Тип оптоволоконного кабеля 50 125 мкм

Многодомовые и однодомовые типы оптических волокон

Оптическое волокно представляет собой нить, сделанную из специального материала, который оптически является прозрачным. Ими пользуются для перенесения света внутри, который возможен благодаря полнейшему внутреннему отражению. Применяют в волокнисто-оптической связи, которая создана с целью передавать информацию с огромной скоростью на больших расстояниях.

Эти волокна уже начали завоевывать рынок, несмотря на относительно недавнее их изобретения. Есть прекрасных представителей этого чуда, созданного учеными изготовлены из кварцевого стекла, фторцирконата, фторалюмината и других материалов. На сайте https://kabelnieseti.ru/services/volokonno-opticheskie-linii-svyazi/ найдутся различные типы оптических волокон.

Строение волокна

Каждое из них состоит из оболочки, сердцевины, которые имеет свою функцию. Сердцевина, например, — среда передачи энергии светового сигнала. Она имеет в своем составе более плотные вещества, чем в состав оболочки. Благодаря разным показателям преломления (у сердцевины он выше) возможно полное внутренне отражение, что позволяет лучу распространяться. Оболочка же помогает направить нужные волны в сердцевину.

Типы оптических волокон

Пока существуют только два основных типа разновидности волокон: одномодовые, многомодовые. Первые отличаются тем, что диаметр их сердцевины имеет в несколько раз большую длину волны света, который по нему проходит, и составляет около 8-10 мкм. Они нашли свое применения в транспортных сетях на разных уровнях: доступа, распределения и на самих магистралях. Диаметр сердцевины многомодового волокна большой (50, 62.5 мкм), по которой должен проходит свет. Ими пользуются в локальных сетях вычисления, а также на уровне доступа в транспортных сетях.

Читайте также:  Кабель канал dlplus 32х20 legrand

По началу, кажется, что многомодовые волокна эффективнее и быстрее, но действительно ли это так? Ведь количественный показатель, которым хвастают поклонники этого кабеля не единственный показатель, и во многих случаях лучше воспользоваться одномодовым.

Одномодовые волокна

Имеет трубочную модульную конструкцию. Центральная трубка заполнена гелием с гидрофобными свойствами, а также в ней находятся световоды. Функция гелия в данной системы — защищать объект от механического и температурного воздействия.

Диаметр сердцевины этих проводников размещен в диапазоне от 7 до 10 мкр. Очень часто используется тип одномодового волокна 9/125. Эта запись говорит, что диаметр сердцевины этого кабеля — 9 мкм, а диаметр оболочки — стандартный (125 мкм). Излучения здесь распределяется только в одной моде, поэтому дисперсия между модами здесь невозможна. Всех представители этого класса можно разделить на стандартные, с ненулевой сдвинутой дисперсией, с уменьшенными утратами на сгибах с небольшими радиусами и другие. У них не так и много отличий: характеристики дисперсии и форма профиля показателя преломления.

Самым распространенным из них есть стандартное, которое широко используют в телекоммуникациях. Квалифицируемый стандартом G.652, идеальны для передачи информации, которая проходит по волнам, длинною 1310 нм. Верхней границей передаваемой волны L-диапазона — 1625 нм. Этот тип одномодовых нитей делят на следующие подкатегории:

  • G.652 А используют для передачи необходимой информации на дистанции до 40 км и подходят для протоколов уровня STM 16. Скорость составляет около 10 Гбит/с. Также соответствует STM 256.
  • G.652.B идеальный для STM 256, согласно протоколам G.691 и G.959.1.
  • G.652.C и G.652.D делают возможной передачу волн с диапазоном 1360-1530 нм.

Если использовать стандартизованные одномодовые волокна для распространения на дистанции больше 40 км волн, изменяются их характеристики. С изобретениям одномодового волокна с ненулевой сдвинутой дисперсией стало возможным передавать сразу несколько волн разной длины. Как правило, они покрыты акрилатным СРС, который исполняет защитную функцию.

Их применяют в глобальных сетевых связях, линиях магистралей и во многих других сферах. Они специально разработаны для волн с диапазоном длины 1530-1565 нм. Как и в предыдущем типе волокон, здесь тоже есть подкатегории, существуют А, В, С виды. Разница между ними — в коэффициенте поляризации дисперсии модов, рабочему диапазону и хроматической дисперсии.

Для сетей, которые прокладывают в зданиях со многими этажами, подойдет одномодовое волокно с поубавленными утратами на сгибах с небольшими радиусами. Среди них есть А и В подкатегоии. Первая из них имеет схожие характеристики с стандартной нитью, кроме меньшего радиуса при укладке. Действие второй распространяется на небольшое расстояние.

Эти одномодовые волокна имеют небольшой уровень утрат на сгибах. Поэтому их применяют для сетей типа FTTH в многоквартирных зданиях. Многомодовые нити имеют несколько защитных оболочек буферного покрытия. Их название говорит, об особенностях прохождения волн по сердцевине. Большой диаметр диспепсию делают больше, ведь здесь лучи попадают под разными углами, различаются длинной траекторий. Эти волокна делятся на группы: ступенчатые и градиентные.

Если показатель преломления изменяется скачкообразно, то речь идет о ступенчатом типе, а если преломление происходит по возрастному типу от края к центу — то это градиентный вариант.Они приспособлены для передачи информации от 10 Mbit/s до 1 Gbit/s. Внешние оболочки кабеля имеют разные цвета с целью изготовления. Используют их передачи телекоммуникационных волн на коротких расстояний. Сердцевины многомодовых кабелей изготовляют с разным диаметром.

Есть волокна с диаметром 50, 62.5, 120 и 980 микрометров. Оболочка может составлять 490 и 1000 мкм в диаметре. Также для классификации используют характеристики, которые рекомендует Международная Организация по Стандартизации 11801. Согласно ей есть такие типы: ОМ 1, ОМ 2, ОМ 3 и ОМ 4.

Многомодовое волокно класса Ом 4 пользуется популярность из-за коэффициента широплотности — у них он составляет всего-навсего 4700 МГц x км при волне, длинною около 850 нм. Эта разновидность кабелей появилась относительно недавно, это улучшенный вариант многомодового оптического волокно типа 50 125 ОМ 3. Последнее сделало реальным передачу информации со скорость 10 Гб/с при отдалении от объекта в 550 м. А ОМ 4 зашел еще дальше — с его помощью это расстояние достигло 150 м при скорости 40 и 100 Гб.
ОМ 1 и ОМ 2 на сегодняшний день является стандартами.

Их используют для качественной передачи информационных данных на относительно большое расстояние и с высокой скоростью, что сделало их незаменимыми в магистралях. Кроме того, они отличаются удобными параметрами для обеспечения работы сетевого оборудования. Ведь затухание и коэффициент широкоплотности определяются для волн с длинною 850 нм и 1300 нм.

Самым распространенным размером сердцевины для многомодовых волокон является 50 нм, поскольку они применяются для оптических сетей Gigabit и 10 Gigabit Ethernet.

Как видно, есть огромное количество типов оптических волокон. Разобраться в их системе, выбрать то, что подходит очень сложно. Нужно учитывать множество факторов: участок сети (магистральный, абонентский, распределительный или другие), на котором он будет использоваться, подобрать подходящие параметры передачи, определить число необходимых волокон, нужную конструкцию.

Также требуется учесть и условия прокладки. Также нужно ответственно подходить во выборе фирмы — изготовителе продукции. Кроме того, нужно учитывать не только их востребованность сегодня, но и перспективы на будущее. Ведь в современном веке все идет вперед. Поэтому, лучше обратится к квалифицированному специалисту по этому вопросу, который поможет с выбором, проектированием и возведением сетей оптических волокон.

Источник

Одномодовые и многомодовые оптические кабели

Самые частые вопросы, которые задают нашим экспертам: в чем отличие одномодового от многомодового кабеля, где и чем обусловлено их применение, можно ли заменить один тип другим? И даже такой вопрос — каких цветов бывают «кабельные моды»? Разберем все это в нашем материале.

Сначала определимся с понятием «кабельной моды». Такого термина не существует! Любой волоконно-оптический кабель (ВОК) содержит в своей конструкции так называемые модули — пластиковые трубки, защищающие оптические волокна. Они действительно бывают разных цветов и в зависимости от их количества можно условно разделить ВОК на одномодульные и многомодульные. Если же говорить об одномодовых (Single-mode, SM) и многомодовых (Multi-mode, MM) кабелях — подразумевается, что кабель изготовлен из соответствующих типов оптических волокон (ОВ). Итак:

ИЛИ НЕ ОЗНАЧАЕТ Single-mode / Multi-mode

Что такое «мода оптического волокна»?

Мода — это элементарная составляющая, отдельный луч, из которого состоит свет, проходящий по волокну. С точки зрения теоретической физики, каждая мода — это одно из решений волновых уравнений Максвелла, описывающих распространение света в световоде. Условно каждую моду представляют в виде набора прямых линий, образующих конус. На схемах же, обычно в поперечном сечении, моды изображают в виде отдельных лучей, распространяющихся в волокне под углом к оптической оси. При этом луч, который геометрически совпадает с осью волокна носит название первой или основной моды, а все остальные называют боковыми модами.

В зависимости от диаметра сердцевины ОВ, показателей преломления материалов сердцевины и оболочки в оптическом волокне будет распространяться только одна или несколько мод излучения. На рис. 1 наглядно показано, что в волокно с маленьким диаметром сердцевины можно ввести только одну моду, в то время как больший диаметр позволяет вводить несколько мод.

Рис. 1. Распространение мод излучения.

Диаметры сердцевины и оболочки для MM составляют, соответственно, 50/125 мкм или 62,5/125 мкм, а для SM — 9/125 мкм. В самом простом случае, когда показатели преломления сердцевины и оболочки имеют равномерные по сечению величины, их профиль носит название ступенчатого. Сечения этих типов ОВ в этом случае выглядят так, как показано на рис. 2:

Рис. 2. Профили показателей преломления различных типов ОВ.

Для SM-волокна ступенчатый профиль показателя преломления вполне приемлем, поскольку в нём распространяется только одна мода. А вот в MM-волокнах со ступенчатым показателем условия прохождения сигнала сильно ухудшаются из-за появления дисперсии. Дисперсию, то есть искажение формы импульса света, вызванную разницей маршрутов распространения отдельных мод, называют межмодовой. Такой вид дисперсии служит главным отличием по оптическим свойствам между SM и MM.

В настоящее время частично подавить межмодовую дисперсию стало возможным за счёт изготовления волокон с так называемым градиентным профилем преломления сердцевины. В этом случае оптическая плотность кварцевого стекла, из которого изготовления сердцевина, плавно снижается от центра к границе. Это даёт возможность скорректировать линии распространения боковых мод и уменьшить искажения сигнала. Наглядно разница между сигналами на входе и на выходе волокна для разных вариантов изготовления показана на рис. 3:

Рис. 3. Изменения формы и амплитуды сигнала на выходе линии в волокнах с разными профилями показателя преломления.

Для систем связи, использующих ММ-волокна рекомендуется использовать именно ОВ с градиентным коэффициентом преломления, однако надо понимать, что стоимость изготовления такого типа волокон гораздо выше, чем у волокон со ступенчатым коэффициентом.

Рассмотрим подробнее различные виды MM и SM волокон и кабелей на их основе.

Многомодовое волокно

Из-за влияния межмодовой дисперсии MM-волокно имеет ограничения по скорости и дальности распространения сигнала по сравнению с SM-волокном. Длину многомодовых линий связи ограничивает также большое по сравнению с одномодовым волокном затухание.

В то же время требования к расходимости излучения источника сигнала, а так же к точности юстировки компонентов оборудования ощутимо снижаются за счёт большого диаметра. Вследствие этого оборудование для многомодового волокна стоит гораздо дешевле, чем для одномодового (хотя само многомодовое волокно несколько дороже).

Как было упомянуто ранее, наибольшее распространение получили многомодовые волокна 50/125 и 62,5/125 мкм. Первые коммерческие MM волокна, производство которых началось в 1970-х годах, имели диаметр сердцевины 50 мкм и ступенчатый профиль коэффициента преломления. На тот момент единственным источником излучения были светодиоды. Увеличение передаваемого трафика привело к появлению волокон с сердцевиной 62,5 мкм. Бо́льший диаметр позволял более эффективно использовать излучение светодиодов, которые отличаются большой расходимостью светового потока. Однако при этом увеличивалось число распространяемых мод, что негативно сказывается на характеристиках передачи. Поэтому, когда вместо светодиодов стали использоваться узконаправленные лазеры, популярность снова обрело волокно 50/125 мкм. В результате совершенствования технологии производства были разработаны волокна, которые стали называть «оптимизированными для работы с лазерами». Дальнейшему росту скорости и дальности передачи информации способствовало появление волокон с градиентным профилем показателя преломления.

В настоящее время существует классификация многомодовых кварцевых волокон, подробно описанная в различных стандартах. Например, стандарт ISO/IEC 11801 определяет 4 категории многомодовых волокон. Они обозначаются латинскими буквами OM (Optical Multimode) и цифрой, обозначающей класс волокна:

  • OM1 – стандартное многомодовое волокно 62,5/125 мкм;
  • OM2 – стандартное многомодовое волокно 50/125 мкм;
  • OM3 – многомодовое волокно 50/125 мкм, оптимизированное для работы с лазером;
  • OM4 – многомодовое волокно 50/125 мкм, оптимизированное для работы с лазером, с улучшенными характеристиками.

Основной параметр, зависящий от дисперсии и определяющий способность волокна поддерживать распространение сигнала на определенные расстояния — коэффициент широкополосности. Для каждого класса в стандарте указываются значения затухания и коэффициента широкополосности. Данные представлены в таблице 1, где параметр OFL (overfilled launch) описывает метод определения ширины полосы пропускания, а именно – с помощью светодиодов.

Коэффициент широкополосности (OFL), МГц*км

Применяется для расширения ранее установленных систем. Использовать в новых системах не рекомендуется.

Применяется для поддержки приложений с производительностью до 1 Гбит/с на расстоянии до 550 м.

Волокно оптимизировано для применения лазерных источников. В режиме RML коэффициент широкополосности на длине волны 850 нм составляет 2000 МГц·км. Волокно применяется в системах с производительностью до 10 Гбит/с на расстоянии до 300 м.

Волокно оптимизировано для применения лазерных источников. В режиме RML коэффициент широкополосности на длине волны 850 нм составляет 4700 МГц·км. Волокно применяется для поддержки приложений с производительностью до 10 Гбит/с на расстоянии до 550 м.

Табл. 1. Сравнение характеристик ММ-волокон разных классов.

В июне 2016 года Ассоциация телекоммуникационной промышленности (TIA) опубликовала стандарт, описывающий новый класс ММ волокна – ОМ5 (TIA-492AAAE). Волокна, изготовленные по такому стандарту, позволят использовать технологию SWDM (Short-wavelength division multiplexing – уплотнение по коротким длинам волн) с четырьмя различными длинами волн. Что, в свою очередь, даст возможность повысить скорость передачи информации в 4 раза при сохранении и даже небольшом увеличении максимальной длины линии. В настоящий момент волокна OM5 в нашей стране практически не применяются, поскольку все их достоинства реализуются только в случае использования активного оборудования (трансиверов), работающего с технологией SWDM. О коммерческой целесообразности применения таких волокон говорить пока рано.

Подписывайтесь на канал ВОЛС.Эксперт

Показываем, как правильно выполнять монтаж оптических муфт и кроссов, разбираем частые ошибки, даем полезные советы специалистам.

Одномодовое волокно

В одномодовом волокне отсутствует межмодовая дисперсия, то есть искажение сигнала во времени из-за разницы в скорости распространения мод. Поэтому одномодовое волокно характеризуется очень большой величиной ширины полосы пропускания (сотни ТГц*км). Стандартное SM-волокно имеет, как упоминалось ранее, ступенчатый профиль показателя преломления.

Величина затухания в SM волокне в несколько раз меньше, чем в MM, что позволяет передавать информацию на очень большие расстояния (500 и более км) на высокой скорости без ретрансляции (повторения) сигнала, при этом характеристики передачи определяются главным образом параметрами активного оборудования.

С другой стороны, одномодовое волокно требует большой точности при вводе излучения и при стыковке оптических волокон друг с другом, что является причиной удорожания используемых волоконно-оптических компонентов (активное оборудование, соединительные изделия) и усложняет процесс монтажа и обслуживания линий.

Первые SM-волокна появились в начале 80-х годов и стали активно использоваться в протяженных линиях связи. В то же время для передачи на короткие расстояния, например, в локальных сетях, продолжалось использование ММ-волокна. Со временем, в связи с уменьшением стоимости как самого волокна, так и компонентов для него, одномодовое волокно стало завоевывать все большую популярность и в непротяженных сетях. Таким образом, сегодня кварцевое SM- волокно является самым распространенным типом оптического волокна.

По мере совершенствования технологий производства создавались и менялись и стандарты, описывающие требования к оптическим волокнам. В отличие от MM-волокон, которые в настоящее время описываются стандартом ISO/IEC 11801, для SM волокон наиболее распространёнными и повсеместно используемыми стали стандарты ITU-T G.652-657.

Перечислим основные свойства волокон, соответствующих этим стандартам.

  1. Одномодовое волокно с несмещенной дисперсией, G.652 (SSMF – Standard Singlemode Fiber)

Наиболее распространенный тип одномодового волокна с точкой нулевой хроматической дисперсии на длине волны 1300 нм. Стандарт выделяет четыре подкласса (A, B, C и D), отличающихся своими характеристиками. Особо стоит отметить волокна G.652.C и G.652.D – они имеют низкое затухание на длине волны 1383 нм, то есть в области «водного пика», а потому могут использоваться в системах CWDM. Такие волокна еще называют «всеволновыми».

  1. Одномодовое волокно с нулевой смещенной дисперсией, G.653 (ZDSF – Zero Dispersion-Shifted Fiber)

Изменяя профиль показателя преломления, можно сдвинуть точку нулевой дисперсии в третье окно прозрачности (1550 нм), что позволяет увеличить дальность передачи сигнала при работе в этом диапазоне. Используются только за рубежом и только в линиях, работающих без использования спектрального уплотнения.

  1. Одномодовое волокно со смещенной длиной волны отсечки, G.654

Волокна с минимизацией потерь на длине волны l=1550 нм являются модификацией волокон SSF с уменьшенными потерями (менее 0,18 дБ/км) в третьем окне прозрачности. Низкое затухание достигается за счет применения кварца сверхвысокой степени очистки для сердцевины, что позволяет снизить затухание, обусловленное поглощением примесями, а также формирования больших значений длины волны отсечки для уменьшения чувствительности к потерям, обусловленным изгибами волокна. Такое оптоволокно может использоваться для передачи цифровой информации на большие расстояния, например, в наземных системах дальней связи и магистральных подводных кабелях с оптическими усилителями. Из-за трудности производства эти волокна очень дороги.

  1. Одномодовое волокно с ненулевой смещенной дисперсией, G.655 (NZDSF – Non-Zero Dispersion Shifted Fiber)

Предназначено для передачи на длинах волн вблизи 1550 нм и оптимизировано для систем DWDM. Абсолютное значение коэффициента хроматической дисперсии в этом волокне больше некоего ненулевого значения в диапазоне длин волн от 1530 нм до 1565 нм. Ненулевая дисперсия препятствует возникновению нелинейных эффектов, которые особенно вредны для DWDM систем.

  1. Одномодовое волокно c ненулевой смещенной дисперсией для широкополосной передачи, G.656

Подобно волокну G.655, имеет ненулевое значение коэффициента хроматической дисперсии, но уже в диапазоне длин волн 1460-1625 нм, поэтому хорошо подходит как для систем DWDM, так и для CWDM.

  1. Одномодовое волокно, не чувствительное к потерям на макроизгибе, G.657 (Bend-Insensitive)

Помимо оптических свойств, важную роль играют и механические характеристики оптоволокна, в частности, его чувствительность к изгибам. Особенно это важно при прокладке внутри помещения, где волокно часто нужно изгибать. Стандарт G.657 выделяет несколько подклассов одномодового волокна, отличающихся минимальным радиусом изгиба и соответствующей величиной потерь.

Описанные стандарты оптических волокон не всегда взаимоисключают друг друга. К примеру, распространенное оптоволокно компании Corning марки SMF-28® Ultra соответствует стандартам G.652.D и G.657.A1. В то же время бывают случаи, когда оптические волокна разных типов не совместимы друг с другом.

Применение кабелей на основе SM и MM волокна

В настоящее время сложилась практика выбора оптического кабеля в зависимости от сферы применения.

Одномодовое волокно используется:

  • в морских и трансокеанских кабельных линиях связи;
  • в наземных магистральных линиях дальней связи;
  • в региональных линиях, линиях связи между городскими узлами, в выделенных оптических каналах большой протяженности, в магистралях к оборудованию операторов мобильной связи;
  • в системах кабельного телевидения;
  • в системах GPON с доведением волокна до конечного пользователя;
  • в СКС, когда магистрали достигают длины 550 м и более (например, между зданиями);
  • в СКС, обслуживающих ЦОД, независимо от расстояния.

Многомодовое волокно в основном используется:

  • в СКС, в магистралях, проходящих внутри здания (как правило, протяженностью до 300 м) и в магистралях между зданиями, если расстояние не превышает 550 м;
  • в горизонтальных сегментах СКС и в системах FTTD (fiber-to-the-desk), где устанавливаются пользовательские рабочие станции с многомодовыми оптическими сетевыми картами;
  • в ЦОД, в дополнение к одномодовому волокну;
  • во всех случаях, где расстояние позволяет применять многомодовые кабели. Основной критерий выбора – кабели обходятся дороже, но экономия на активном оборудовании покроет эти затраты.

Для демонстрации коммерческой целесообразности применения SM и MM волокон в различных случаях сравним стоимость активного оборудования. Будем сравнивать конкретные модели оборудования, необходимого для работы на различных скоростях передачи информации. См. табл. 2.

Источник