. Если в процессе прожига величина сопротивления перехода начнет повышаться, ступень меняется на более высокую, пока ситуация не стабилизируется.

Теперь рассмотрим, схему подключения кабеля, когда необходимо из однофазного КЗ сделать межфазное.

Как из однофазного КЗ сделать двухфазное

Приведенная схема работает по следующему алгоритму:

  1. Используя прожигательный прибор «2» мы разрушаем контакт между поврежденной жилой «с» и металлической оболочкой кабеля.
  2. При этом подключение испытательного устройства «1» производится одним концом к двум целым жилам «a» и «b», а вторым к разряднику «3» (также подключенного к жиле «с»). Емкость, образуемая двумя жилами, накапливает заряд до тех пор, пока он не будет соответствовать напряжению разрядника (как правило, от 5,0 до 10,0 киловольт). При импульсном разряде разрушается контакт между поврежденной жилой и оболочкой.
  3. За счет наличия заряда на жилах «a» и «b» при переходных процессах с большой вероятностью может произойти пробой между целыми жилами и поврежденной «с». В этом случае напряжение испытательной установки «2» будет недостаточно для срабатывания разрядника.

Заметим, что при помощи данной схемы может не получиться создать межфазное КЗ. При этом попытки увеличения выходного напряжения испытательного прибора могут вызвать пробой совершенно в другой точке.

Удаление спайки при однофазном КЗ

В том случае, когда имело место длительное КЗ между оболочкой и жилой кабеля, то точке электрического контакта может произойти спайка между этими элементами. Как показывает практика, прожигатель не всегда эффективен для разрушения электрического контакта. Если оставить все как есть, то локализировать место аварии затруднительно.

Для решения данной проблемы часто используется конденсаторная батарея до 200,0 мкФ, способная накопить заряд с высоким напряжением до 5,0 кВ. Помимо этого можно использовать в качестве емкости неповрежденные жилы, как это было показано на рисунке выше. То есть, подключение конденсаторной батареи осуществляется при помощи управляемого разрядника, запитанного от высоковольтного прибора для испытаний.

При разряде емкости, электродинамическое воздействие на спайку и прохождение через нее мощного импульса приводит к разрушению электрического контакта.

В том случае, когда описанных мер недостаточно, можно использовать специальные «отжигатели» с увеличенной мощностью источника за счет установки высоковольтного трансформатора. При прохождении через спайку высокого постоянного тока она расплавляется.

Актуальные статьи по теме:

Источник

Чем «жгут» высоковольтные кабели?

Сравнение установок для прожига высоковольтных кабелей российского и украинского производства

Продолжаем серию статей, посвященных анализу рынка испытательного и диагностического оборудования.
Российский рынок оборудования постоянно растет, предложений аналогичных по свойствам и назначению приборов и установок становится все больше. С одной стороны, конкуренция между производителями очень выгодна потребителю, так как способствует появлению на рынке современного высокотехнологичного оборудования по адекватной цене. С другой стороны, такое разнообразие сильно затрудняет процесс выбора: чем больше предложений, тем сложнее принять решение в пользу того или иного варианта. Для того, чтобы вы могли свободно ориентироваться в огромном море предложений, поступающих от производителей, мы пригласили на роль эксперта и автора данной рубрики руководителя отдела маркетинга компании «ЭЛЕКТРОНПРИБОР», специализирующейся на комплексных поставках оборудования для нужд энергетики, Ирину Кузьменко. В одном из прошлых номеров журнала мы говорили о трассоискателях, предназначенных для определения мест повреждения кабельных линий. Статья этого номера посвящена анализу рынка и сравнению прожигающих установок, без которых просто невозможно производить комплекс работ по поиску и отысканию мест повреждений высоковольтных кабельных линий.

Самой популярной схемой поиска повреждений на энергетических кабелях в России является традиционная схема «прожиг — импульсная рефлектометрия — индукционный поиск — подтверждение акустикой».

Для эффективного отыскания повреждений с помощью импульсной рефлектометрии и индукционного поиска необходим качественный прожиг, обеспечивающий преобразование высокоомных однофазных повреждений кабеля в низкоомные двух- или трехфазные с появлением надежного металлического мостика в месте повреждения. Если при прожиге удается достичь замыкания жилы на жилу то дальнейших проблем с отысканием точного места повреждения, как правило, не возникает.

Специалисты по обслуживанию кабельных линий нередко сталкиваются с таким неприятным явлением, как замыкание одной жилы на оболочку кабеля, при котором методы импульсной рефлектометрии и индукционного поиска не позволяют обнаружить точное местоположение дефекта. В данном случае необходимо сначала разрушить металлический спай между жилой и оболочкой, что на практике не всегда удается осуществить без ущерба для состояния всего кабеля.

Технология процесса прожига

Первый этап — предварительный высоковольтный прожиг осуществляется с помощью высокого напряжения и низких токов до момента образования пробоя в кабеле. Стандартная прожигающая установка выдает максимальное напряжение порядка 20-25 кВ. Процесс высоковольтного прожига происходит следующим образом: на поврежденный кабель подается минимальное напряжение и затем происходит его плавный подъем до 20-25 кВ или до того значения, на котором удается добиться пробоя, после чего начинается процесс прожига.

Считается, что максимальное напряжение при прожиге не должно превышать 0,5-0,7 U исп., однако на практике такого напряжения не всегда хватает, чтобы осуществить предварительный прожиг. Если прожигающая установка, выдающая максимальное напряжение 20–25 кВ, не в состоянии обеспечить пробой кабеля, дополнительно в комплексе с ней используют установку с максимальным напряжением 60–70 кВ, но с меньшей мощностью. Оборудование данного типа называют установками для испытаний и прожига высоковольтных кабелей, они могут подключаться к прожигающей установке, либо использоваться обособленно.

Второй этап — прожиг, начинается с момента пробоя кабеля и возникновения короткого замыкания и осуществляется с помощью понижения напряжения и увеличения силы тока до момента преобразования однофазного замыкания в двух- или трехфазное (сваривания жилы с жилой). Вначале источник высокого напряжения разрушает изоляцию кабеля минимальным током, затем, по мере того как осуществляется прожиг, значения напряжения постепенно снижаются, а значения тока увеличиваются.

В случае дополнительного использования установки для испытания и прожига с максимальным напряжением 60– 70 кВ, она производит процесс прожига напряжением от 60–70 кВ до 20–25 кВ, после чего в работу автоматически включается основная прожигающая установка, обладающая большей мощностью.

Третий этап — дожиг, является завершающим этапом прожига и производится на низких напряжениях и высоких токах порядка 20–60 А в зависимости от модели прожигающей установки. Данный этап осуществляется с помощью низковольтного источника, который автоматически подключается при падении напряжения до определенных значений.

В случае возникновения замыкания одной жилы на оболочку для разрушения проводящего мостика между жилой и оболочкой используют специальные достаточно мощные прожигающие установки, способные выдавать большие значения токов (300 А). Нужно отметить, что использование установок данного типа может приводить к снижению ресурса кабеля и его повреждению в иных, «слабых» местах.

Таблица 1. Типы установок для прожига кабелей

Наименование оборудования

Город

Установки испытания и прожига (60–70 кВ)

Установки прожига (напряжение 20–25 кВ, ток от 20 А)

Установки дожига для разрушения мостика между жилой и оболочкой (ток 300 А)

ВПУ-60 (заменяет АИД-60П Вулкан М)

ИПК-1 (ВПУ-60+ МПУ-3 Феникс)

Типы прожигающих установок

Среди предлагаемого на российском рынке отечественного и украинского оборудования существуют три типа прожигающих установок (Таблица 1):

  • Установки для испытания и прожига высоковольтных кабелей с максимальным напряжением 60–70 кВ, используемые как вспомогательное оборудование на начальных этапах прожига.
  • Установки прожига с максимальным напряжением 20–25 кВ, с несколькими высоковольтными и одним низковольтным источником.
  • Установки дожига, предназначенные для разрушения металлического мостика между жилой и оболочкой большими токами (300 А) в случае однофазного замыкания на жилу.

При выборе той или иной модели необходимо учитывать как производственные задачи, так и характеристики уже имеющегося в наличии оборудования и его совместимость с приобретаемым. Совместно работать может оборудование, изготовленное одним и тем же производителем (Таблица 2).

Таблица 2. Пример совместимости оборудования для прожига

ВПУ-60 (заменяет АИД-60П Вулкан М)

Важные параметры прожигающих установок

Прожигающая установка состоит из нескольких высоковольтных источников и одного низковольтного. Максимальные значения тока и напряжения каждого источника называют ступенями, их количество может варьироваться от трех до шести у разных производителей (Таблица 3).

Таблица 3. Основные технические характеристики прожигающих установок разных производителей

Наименование оборудования Максимальное выходное напряжение, кВ Максимальный выходной ток, А Количество ступеней Характеристики ступеней, кВ
АПУ 1-3М 24 30 4 25; 5; 1; 0,3
ВУПК-03-25 25 55 5 20; 5; 1,05; 0,4; 0,15
МПУ-3 Феникс 20 20 3 20; 5; 0,6
СВП-05Ц 25 20 3 20; 5; 1
УП-7-3М 22 65 6 22; 11; 5,5; 1,4; 0,55; 0,16
ИПК-1 (ВПУ-60+ МПУ-3 Феникс) 60 20 4 60; 20; 5; 0,6
УД-300 0,25 300 1 0,25
ВП-300 0,25 300 1 0,25

Возможность непрерывного прожигаВ процессе прожига по мере снижения напряжения пробоя осуществляется переход на следующую ступень прожигания. Как только по параметрам установки представляется возможность включить на параллельную работу (или отдельно) более мощную ступень, она включается в работу. Под более мощной ступенью понимается установка с меньшим внутренним сопротивлением и большим током.

Возможность непрерывного прожига

Предыдущее поколение прожигающих установок использовало ручное переключение ступеней оператором, что нередко приводило к прерыванию горения дуги, увеличивало время прожига и создавало возможность для «заплывания» пробоев.

Современные устройства прожига снабжены автоматическими системами переключения ступеней прожига, исключающие разрыв дуги в месте прожига, что существенно сокращает затраты времени на подготовительные работы для отыскания мест повреждения. Часто такой прожиг называют «бесступенчатым», что не должно вводить специалистов в заблуждение: данное понятие вовсе не означает отсутствие нескольких силовых блоков (ступеней) — просто переключение между ними производится автоматически, без участия оператора.

Для генерации высокого напряжения в конструкции прожигающих установок используются либо масляные трансформаторы, либо «сухие» трансформаторы — силовые транзисторы (Таблица 4). Вопрос автоматического переключения ступеней без разрыва дуги решен в обоих типах устройств, однако существует мнение, что только сухие трансформаторы могут обеспечить непрерывный прожиг в любых условиях. Связано данное явление с разным энергопотреблением двух видов трансформаторов в режиме короткого замыкания. Масляные трансформаторы имеют существенно большее энергопотребление в режиме короткого замыкания, поэтому держать их включенными одновременно в процессе всего прожига неэффективно, следовательно, при понижении напряжения происходит отключение источника с масляным трансформатором, генерирующего более высокое напряжение.

Таблица 4. Вес и габариты оборудования в зависимости от типа трансформатора

Наименование оборудования Тип трансформатора Вес оборудования, кг
АПУ 1-3М масляный 260
ВУПК-03-25 сухой 45
МПУ-3 Феникс сухой 55
СВП-05Ц масляный 215
УП-7-3М масляный 210

В ситуации, когда происходит «заплывание» пробоя и повторный рост напряжения, в типах устройств с масляными трансформаторами более высокий по напряжению источник может быть уже отключен, что приводит к прерыванию дуги. Напротив, «сухие трансформаторы» (силовые транзисторы) в режиме короткого замыкания имеют почти нулевое энергопотребление, что позволяет держать их включенными одновременно, благодаря чему дуга не прерывается ни при падении напряжения, ни при его росте («заплывании» пробоя). Считается, что в борьбе с заплывающими пробоями лучшими показателями обладают прожигающие установки, изготовленные с применением сухих трансформаторов.Очень часто переход на более мощную ступень прожигания приводит сначала к «заплыванию», т.е. к подъему пробивного напряжения, при этом следует вернуться к предыдущей ступени более высокого напряжения, а затем после снижения напряжения пробоя переходить на следующую ступень.

Синхронизация работы с устройствами высоковольтного прожига

В начале статьи, рассматривая технологию процесс прожига, мы говорили о возможности подключения устройств высоковольтного прожига, которые могут начать прожиг с 60–70 кВ (Таблица 2). Сегодня все серьезные производители прожигающей техники применяют аналогичные решения, так как это существенно расширяет возможности при выполнении работ по поиску повреждений высоковольтных кабельных линий. Прожигающие установки используются не только стационарно, но и в составе передвижных электротехнических лабораторий, где всегда реализуется возможность высоковольтного прожига.

Контроль оператором тока прожига

Неконтролируемый рост тока прожига при падении напряжения приводит к повреждению и выводу из строя соседних кабелей, что особенно актуально при прожиге в кабельных каналах. Если в установке прожига реализована возможность автоматической или ручной установки максимально допустимого тока, это является ее плюсом, обеспечивающим безупречное качество работы специалистов на месте производимых работ.

Энергопотребление, возможность полноценно работать от автономного источника питания ограниченной мощности

Большая часть кабельных электротехнических лабораторий, оснащенная прожигающими установками, монтируется на базе автомобиля типа ГАЗели, разместить на борту которого электростанцию мощностью более 6 кВА не представляется возможным.

Способность прожигающей установки работать от электростанции 6 кВа с сохранением достаточной мощности является функциональным преимуществом по сравнению с более энергоемкими аналогами.

Мощность прожигающей установки

Мощность прожигающей установки является одной из важных характеристик, влияющей на время прожига и его эффективность. Также более мощные установки хорошо зарекомендовали себя в условиях, когда кабели сильно замокли и требуют «сушки» (Таблица 5).

Таблица 5. Примеры значений выходной мощности прожигающих установок

Наименование оборудования Выходная мощность, кВА
МПУ-3 Феникс 6
СВП-05Ц 8

Длительность работы без перегрева

На сложных и неудобных повреждениях прожиг может продолжаться несколько часов. Если при этом прибор перегревается, то процесс приходится прерывать, что может привести к повторному заплыванию места повреждения. Чем длительнее непрерывное время работы установки, тем лучше (Таблица 6).

Таблица 6. Время непрерывной работы прожигающих установок разных производителей

Наименование оборудования Время непрерывной работы, заявленное производителем
АПУ 1-3М 5 минут в режиме прожига при заплывающем пробое, повторное включение через 30 минут
ВУПК-03-25 Цикличная работа: 1,5 минуты работы – 40 секунд перерыв
МПУ-3 Феникс Около 3 часов при температуре +20°С, без ограничений прожига по времени при температуре ниже 0°С
СВП-05Ц Наибольшее время непрерывной работы при токе нагрузки:
100% от максимального – 10 минут, повторное включение через 5 минут
70% от максимального – 30 минут, повторное включение через 15 минут
УП-7-3М Не более 20 минут, повторное включение через 20 минут

Сравнение стоимости установок для прожига высоковольтных кабелей

В завершение статьи поговорим о таком немаловажном факторе, как стоимость оборудования.

Предложений прожигающих установок на рынке не так уж много, среди них условно можно выделить три основных ценовых сегмента: низкобюджетные (Харьков, Пенза, Тула), среднебюджетные (Обнинск, Ярославль), и высокобюджетные (Германия, Австрия и прочие импортные установки). В сегменте средне- и высокобюджетных установок производители ведут активную маркетинговую и рекламную деятельность с целью донести до потребителя информацию о выгодах приобретения той или иной модели и обосновать ее цену: участвуют в выставках, проводят технические семинары. Производители малобюджетных установок уделяют меньше внимания маркетингу и продвижению, делая ставку на ценовую доступность оборудования.

Установки, о которых идет речь в данной статье, трудно сравнивать только по цене, так как все они сконструированы по разным схемам, обладают разными возможностями, каждый производитель делает упор на некие индивидуальные преимущества, поэтому специалистам мы советуем, основываясь на материале нашей статьи, прежде всего разобраться в характеристиках оборудования, понять его возможности, выбрать оптимальный вариант для работы в ваших условиях, и только потом проводить собственный анализ «цена — мои преимущества при работе с данной установкой». Актуальные цены на сайте нашей компании — www.electronpribor.ru

Надеемся, что наша статья поможет вам сделать правильный выбор.

Подразделение аналитики и маркетинга
ООО «ЭЛЕКТРОНПРИБОР»

Статья опубликована в журнале «Электротехнический рынок», № 1 (49), 2013

Источник