Сколько энергии потребляют умные розетки?
Я вижу много Wi-Fi розеток или вилок и т.д., но никто никогда не упоминает, сколько энергии они потребляют сами. Как правило, они постоянно подключены к Wi-Fi, ожидая команд. Разве это не берет власть? Я знаю, что это, вероятно (надеюсь) меньше, чем устройство, резерв которого мы пытаемся сократить, но кто-нибудь проверял использование энергии интеллектуальными вилками или коммутаторами?
Я знаю, что есть много разных типов, но есть ли разница в использовании между дешевыми подделками и интеллектуальными коммутаторами крупных брендов?
А как насчет тех, которые используют обычные пульты дистанционного управления, которые можно использовать без Wi-Fi? Обычно радиосигналы, также постоянно потребляющие некоторое количество энергии, верно?
Розетки Wi-Fi потребляют около 1,5-2 Вт энергии, это WeMo, как упоминалось в ответе Джима, а также несколько других, которые я пробовал, например TP HS110.
Розетки ZigBee, такие как Samsung SmartThings, должны потреблять меньше энергии из-за использования протокола ZigBee. Согласно их форумам поддержки, это около 0,3 Вт, когда реле выключено, и 0,6 Вт, когда оно включено. Сообщество SmartThings .
Мои собственные старые розетки с инфракрасным управлением потребляют даже больше энергии, чем ZigBee, им требуется около 0,7 Вт. Во всяком случае, это все же меньше, чем розетки Wi-Fi.
Тем не менее, вам может понадобиться концентратор для устройств ZigBee, который потребляет всю сэкономленную энергию. Устройства Wi-Fi часто могут отказаться от таких концентраторов и могут напрямую контролироваться через приложение или Alexa и т.п. Таким образом, вы должны рассмотреть ваш вариант использования. Если вы просто хотите дистанционно управлять несколькими устройствами, вы можете использовать ZigBee / IR и назначенный пульт, если вы хотите больше, эти розетки Wi-Fi могут потреблять меньше энергии.
Чтобы лучше понять энергопотребление умных штекеров, стоит заглянуть в них. Чтобы сделать это, давайте посмотрим на некоторые умные проекты плагинов.
Как вы можете видеть, части этих двух разных конструкций совершенно одинаковы.
- Существует источник переменного / постоянного тока, который обеспечивает постоянное напряжение для подсхем.
- Есть «мозг», микроконтроллер с поддержкой Wi-Fi. ATSAMW25 и CC3200.
- Есть несколько специальных аппаратных средств для измерения мощности.
- Реле, позволяющее переключать линии питания.
- Некоторые индикаторы обратной связи и кнопки для локального подключения штекера.
По сути, потребляемая мощность самой вилки — это общая потребляемая мощность этих частей. Основными потребителями являются микроконтроллеры с поддержкой Wi-Fi, реле, и я считаю, что светодиоды потребляют больше, чем расходные детали. Вдобавок ко всему этому идет эффективность источника питания переменного / постоянного тока, на этих элементах будет определенная потеря мощности.
Микроконтроллер с поддержкой Wi-Fi
Большую часть времени процессор приложения будет находиться в режиме пониженного энергопотребления с потреблением тока между мкА и мА. Wi-Fi добавит еще немного потребления, пару мА в нерабочем состоянии.
CC3200 , например , потребляет 12 м , если приложение MCU находится в спящем режиме (не глубокий сон) и сетевой процессор находится в режиме ожидания соединенного состояния. В случае RX потребление возрастает до 56 мА, а в случае TX максимум до 270 мА. (Подробные таблицы на стр. 32.)
Конечно, эти параметры могут отличаться для разных устройств от разных производителей, но примерно одинаковый масштаб.
Реле
В зависимости от типа реле могут быть значительные потери. Существует потеря из-за катушки, называемой силой катушки. Это может быть даже сотни мВт ( 10А, 240 В переменного тока реле 500 — 700 мВт, самая дешевая на Farnell ).
И есть потери из-за сопротивления контакта (100 мОм для предыдущего реле, а при нагрузке 10 А оно рассеивает некоторую мощность). Более дорогие имеют лучшие параметры, например , с сопротивлением 50 мОм .
Я уверен, что дешевые подделки имеют более дешевые реле, поэтому, возможно, потребляют несколько больше.
светодиоды
Стоит отметить пару мА, но не более того.
AC / DC источник питания
Это добавит процент в верхней части общего потребления. Более дешевые преобразователи, вероятно, имеют более низкую эффективность, поэтому дешевая вилка в этом случае будет потреблять больше.
Переключатель обратного хода 700 В UCC28910 от TI имеет типичный КПД 75% в соответствии с таблицей данных (стр. 30.). Могут быть и худшие, и немногие лучше. Снова это дает грубый масштаб.
Все это может меняться, конечно, но в основном это факторы, которые определяют потребление самого устройства. Вы можете рассчитать потребление в худшем случае для дизайна TI, чтобы получить значение W. И, конечно, вы можете проверить параметры определенных продуктов.
Репутация WeMo заявила о 1,5 Вт для своего настенного выключателя на форуме WeMo. Я полагаю, что большинство этих настенных / розеточных переключателей потребляют 1-2 Вт в режиме ожидания.
Это видео 2015 года демонстрирует интеллектуальный диммер A -otec Z-Wave, измеренный в:
0,4 Вт в режиме ожидания
0.6 Вт включен, но полностью затемнен (без нагрузки)
Я предполагаю, что эти коммутаторы имеют такое же энергопотребление, как розетка / розетка, учитывая их схожую функциональность. Розетки могут быть немного ниже, если нет необходимости в регулировке яркости.
Человек, пишущий этот пост с 2016 года, претендует на должность «лидера в разработке технологии импульсного источника питания (SMPS) более 20 лет» и писал:
Сегодня мы можем создать источник питания для зарядного устройства / адаптера с потреблением в режиме ожидания 82% во всем диапазоне нагрузок. К концу года мы ожидаем, что сможем добиться еще большего. Мы можем создать источник питания для ТВ мощностью 100 Вт с максимальной эффективностью около 90% (вентилятор не требуется), коэффициентом мощности, близким к единице, и потреблением в режиме ожидания около 450 мВт (необходим для поддержания ИК-датчика и связанных компонентов таким образом, чтобы вы могли включить его. ). Нередко ожидать появления блоков питания со средней эффективностью> 90% и почти нулевым режимом ожидания. Само понятие, что вы должны отключать что-то, чтобы экономить энергию, немного устарело.
Ваш комментарий о Wi-Fi немного неточен. Хотя большинство этих технологий обмениваются данными по беспроводной сети, большинство из них не используют 802.11a / b / g / n. Это делает использование большой утечки энергии. Я направляю вас к этому отчету Международного энергетического агентства за 2016 год . Я включил рисунок 20 из отчета (стр. 41) ниже, который дает широкое сравнение технологий.
Как видите, есть беспроводные технологии, которые потребляют гораздо меньше энергии, чем WiFi. На самом деле, в отношении приводов (например, выключатели света) в отчете отмечается (стр. 45):
Например, в случае EnOcean механическая энергия нажатия кнопки беспроводного выключателя света используется для подачи питания на шлюз.
Очевидно, что нет никакого механического действия, чтобы захватить энергию для розетки, но это действительно указывает, насколько маломощная связь, если она может быть запитана легким нажатием пальца.
Источник
Энергомер или как измерить эффективность розетки
В современном мире любой вид энергии любит учет, будь то потребление пищи или простая лампочка накаливания (если еще остались такие). На упаковках с едой пишут состав и примерное содержание энергии в килокалориях, а на любом электроприборе принято указывать его потребление. И если с простой осветительной лампой все более менее понятно, то посчитать например потребление электрического водонагревателя или скажем пылесоса уже сложнее. Да и как быть с приборами которые работают в спящем режиме, с одной стороны он практически не «едят», а с другой все же что-то да потребляют. Вот как раз для таких замеров и потребуется хитрый прибор под названием «Энергомер».
Как заявлено на этикетке прибора он создан для измерения потребляемой мощности электроприборов а так же для простоты расчетов нагрузки на розетку.
Ну чтож, проверим как он работает. Вставляем в розетку, и пока прибор включается и происходит загрузка программы в микроконтроллер, на экране можно видеть все возможные символы. Включение происходит не долго, но и не моментально, где-то секунду или две.
Дальше энергомер сразу показывает напряжение в розетке а так же частоту переменного тока в ней.
Для удобства в энергомере есть часы с отображением дня недели, настройка которых происходит по нажатию на кнопку «SET», по началу конечно с непревычки жмешь на неё часто и сразу попадаешь на редактирование времени. Я бы сделал вход в режим редактирования с небольшой задержкой, для устранения этого неудобства, ну да ладно, прибор звезд с неба не хватает 🙂
Переходим к непосредственно замерам.
Первым подопытным будет осветительная лампа. Мы недавно переехали в свою квартиру и я сразу везде ставил светодиодные лампы, фактически у нас нет ни одной лампы в стандартных цоколях. Самая распространенная – с цоколем G10 и тому подобные. К счастью у меня нашелся микрософит для съемок в софтбоксе и в нем старая галогеновая лампа на 50 Вт. Вот на нем и будем экспериментировать.
Для начала посмотрим потребление с галогеновой лампой:
Как видно, потребляет она 46,5 Вт⋅ч что близко к заявленному номиналу в 50 Вт⋅ч, соответсвенно в моем случае она «кушает» 16 копеек в час днем (тариф 3,35 р за кВт⋅ч днем).
Следом меняем лампочку на диодную:
При схожей, на взгляд, светоотдаче (к сожалению замерить не чем) потребление у LED лампы уже 5,9 Вт.ч что так же близко к заявленным производителем показателям и «прожорливость» такой лампы уже чуть меньше 2-х копеек в час.
И вот тут уже интересный факт. У меня дома всего 39 ламп, 24 из них диммируемые и если предположить что я включу их все на полную яркость то совокупное потребление электроэнергии составит 230 Вт⋅ч что эквивалентно двум лампам накаливания по 100 Вт и еще одной, например в туалете на 30 Вт, хотя не помню были ли лампы на 30 Вт… Тоесть в принципе все включенные лампы будут «есть» 77 копеек в час и если оставить их включенными круглосуточно то за месяц они смогут уменьшить мой бюджет всего на 573 рубля. Это может послужить в принципе доводом, например в споре с теми кто постоянно выключает за вами свет мотивируя это целями экономии. Ну да ладно, слава богу меня по поводу лампочек никто не «теребит» 🙂
Хорошо, с энергоэффективностью лампочек разобрались, теперь можно сравнить и технику поинтереснее.
Для начала замерим Apple MacBook Pro 13″, это не самое последнее поколение, но для теста пдойдет 🙂
Ноут был почти разряжен, каюсь, не запомнил сколько точно был процент заряда батареи, но максимальная мощность потребления зарядного устройства составила 64,5 Вт⋅ч. И вот тут выявилась интересная особенность – блок питания не «шарашит» сразу на полную, а начинает отдавать энергию постепенно, в момент подключения первая цифра которая была зафиксирована прибором, была меньше десяти и потом начала подниматься. Поднималась ступенями, не знаю прибор ли с задержкой мерил или блок питания так отдавал энергию, но признак наличия минимальных «мозгов» у блока питания присутствует.
Для контраста давайте сравним со старым ноутбуком ASUS. По работоспособности это как старые Жигули и летающая тарелка и в сравнении по производительности ASUS намного проигрывает MacBook’у. Одно время включения, запуска нужной программы и открытия в ней файла может отличаться на порядок, что же у них с энергоэффективностью?
Слева на фотографии указано потребление блока питания в выключенном состоянии, в принципе батареи в ноутбуке давно уже вышли в тираж и зарядить его никогда не удастся на 100%, получается выключенный ноутбук, но с включенным в сеть блоком питания будет потреблять 36 Вт⋅ч. А если старичка включить, то потребление начинает скакать от 70 до 100 Вт⋅ч, в зависимости от нагрузки. В принципе при максимальной загрузке разница почти в 2 раза, что существенно в процентном соотношении, но не так существенно по потреблению в цифрах. Но вот по эффективности работы он проигрывает уже побольше и работать за ним можно лишь, выполняя несложные работы, иначе нервы себе дороже 🙂
Другой древний но интересный девайс это, как тогда их называли, Ultra Mobile Portable Computer от SONY выпуска что-то около 2007-го года. У него 1 гигабайт оперативной памяти и 1,33 GHz процессор, кажется какой-то Celerone плюсом ему то, что я заменил HDD на SSD.
При любых раскладах блок питания потребляет в районе 20-30 Вт⋅ч, я думаю тут хорошую роль играет аккумулятор, так как он до сих пор еще живой и демпфирует скачки нагрузки.
Ну и для более яркого примера, я замерил свой домашний-рабочий iMac 2009-го года выпуска.
И тут уже интересней. Потребляет он достаточно заметно. Практически в 4 раза больше своего меньшего яблочного собрата, ну оно и понятно, с таким экраном-то. Тут целых 27 дюймов. А вот сюрприз был в том, что в спящем режиме. Вернее даже не в спящем а выключенном, он ест аж целых 5 Вт⋅ч. Есть повод выключать его теперь, а то раньше он был всегда включен в сеть =)
В принципе современная электронника «ест» не так много электричества и все зависит от того какая вычислительная нагрузка ложится на это устройство в данный момент, плюс многое зависит от блока питания и его поведения, выдает ли оно постоянно одну мощность или подстраивается под своего потребителя, хотя с современными импульсными блоками питания это не так актуально как, например с древними трансформаторами.
Кстати к слову об умных зарядных устройствах. Многим известный iMax B6 ведет себя практически так же как и зарядник от Apple, он так же плавно повышает отдаваемую мощность, ну и затем естественно постепенно её снижает по мере зарядки аккумулятора.
Тут самый мощный из имеющихся у меня LiPo аккумуляторов: 2S 30C 5200mAh и в пике потребляемой мощности при зарядке в режиме 5 Ампер, зарядное устройство потребляло не более 60 Вт⋅ч.
С техникой более менее разобрались, пора переходить к тяжелой артиллерии.
Для начала проверим потребление у чайника.
Чайник у нас тоже с минимальными мозгами. У него есть микроконтроллер который нагревает воду в зависимости от выбранной программы.
В спящем режиме он потребляет очень мало, всего 0,02 Вт⋅ч а при активации программы уже 0,5 Вт⋅ч.
А вот при активации нагревательного элемента он уже «ест» на полную – 1,9к Вт⋅ч.
Нагрев до нужной температуры происходит за счет периодических включений/выключений. Причем мне кажется что кипячение до 100 градусов происходит через проход сначала первых двух а потом уже до финала, до кипятка. Чайник сначала греет на полную, потом выключает нагрев (в этот момент он потребляет всего 8 Вт⋅ч) а потом снова включает нагрев и так до нужной температуры.
Ну и с утюгом и пылесосом все предельно ясно. «Едят» столько, сколько и заявлено. Утюг максимум 4 кВт⋅ч, а пылесос максимум 1,2 кВт⋅ч.
В итоге прибор достаточно интересный и может пригодиться там, где нужно определить потребляемую мощность прибора или проходящий через розетку ток. Я не делал замеры силы тока, так как мне было больше интересно с экономической точки зрения. И вот тут уже можно с легкостью отвечать на вопросы сколько тратится денег на то или иное действие. Например мне интересно посчитать чистую стоимость печати на 3D принтере а так же сколько стоит искупаться в ванной при нагреве воды водонагревателем. Выгодно ли воду греть при помощи электричества дома или горячее водоснабжение дешевле? Я к сожалению не могу пока провести эти тесты, это будет лишь позже. Принтер мне еще не приехал из далекого Китайского магазина, а водонагреватель неправильно подключили нерадивые ремонтники. Но в будущем я обязательно получу ответы на эти вопросы.
От себя хочу сказать спасибо Даджету за предоставленный на тест прибор и пожелать ребятам успехов в гик-отрасли 🙂
PS. Если кого заинтересовал прибор, то вот ссылка на него: Энергомер от Даджет’а.
Источник