Температура медного кабеля при коротком замыкании

Содержание
  1. Нагрев проводников при коротком замыкании

    Проводник, по которому протекает ток, нагревается, конечно, не мгновенно: по мере протекания тока в проводнике выделяется энергия, которая частично идет на нагрев проводника, а частично рассеивается в окружающее пространство. Отдача энергии окружающему пространству нагретым телом происходит тем интенсивнее, чем выше температура тела по сравнению с температурой окружающей среды, поэтому спустя некоторое время от начала нагрева проводника наступит момент, когда количество выделяемой в проводнике энергии сравняется с энергией, рассеиваемой в окружающем пространстве. Начиная с этого момента времени температура проводника остается постоянной. Коэффициент теплоотдачи зависит и от размеров тела и от его температуры и от его расположения. Следует отметить, что постоянная времени нагрева (время в течение которого проводник успевает нагреться от температуры окружающей среды) фактически не постоянна, так как теплоемкость и коэффициент теплоотдачи зависят от температуры (в особенности последний). Поэтому для различных значений установившейся температуры постоянная времени нагрева будет различна. Величина постоянной времени нагрева для обычных электротехнических изделий применяемых в электроустановках, колеблется от нескольких десятков минут до нескольких часов. Допустимые температуры нагрева токоведущих часте обычно диктуются свойствами той изоляции, с которой соприкасается данный проводник. Это вполне понятно, поскольку материал проводника, как правило, более теплостоек, чем материал изоляции. Во всех случаях нагрева проводников наибольший интерес представляет максимальная температура, которая будет иметь место не на внешней поверхности изоляции, а на поверхности проводника, так как нас интересует температура изоляции, с которой он соприкасается. Допустимые температуры в значительной степени определяются свойствами изоляции, с которой соприкасаются нагреваемые части Однако, от этого правила есть отступления. Так, например, в контактных соединениях громадную роль играют окислы, которых образуется тем больше, чем выше температура контактов. Поэтому для таких элементов аппаратов максимум допустимой температуры может диктоваться уже не изоляцией, находящейся вблизи контакта, а условиями работы самого контакта. Токоведущие неизолированные части (но не контактные соединения) допускают более высокий нагрев, чем изолированные проводники. Величину допустимой для них температуры определяют, главным образом, два фактора: окисление этих проводников ; механическая прочность их при коротком замыкании. Для одних и тех же проводников с одной и той же изоляцией допустимые температуры различны в зависимости от условий использования их. Подробнее о том, как определяется длительно допустимый ток проводов и кабелей мы уже ранее рассматривали в этой статье: От чего зависит длительно допустимый ток кабеля Длительность короткого замыкания не может быть большой, так как это режим аварийный и зашита электроустановок направлена к возможно быстрому отключению короткозамкнутого участка цепи. В зависимости от выдержки времени защитных реле длительность короткого замыкания колеблется в пределах от нескольких десятых (реже — сотых) секунды до нескольких секунд (смотрите — Как выполняется защита электропроводки от перегрузки и коротких замыканий). При коротком замыкании допускается в два-три раза более высокая температура проводников, чем при нормальной работе, следовательно, теплоотдача с поверхности проводника возрастает не на много, в то же время величина тока короткого замыкания, по сравнению с нормальным током, возрастает в десятки раз, а потери в проводнике — в сотни раз. Отсюда следует, что при коротком замыкании количество энергии, отводимой с поверхности проводника за счет охлаждения, составляет незначительную величину от потерь в проводнике. Возьмем формулу Ньютона и перепишем ее в форме В числителе этой формулы стоят потери в проводнике, в знаменателе — отвод тепла с поверхности проводника. При нормальной работе и установившемся тепловом режиме эти две величины равны друг другу. При коротком замыкании знаменатель увеличится в три-четыре раза. Но величина тока короткого замыкания составляет 10 — 20-кратную величину от нормального тока и, следовательно, числитель рассматриваемой дроби увеличится в 100 — 400 раз. Таким образом, если при нормальном режиме теплоотдача с поверхности проводника составляла 100 % с от величины потерь в проводнике, то при коротком замыкании теплоотдача будет составлять 1 — 3% от потерь в проводнике. Это обстоятельство дает право вычислять перегрев проводника при коротком замыкании, не считаясь с энергией отводимой от проводника за счет охлаждения, т. е. дает право предполагать, что вся энергия, выделенная в проводнике при коротком замыкании идет на повышение его температуры (адиабатический процесс). Ошибка при таком допущении будет тем меньше, чем больше потери в проводнике по сравнению с теплоотдачей с его поверхности. Кроме того, при коротком замыкании считается худшим случаем, когда замыкание случилось после того, как проводник или аппарат (или его часть) до этого длительно работали в номинальном режиме. Ток короткого замыкания в цепи переменного тока помимо периодической (переменной) слагающей содержит также апериодическую (постоянную) слагающую. Максимальное значение апериодической слагающей тока получается тогда, когда цепь замыкается в момент прохода напряжения через ноль. В этом случае ток короткого замыкания получается наибольшей величины. Апериодическая и периодическая слагающие тока короткого замыкания затухают по времени, первая быстро, вторая медленно. Недопустить перегрева проводов и кабелей при коротком замыкании можно правильно выбрав марку и их сечение и обеспечив правильную защиту электросети с помощью автоматических выключателей. Также нужно соблюдать меры, обеспечивающие пожарную безопасность электропроводки во время эксплуатации электропроводки и электроприборов. Выбор сечения кабеля: Меры, обеспечивающие пожарную безопасность электропроводки: Обычно за время короткого замыкания величина тока меняется, вместе с тем по мере увеличения температуры проводника меняются удельное сопротивление материала проводника и его теплоемкость. Задаваясь длительностью короткого замыкания и допустимой температурой перегрева при коротком замыкании можно определить допустимую плотность тока. Определенная таким образом величина тока носит название тока термической устойчивости. Эта техническая величина чаще всего используется при конструировании, расчете и выборе различных электрических аппаратов и токоведущих шин на трансформаторных подстанциях. Термическая устойчивость относится к определенному времени (заданному при его определении). Различные предприятия и различные государственные нормы предусматривают отличные друг от друга величины расчетного времени, к которому следует отнести ток термической устойчивости. По нормам принят десятисекундный ток термической устойчивости. Это означает, что при расчете допустимого тока короткого замыкания время длительности тока принимают равным 10 сек. Пользуются также и односекундным и пятисекундным токами термической устойчивости. В действительности, конечно, перегрев аппарата от тока короткого замыкания определяется не произведением тока на время, а произведением квадрата тока на время. Смотрите также другие полезные статьи по этой теме: Источник Нагрев кабелей при коротком замыкании (часть 1) Правильно рассчитанная и надлежащим образом выполненная электрическая сеть не гарантируют исключение возможности возникновения аварийных ситуаций, приводящих к недопустимому перегреву электрических кабелей при возникновении короткого замыкания. Например, подобная ситуация, как отмечалось в работе Сопротивление цепи фаза — ноль возникает при подключении нагрузки в розеточную сеть через удлинитель. Начиная с некоторой длины добавленного к групповой линии провода удлинителя сопротивление цепи фаза – ноль увеличивается до значения, при котором ток короткого замыкания будет меньше порога срабатывания электромагнитного расцепителя автоматического выключателя. Поэтому при проектировании электроустановок желательно учитывать возможность нештатных условий эксплуатации электропроводки. В соответствии с ГОСТ Р МЭК 60724-2009 «Предельные температуры электрических кабелей на номинальное напряжение 1кВ в условиях короткого замыкания» температура жил кабеля (до 300 мм 2 включительно) с изоляцией из ПВХ пластиката при коротком замыкании не должна превышать 160 градусов. Достижение этой температуры допускается при длительности короткого замыкания до 5 секунд. При такой продолжительности короткого замыкания изоляция кабеля не успевает нагреться до такой же температуры. При более длительных коротких замыканиях предельная температура нагрева жил должна быть уменьшена. Рассмотрим возникновение подобной ситуации на примере использования автоматического выключателя группы «С». Время – токовая характеристика выключателя приведена на Рис. 1. В приведенных характеристиках выделены зона «a» — тепловой расцепитель и зона «b» — электромагнитный расцепитель. На графике показаны две кривые 1 и 2 зависимости времени срабатывания выключателя от тока, которые показывают пределы технологического разброса параметров выключателя при его изготовлении. Для автоматических выключателей группы «С» в пределах технологического разброса кратность тока срабатывания электромагнитного расцепителя к номинальному току срабатывания теплового расцепителя находится в пределах от 5 до 10. Нас интересует только кривая 2 для переменного тока (АС), показывающая максимальное время срабатывания выключателя. Как видно из графика на Рис. 1, при незначительном уменьшении тока короткого замыкания ниже порога срабатывания электромагнитного расцепителя время срабатывания автоматического выключателя определяется тепловым расцепителем и достигает величины порядка 6 секунд. Рис. 1 Время – токовая характеристика автоматов группы С. Попробуем выяснить, что происходит с кабелями за промежуток времени, в течение которого сработает тепловой расцепитель. Для этого необходимо вычислить зависимости температуры жил кабелей от времени прохождения по ним токов, близких к порогу срабатывания электромагнитного расцепителя. В Таблице 1 даны расчетные значения температур жил кабелей в зависимости от продолжительности короткого замыкания (при разных токах) для кабеля с медными жилами сечением 1,5 кв. мм. Кабель данного сечения повсеместно используется в осветительных групповых сетях жилых и общественных зданий. Для вычисления температур жил кабелей использована методика расчета из ГОСТ Р МЭК 60949-2009 «Расчет термически допустимых токов короткого замыкания с учетом неадиабатического нагрева». Температура жил кабеля определяется по формуле: где, Θf — конечная температура жил кабеля о С; Θi– начальная температура жил кабеля о С; β – величина, обратная температурному коэффициенту сопротивления при 0 °C, К, для меди β=234,5; K – постоянная, зависящая от материала токопроводящего элемента, А · с 1/2 /мм 2 ,для меди K=226; t – длительность короткого замыкания, с; S – площадь поперечного сечения токопроводящей жилы, мм 2 ; ISC — известный максимальный ток короткого замыкания (среднеквадратичное значение), А; IAD=ISC/ε — ток короткого замыкания, определенный на основе адиабатического нагрева (среднеквадратичное значение), А; ε – коэффициент, учитывающий отвод тепла в соседние элементы; X, Y — постоянные, используемые в упрощенной формуле для жил и проволочных экранов, (мм 2 /с) 1/2 ; мм 2 /с, для кабелей с медными жилами и изоляцией из ПВХ пластиката X=0,29 и Y=0,06; Вычисления произведены для температуры кабеля до короткого замыкания 55 градусов. Такая температура соответствует рабочему току, проходящему по кабелю до возникновения короткого замыкания порядка 0,5 – 0,7 от предельно допустимого длительного тока при температуре окружающей среды 30 – 35 градусов. В зависимости от предполагаемых условий эксплуатации электроустановки температура жил кабелей до короткого замыкания при проектировании электрической сети может быть изменена. Температура медных жил кабеля с изоляцией из ПВХ пластиката град., при коротком замыкании длительностью, сек: Источник Нагрев кабелей при коротком замыкании (часть 2) Для групповых сетей , питающих электрические розетки, при проектировании электропроводки как правило предусматривают кабели с медными жилами сечением 2,5 мм 2 . Расчетные величины температур жил кабелей в зависимости от продолжительности короткого замыкания (при разных токах) для кабелей с медными жилами сечением 2,5 кв. мм показаны в Таблице 4. Как видно из таблицы, надежную защиту кабеля обеспечит автоматический выключатель С16. Для защиты розеточных сетей, выполненных кабелями с медными жилами сечением 2,5 мм 2 иногда используют автоматические выключатели С25. Такая защита не является надежной и может вызвать недопустимый перегрев изоляции кабеля при коротком замыкании. Подобное чаще случается, если электромонтажные работы выполняются без предварительного проектирования электропроводки. В таблицах 5 и 6 даны зависимости температур жил кабелей с заниженными сечениями на 10 и 20 процентов. Конечно, всегда необходимо контролировать сечение жил при покупке кабелей. Но гарантировать, что кабель с заниженным сечением не попадет на строительный объект весьма трудно. Но, если электромонтажные работы выполняются кабелями с заниженным сечением, то, как видно из Таблиц 5 и 6 автоматический выключатель С16 не обеспечит надежную защиту розеточной группы. Если сравнивать характеристики кабелей различного сечения, то можно увидеть, что длительно допустимый ток кабеля пропорционален не площади поперечного сечения его жил, а площади поверхности жилы. Для увеличения длительно допустимого тока кабеля в 2 раза сечение кабеля должно быть увеличено почти в 4 раза (смотри например таблицу длительно допустимых токов). При возникновении короткого замыкания в линии нагрев кабеля пропорционален площади поперечного сечения, так как отвод тепла в изоляцию невелик. Поэтому защитить кабели большого сечения при их использовании при токах, близких к длительно допустимым токам проще, чем кабели маленьких сечений. Источник
  2. Нагрев кабелей при коротком замыкании (часть 1)
  3. Нагрев кабелей при коротком замыкании (часть 2)
Читайте также:  Морозостойкие кабели для бытовых нужд

Нагрев проводников при коротком замыкании

Проводник, по которому протекает ток, нагревается, конечно, не мгновенно: по мере протекания тока в проводнике выделяется энергия, которая частично идет на нагрев проводника, а частично рассеивается в окружающее пространство.

Отдача энергии окружающему пространству нагретым телом происходит тем интенсивнее, чем выше температура тела по сравнению с температурой окружающей среды, поэтому спустя некоторое время от начала нагрева проводника наступит момент, когда количество выделяемой в проводнике энергии сравняется с энергией, рассеиваемой в окружающем пространстве.

Начиная с этого момента времени температура проводника остается постоянной. Коэффициент теплоотдачи зависит и от размеров тела и от его температуры и от его расположения.

Следует отметить, что постоянная времени нагрева (время в течение которого проводник успевает нагреться от температуры окружающей среды) фактически не постоянна, так как теплоемкость и коэффициент теплоотдачи зависят от температуры (в особенности последний). Поэтому для различных значений установившейся температуры постоянная времени нагрева будет различна.

Величина постоянной времени нагрева для обычных электротехнических изделий применяемых в электроустановках, колеблется от нескольких десятков минут до нескольких часов.

Допустимые температуры нагрева токоведущих часте обычно диктуются свойствами той изоляции, с которой соприкасается данный проводник. Это вполне понятно, поскольку материал проводника, как правило, более теплостоек, чем материал изоляции.

Во всех случаях нагрева проводников наибольший интерес представляет максимальная температура, которая будет иметь место не на внешней поверхности изоляции, а на поверхности проводника, так как нас интересует температура изоляции, с которой он соприкасается.

Допустимые температуры в значительной степени определяются свойствами изоляции, с которой соприкасаются нагреваемые части

Однако, от этого правила есть отступления. Так, например, в контактных соединениях громадную роль играют окислы, которых образуется тем больше, чем выше температура контактов. Поэтому для таких элементов аппаратов максимум допустимой температуры может диктоваться уже не изоляцией, находящейся вблизи контакта, а условиями работы самого контакта.

Токоведущие неизолированные части (но не контактные соединения) допускают более высокий нагрев, чем изолированные проводники. Величину допустимой для них температуры определяют, главным образом, два фактора:

окисление этих проводников ;

механическая прочность их при коротком замыкании.

Для одних и тех же проводников с одной и той же изоляцией допустимые температуры различны в зависимости от условий использования их.

Подробнее о том, как определяется длительно допустимый ток проводов и кабелей мы уже ранее рассматривали в этой статье: От чего зависит длительно допустимый ток кабеля

Длительность короткого замыкания не может быть большой, так как это режим аварийный и зашита электроустановок направлена к возможно быстрому отключению короткозамкнутого участка цепи. В зависимости от выдержки времени защитных реле длительность короткого замыкания колеблется в пределах от нескольких десятых (реже — сотых) секунды до нескольких секунд (смотрите — Как выполняется защита электропроводки от перегрузки и коротких замыканий).

При коротком замыкании допускается в два-три раза более высокая температура проводников, чем при нормальной работе, следовательно, теплоотдача с поверхности проводника возрастает не на много, в то же время величина тока короткого замыкания, по сравнению с нормальным током, возрастает в десятки раз, а потери в проводнике — в сотни раз.

Отсюда следует, что при коротком замыкании количество энергии, отводимой с поверхности проводника за счет охлаждения, составляет незначительную величину от потерь в проводнике.

Возьмем формулу Ньютона

и перепишем ее в форме

В числителе этой формулы стоят потери в проводнике, в знаменателе — отвод тепла с поверхности проводника. При нормальной работе и установившемся тепловом режиме эти две величины равны друг другу. При коротком замыкании знаменатель увеличится в три-четыре раза. Но величина тока короткого замыкания составляет 10 — 20-кратную величину от нормального тока и, следовательно, числитель рассматриваемой дроби увеличится в 100 — 400 раз.

Таким образом, если при нормальном режиме теплоотдача с поверхности проводника составляла 100 % с от величины потерь в проводнике, то при коротком замыкании теплоотдача будет составлять 1 — 3% от потерь в проводнике.

Это обстоятельство дает право вычислять перегрев проводника при коротком замыкании, не считаясь с энергией отводимой от проводника за счет охлаждения, т. е. дает право предполагать, что вся энергия, выделенная в проводнике при коротком замыкании идет на повышение его температуры (адиабатический процесс). Ошибка при таком допущении будет тем меньше, чем больше потери в проводнике по сравнению с теплоотдачей с его поверхности.

Кроме того, при коротком замыкании считается худшим случаем, когда замыкание случилось после того, как проводник или аппарат (или его часть) до этого длительно работали в номинальном режиме.

Ток короткого замыкания в цепи переменного тока помимо периодической (переменной) слагающей содержит также апериодическую (постоянную) слагающую.

Максимальное значение апериодической слагающей тока получается тогда, когда цепь замыкается в момент прохода напряжения через ноль. В этом случае ток короткого замыкания получается наибольшей величины. Апериодическая и периодическая слагающие тока короткого замыкания затухают по времени, первая быстро, вторая медленно.

Недопустить перегрева проводов и кабелей при коротком замыкании можно правильно выбрав марку и их сечение и обеспечив правильную защиту электросети с помощью автоматических выключателей. Также нужно соблюдать меры, обеспечивающие пожарную безопасность электропроводки во время эксплуатации электропроводки и электроприборов.

Выбор сечения кабеля:

Меры, обеспечивающие пожарную безопасность электропроводки:

Обычно за время короткого замыкания величина тока меняется, вместе с тем по мере увеличения температуры проводника меняются удельное сопротивление материала проводника и его теплоемкость.

Задаваясь длительностью короткого замыкания и допустимой температурой перегрева при коротком замыкании можно определить допустимую плотность тока.

Определенная таким образом величина тока носит название тока термической устойчивости. Эта техническая величина чаще всего используется при конструировании, расчете и выборе различных электрических аппаратов и токоведущих шин на трансформаторных подстанциях.

Термическая устойчивость относится к определенному времени (заданному при его определении). Различные предприятия и различные государственные нормы предусматривают отличные друг от друга величины расчетного времени, к которому следует отнести ток термической устойчивости.

По нормам принят десятисекундный ток термической устойчивости. Это означает, что при расчете допустимого тока короткого замыкания время длительности тока принимают равным 10 сек. Пользуются также и односекундным и пятисекундным токами термической устойчивости. В действительности, конечно, перегрев аппарата от тока короткого замыкания определяется не произведением тока на время, а произведением квадрата тока на время.

Смотрите также другие полезные статьи по этой теме:

Источник

Нагрев кабелей при коротком замыкании (часть 1)

Правильно рассчитанная и надлежащим образом выполненная электрическая сеть не гарантируют исключение возможности возникновения аварийных ситуаций, приводящих к недопустимому перегреву электрических кабелей при возникновении короткого замыкания.

Например, подобная ситуация, как отмечалось в работе Сопротивление цепи фаза — ноль возникает при подключении нагрузки в розеточную сеть через удлинитель. Начиная с некоторой длины добавленного к групповой линии провода удлинителя сопротивление цепи фаза – ноль увеличивается до значения, при котором ток короткого замыкания будет меньше порога срабатывания электромагнитного расцепителя автоматического выключателя. Поэтому при проектировании электроустановок желательно учитывать возможность нештатных условий эксплуатации электропроводки.

В соответствии с ГОСТ Р МЭК 60724-2009 «Предельные температуры электрических кабелей на номинальное напряжение 1кВ в условиях короткого замыкания» температура жил кабеля (до 300 мм 2 включительно) с изоляцией из ПВХ пластиката при коротком замыкании не должна превышать 160 градусов. Достижение этой температуры допускается при длительности короткого замыкания до 5 секунд. При такой продолжительности короткого замыкания изоляция кабеля не успевает нагреться до такой же температуры. При более длительных коротких замыканиях предельная температура нагрева жил должна быть уменьшена.

Рассмотрим возникновение подобной ситуации на примере использования автоматического выключателя группы «С». Время – токовая характеристика выключателя приведена на Рис. 1. В приведенных характеристиках выделены зона «a» — тепловой расцепитель и зона «b» — электромагнитный расцепитель. На графике показаны две кривые 1 и 2 зависимости времени срабатывания выключателя от тока, которые показывают пределы технологического разброса параметров выключателя при его изготовлении. Для автоматических выключателей группы «С» в пределах технологического разброса кратность тока срабатывания электромагнитного расцепителя к номинальному току срабатывания теплового расцепителя находится в пределах от 5 до 10. Нас интересует только кривая 2 для переменного тока (АС), показывающая максимальное время срабатывания выключателя.

Как видно из графика на Рис. 1, при незначительном уменьшении тока короткого замыкания ниже порога срабатывания электромагнитного расцепителя время срабатывания автоматического выключателя определяется тепловым расцепителем и достигает величины порядка 6 секунд.

Рис. 1 Время – токовая характеристика автоматов группы С.

Попробуем выяснить, что происходит с кабелями за промежуток времени, в течение которого сработает тепловой расцепитель. Для этого необходимо вычислить зависимости температуры жил кабелей от времени прохождения по ним токов, близких к порогу срабатывания электромагнитного расцепителя.

В Таблице 1 даны расчетные значения температур жил кабелей в зависимости от продолжительности короткого замыкания (при разных токах) для кабеля с медными жилами сечением 1,5 кв. мм. Кабель данного сечения повсеместно используется в осветительных групповых сетях жилых и общественных зданий.

Для вычисления температур жил кабелей использована методика расчета из ГОСТ Р МЭК 60949-2009 «Расчет термически допустимых токов короткого замыкания с учетом неадиабатического нагрева».

Температура жил кабеля определяется по формуле:

где, Θf — конечная температура жил кабеля о С;

Θi– начальная температура жил кабеля о С;

β – величина, обратная температурному коэффициенту сопротивления при 0 °C, К, для меди β=234,5;

K – постоянная, зависящая от материала токопроводящего элемента, А · с 1/2 /мм 2 ,для меди K=226;

t – длительность короткого замыкания, с;

S – площадь поперечного сечения токопроводящей жилы, мм 2 ;

ISC — известный максимальный ток короткого замыкания (среднеквадратичное значение), А;

IAD=ISC/ε — ток короткого замыкания, определенный на основе адиабатического нагрева (среднеквадратичное значение), А;

ε – коэффициент, учитывающий отвод тепла в соседние элементы;

X, Y — постоянные, используемые в упрощенной формуле для жил и проволочных экранов, (мм 2 /с) 1/2 ; мм 2 /с, для кабелей с медными жилами и изоляцией из ПВХ пластиката X=0,29 и Y=0,06;

Вычисления произведены для температуры кабеля до короткого замыкания 55 градусов. Такая температура соответствует рабочему току, проходящему по кабелю до возникновения короткого замыкания порядка 0,5 – 0,7 от предельно допустимого длительного тока при температуре окружающей среды 30 – 35 градусов. В зависимости от предполагаемых условий эксплуатации электроустановки температура жил кабелей до короткого замыкания при проектировании электрической сети может быть изменена.

Температура медных жил кабеля с изоляцией из ПВХ пластиката град., при коротком замыкании длительностью, сек:

Источник

Нагрев кабелей при коротком замыкании (часть 2)

Для групповых сетей , питающих электрические розетки, при проектировании электропроводки как правило предусматривают кабели с медными жилами сечением 2,5 мм 2 . Расчетные величины температур жил кабелей в зависимости от продолжительности короткого замыкания (при разных токах) для кабелей с медными жилами сечением 2,5 кв. мм показаны в Таблице 4. Как видно из таблицы, надежную защиту кабеля обеспечит автоматический выключатель С16.

Для защиты розеточных сетей, выполненных кабелями с медными жилами сечением 2,5 мм 2 иногда используют автоматические выключатели С25. Такая защита не является надежной и может вызвать недопустимый перегрев изоляции кабеля при коротком замыкании. Подобное чаще случается, если электромонтажные работы выполняются без предварительного проектирования электропроводки.

В таблицах 5 и 6 даны зависимости температур жил кабелей с заниженными сечениями на 10 и 20 процентов. Конечно, всегда необходимо контролировать сечение жил при покупке кабелей. Но гарантировать, что кабель с заниженным сечением не попадет на строительный объект весьма трудно. Но, если электромонтажные работы выполняются кабелями с заниженным сечением, то, как видно из Таблиц 5 и 6 автоматический выключатель С16 не обеспечит надежную защиту розеточной группы.

Если сравнивать характеристики кабелей различного сечения, то можно увидеть, что длительно допустимый ток кабеля пропорционален не площади поперечного сечения его жил, а площади поверхности жилы. Для увеличения длительно допустимого тока кабеля в 2 раза сечение кабеля должно быть увеличено почти в 4 раза (смотри например таблицу длительно допустимых токов). При возникновении короткого замыкания в линии нагрев кабеля пропорционален площади поперечного сечения, так как отвод тепла в изоляцию невелик. Поэтому защитить кабели большого сечения при их использовании при токах, близких к длительно допустимым токам проще, чем кабели маленьких сечений.

Источник