Usb кабель у автомобильного преобразователя напряжения

Обзор и небольшая доработка DC/DC-преобразователей 5/9 В и 5/12 В в корпусе USB-разъёма

В обзоре будут рассмотрены два миниатюрных повышающих DC-DC преобразователя (постоянного тока в постоянный), каждый из которых собран в корпусе разъёма USB, благодаря чему они почти не занимают места и очень удобны для использования.

Содержание

Их выходное напряжение — фиксированное и составляет 9 Вольт для одного и 12 Вольт для другого преобразователя. Благодаря им какое-либо не слишком мощное устройство можно запитать такими напряжениями от любого «походного» источника питания: от телефонной «зарядки», от ноутбука, от повербанка.

Кроме того, применение этих преобразователей совместно с телефонной «зарядкой» может быть заменой для отдельных адаптеров на 9 или 12 Вольт (но если величина тока потребления будет не выше, чем определена далее в обзоре).

Цена на дату обзора — около $2.5 — 3 с учётом доставки.

Внешний вид и конструкция повышающих DC-DC преобразователей 5/9 В и 5/12 В

Их внешний вид похож просто на кабель USB с удлинённым разъёмом:

Номиналы отдаваемых напряжений бесхитростно обозначены на приклеенных этикетках.

Длина шнуров — по 1 метру.

На обратной стороне преобразователей никакой полезной информации нет:

Оканчиваются кабели преобразователей стандартными цилиндрическими разъёмами 5.5/2.1 мм (внешний/внутренний диаметр):

Если устройство, с которым предполагается работа какого-либо из преобразователей, имеет другой разъём (что маловероятно, но возможно), то, скорее всего, пользователю придётся поработать руками и/или паяльником для обеспечения взаимосовместимости.

Внутреннее устройство DC-DC преобразователей

Разобрать преобразователи можно очень легко: достаточно лезвием ножа разъединить половинки корпуса. Они держатся только на шести пластиковых штырьках за счет силы трения, никакого клея или хитрых защёлок нет.

Так выглядит электронная «начинка» преобразователей:

На этой фотографии слева — преобразователь на 9 В, а справа — на 12.

Видно, что их схемы имеют несколько отличий.

Их схемы основаны на разных чипах: в преобразователе на 9 В это — AL804, а в преобразователе на 12 В — AL919 (на фото они — маленькие шестиногие чипы).

Документации на них найти не удалось, но внутренний голос мне подсказывает, что оба этих чипа — просто вариации доброго старого MT3608, предназначенного для работы в «повышайках».

Есть и другие отличия.

В частности, в преобразователе на 9 В (левый) на входе и на выходе стоят в параллель по 2 конденсатора: «большой» электролит и маленький керамический конденсатор (грамотно!); а в преобразователе на 12 В — только электролиты (экономно!).

Зато в преобразователе на 12 В есть светодиод, индицирующий его работу; он виден на плате в правом нижнем углу и обозначен он как D2.

Только вот беда: корпус — не прозрачный, и этот светодиод не виден!

Чтобы он был виден, и будет проведена та небольшая доработка, о которой говорится в заголовке обзора.

В заключение осмотра надо отметить, как существенный позитивный момент, применение в обоих преобразователях диодов Шоттки (SS34 и SS14), имеющих прямое падение напряжения в 4 раза меньше, чем у «обычных» выпрямительных диодов. Это положительно скажется на КПД и уменьшит нагрев устройств.

Технические испытания повышающих DC-DC преобразователей на 9 В и 12 В

При испытаниях преобразователи запитывались от телефонной «зарядки» 5 В с максимальным током выхода 2 А (способность отдать такой ток ранее была проверена).

Замер данных произведён в установившемся режиме (после прогрева преобразователей и стабилизации показаний).

Сначала — испытания преобразователя на 12 В, результаты нагрузочных тестов приведены в таблице:

Ток выхода, А Напряжение на выходе, В Отдаваемая мощность, Вт КПД
0 (холостой ход) 11.97 0
0.1 11.98 1.20 91%
0.15 11.99 1.80 89%
0.2 12.0 2.40 90%
0.3 12.03 3.61 89%
0.4 12.06 4.82 86%
0.5 12.11 6.06 83%
0.6 12.23 7.34 79%

При попытке повысить ток выхода выше 0.6 А напряжение на выходе «срывалось», и преобразователь уходил в защиту от короткого замыкания. При этом выходной ток колебался на довольно высоком уровне (0.4 — 0.7 А), т.е. продолжалось потребление значительной мощности от источника питания, что не совсем комильфо; или даже совсем не комильфо.

В общем, защита есть, но работает не идеально.

После устранения перегрузки напряжение на выходе восстанавливалось.

Особо надо отметить присутствующую в таблице странность: чем выше ток, тем выше и напряжение на выходе!

Должно же быть наоборот?!

Можно подумать, что здесь присутствует эффект «отрицательного сопротивления» или ещё какие инопланетные технологии.

Но нет, здесь нет ничего подобного; а повышение напряжения связано с его температурным уходом в результате прогрева преобразователя при работе на нагрузку. Повторный эксперимент с током 0.5 А подтвердил постепенный уход напряжения, составивший 0.13 В в течение 10 минут, после чего дрейф выходного напряжения прекратился.

Теоретически, правда, не исключено, что положительный температурный коэффициент чипа преобразователя так и был задуман его производителем для компенсации потерь в кабеле при росте тока. Но это — уже немного конспирология. 🙂

Нагрев преобразователя был умеренным, за исключением максимального тока (0.6 А); когда нагрев был сильным.

Итог: преобразователь можно использовать на токах выхода не выше 0.5 А; и при условии использования достаточно мощного источника питания.

Теперь — испытания DC-DC преобразователя на 9 В, и снова таблица с результатами:

Ток выхода, А Напряжение на выходе, В Отдаваемая мощность, Вт КПД
0 (холостой ход) 8.97 0
0.1 8.89 0.89 89%
0.15 8.88 1.33 90%
0.2 8.86 1.77 89%
0.3 8.83 2.65 87%
0.4 8.79 3.52 84%
0.5 8.77 4.39 83%
0.6 8.75 5.25 80%
0.7 8.75 6.13 79%
0.8 8.74 6.99 78%

При превышении тока выхода 0.8 А напряжение напряжение на выходе «срывалось» и преобразователь уходил в защиту (такую же не слишком благообразную, как и у предыдущего преобразователя).

При выходном токе в 0.7 и 0.8 А нагрев преобразователя был сильным, лучше не допускать его использования при таких токах.

Температурный уход выходного напряжения тоже был обнаружен. При выходном токе 0.5 А напряжение на выходе поднималось на 0.11 В за 10 минут, после чего стабилизировалось. При меньших токах температурный дрейф был значительно ниже, и им можно пренебречь.

В таблице этот эффект почти не заметен. Возможно, из-за того, что выходное сопротивление преобразователя на 9 В оказалось выше, чем у преобразователя на 12 В (0.5 Ом и 0.3 Ом с учетом кабеля), из-за чего потери от повышения тока пересилили температурный рост.

Кстати, КПД тоже рассчитывался с учетом потерь в кабелях (т.е. на выходе всего преобразователя, а не на контактах платы).

Теперь разберёмся с пульсациями (посмотрим осциллограммы).

Сначала — пульсации на выходе 9-вольтового преобразователя, ток выхода — 200 мА:

Теперь — пульсации 12-вольтового DC-DC преобразователя при том же токе выхода (200 мА):

По осциллограммам пульсаций можно установить и частоту преобразования, она составляет почти точно 1 МГц.

Пульсации — довольно сильные (особенно — у преобразователя на 12 В), что можно считать в данном случае нормальным, поскольку в корпусах преобразователей нет достаточного места для «приличных» конденсаторов на выходе.

Если для аппаратуры, с которой должны работать преобразователи, такой уровень пульсаций слишком велик, то пользователю надо будет задуматься о подключении внешнего конденсатора (-ов).

Доработка DC-DC преобразователя 5/12 Вольт

Как уже упоминалось выше, на плате преобразователя 5/12 Вольт есть светодиод, но его не видно.

Решение — элементарное: просверлить отверстие 2 мм, снять снаружи небольшую фаску, приклеить с внутренней стороны кусочек бумаги (лучше — кусочек матового пластика, но у меня не нашлось).

На крайняк — можно даже и без бумажки, но тогда сужаются углы обзора светодиода.

Устройство с индикацией включения, как мне кажется, лучше, чем работающее «втёмную» (без индикации).

Итого

Рассмотренные DC-DC преобразователи построены на стандартных схемотехнических решениях, и никаких сюрпризов не преподнесли.

Их производители (анонимные, кстати) просто ничем не испортили возможности, заложенные в элементной базе преобразователей, и на том им спасибо!

«Изюминка» преобразователей — их конструкция в корпусе разъёмов; благодаря чему они удобны и занимают мало места.

Единственный недостаток одного из преобразователей — отсутствие видимости светодиода на плате — легко можно исправить вручную.

Отдельное замечание: если подключать эти преобразователи к порту USB компьютера или ноутбука, то из-за ограничения выходного тока на этих портах преобразователи не смогут отдать столь же высокую мощность, как при питании от повербанка или телефонной «зарядки».

Обычно рекомендуется считать, что отдаваемый ток порта USB 2.0 составляет 500 мА, а USB 3.0 — 900 мА. Далее, зная КПД, можно рассчитать допустимую нагрузку для преобразователей в таком варианте подключения.

Куплены DC-DC преобразователи были на Алиэкспресс: на 12 Вольт — здесь, а на 9 Вольт — здесь.

Источник

Паяем «умный» автомобильный БП на 5v с USB-зарядкой и автоматическим включением/выключением

Я человек ленивый и люблю комфорт, поэтому люблю всяческого рода автоматизацию. В машине у меня есть видеорегистратор, иногда использую навигатор, часто нужно зарядить телефон или планшет себе или семье/знакомым. Как результат указанных потребностей — вся машина окутана проводами и зарядками, при этом всегда надо думать, что выдернуть из тройника прикуривателя и не потеряла ли контакт в прикуривателе очередная зарядка. Конечно, потихоньку в машине образовался клубок проводов и зарядок, а это мало того, что не эстетично, так еще и может привлечь наркоманов.

В один прекрасный момент это всё достало и было принято решение сделать что-то универсальное.

Задача:
  • Выходное напряжение 5.1V
  • Ток не менее 3A (телефон, 0.6А, видеорегистратор — 0.3А, iPad — 2A)
  • Автоматическое включение БП при запуске двигателя
  • Ручное включение БП
  • Автоматическое отключение БП через 15-30 минут после выключения двигателя (с возможностью продлить это время). Чтобы можно было оставить регистратор в машине без необходимости каждый раз его выключать/включать.
  • Автоматическое отключение БП при сильном разряде аккумулятора
  • Ручное выключение БП
  • Свистелки и перделкиСветовая и звуковая сигнализация
  • Достаточное количество USB-разъемов (хотя бы 4 шт.) в легкодоступном месте но без извращения над салоном
  • Нормальный (как родной зарядкой) заряд устройств Samsung и Apple
  • Без занимания прикуривателя.
Решение:

Решение вполне очевидное. Микроконтроллер для автоматизации и какой-нибудь преобразователь напряжения, но у преобразователя должна быть возможность включения/выключения работы логическими уровнями.

С размещением в машине было немного сложнее, сначала хотел вставить USB в подстаканник, но потом откинул эту идею, т.к. не эстетично плюс стакан будет не поставить да и очередные мотки проводов не радовали. Потом я обратил внимание на подлокотник и ящичек находящий в нём. Это было то, что нужно! Сам ящичек вытаскивается — значит можно легко обслуживать, в самом подлокотнике много места — значит спокойно влезет электроника. USB разъемы легко врезать в боковину ящичка и не нужные провода зарядок можно не вытаскивая из разъемов прятать в ящик.

Помимо USB разъемов для зарядок, требовалось питание для видеорегистратора. Для этого был протянут провод от подлокотника до зеркала заднего вида, на зеркале был наклеен еще один USB-разъем и выведен разъем для видеорегистратора.

Если с размещением разъемов, всё было довольно понятно, то с электроникой возникли небольшие проблемы.

Сначала была LM2596.

KIS-3R33S — чудо китайских «конверсионных» технологий.

Вообщем за какие-то пять копеек кучка модулей была приобретена и работа закипела.

Подготовка БП.

По умолчанию модуль KIS-3R33S настрое на 3.3V, поэтому надо модуль немного адаптировать. Есть разные варианты переделки этого модуля (например), но я решил обойтись минимальными переделками. Вооружившись даташитом и схемой KIS-3R33S я составил такой список переделок:

  1. Вскрываем модуль
  2. Удаляем резистор и стабилитрон отмеченные красным. (некоторые удаляют конденсатор, отмеченный жёлтым — я не стал)
  3. Припаиваем (прямо внутри, чтобы потом корпус можно было закрыть) «выводный» резистор (0,125 ваттный) R между минусом и входом ADJ модуля. Резистор фиолетовый. Резистор номиналом от 9.1ком до 10 ком, в зависимости от резистора будет и разное напряжение (от 5.28V до 5.15V соответственно). Этот резистор включается последовательно с уже установленным резистором на 3.3ком (т.е. общее сопротивление резисторов будет 3.3+9.1=12.4) и параллельно резистору R1, за счёт чего их общее сопротивление падает и напряжение на выходе микросхемы растёт.
  4. Собираем модуль обратно
  5. На вход и выход модуля подпаиваем электролитические конденсаторы примерно указанных ёмкостей. Напряжение конденсаторов меньше брать нельзя, а больше можно.

Я не хотел, чтобы преобразователь работал на полную нагрузку, поэтому решил использовать 2 преобразователя, на одном будет 2 USB + USB и питание видеорегистратора, а на втором только 2 USB.

В принципе, уже всё работает и может заряжать, если не нужна автоматика, то можно закончить читать 🙂

Микроконтроллер.

«Правильные» зарядки.

Для Samsung-устройств тоже существует «своя схема» зарядки, но даже с закороченными средними контактами, мой телефон SGS2 кушал 600mA, что считаю вполне достаточным для заряда.

Конструкция и размещение в машине.

Схематично всё выглядит так:

Плату я делал под имеющуюся коробочку, делал ЛУТом.


4 USB хорошо разместились в ящике, рядом был выведен светодиод и проделана дырочка (1мм), чтобы лучше слышать биппер.

И обратная сторона «медали». В алюминиевой коробочке находится плата управления и 2 преобразователя. Коробочка приклеивается скотчем к днищу ящика, который вставляется в подлокотник.

А в машине всё выглядит культурно (кнопку ещё нормально не приделал :).

На зеркале чуть хуже.

Питание брал от прикуривателя, размещенного в подлокотнике. Все подключения на разъемах, чтобы можно было всю систему легко вытащить и унести домой на апгрейд.

Сейчас понимаю, что можно было всё сделать красивее, взяв провода потоньше. Наверно весной переделаю.

Архив со схемой, исходник программы, прошивка, поделки платы можно скачать в ZIP.

ПС. Уже две недели собирался написать этот пост и только появившиеся аналогичная статья мотивировала начать 🙂

Источник

Читайте также:  Монтаж как вид строительных работ