Сопротивление нулевой последовательности кабеля 3х2 5

Силовые кабели до 1 кВ. Расчет сопротивлений нулевой последовательности

Владимир Фишман, главный специалист, группа компаний «Электрощит-ТМ-Самара», филиал «Энергосетьпроект-НН-СЭЩ», город Нижний Новгород.

Методика расчета удельных сопротивлений силовых кабелей 1–10 кВ с пластмассовой изоляцией, опубликованная в нашем журнале («Новости ЭлектроТехники» № 4(34) 2005) специалистами Всероссийского НИИ кабельной промышленности М.К. Каменским и С.Д. Холодным, заинтересовала многих читателей.

Владимир Семенович Фишман, отмечая актуальноcть поднятой темы, считает, что в предложенную методику необходимо внести уточняющие параметры для более корректных расчетов.

Знание активных и индуктивных сопротивлений кабелей необходимо для расчета прежде всего токов короткого замыкания, для выбора и проверки защитной аппаратуры. Что касается кабелей напряжением до 1 кВ, то отсутствие достоверных данных о них отрицательно сказывается на качестве проектных решений, на надежности и безопасности электроустановок.

Заводы-производители не сообщают данных по сопротивлениям нулевой последовательности кабелей. Не содержится необходимых данных и в нормативных документах по расчету токов короткого замыкания [1, 2]. В связи с этим следует приветствовать появление в статье специалистов ВНИИКП [3] методики расчета, исходных данных, формул и т.д.

Вместе с тем в отношении предложенных формул для расчета сопротивлений нулевой последовательности низковольтных 4-жильных кабелей в непроводящей оболочке необходимо высказать несколько замечаний. В статье приводится схема замещения (рис. 1) и соответствующие формулы для расчета сопротивлений нулевой последовательности 4-жильных кабелей:

где Re z0 и Im z0 – соответственно активная и реактивная составляющие полного сопротивления нулевой последовательности схемы – z0;

Читайте также:  Огнезащитный состав феникс для кабеля

R1 – активное сопротивление прямой последовательности жилы кабеля, Ом/км;

х3 – реактивное сопротивление земли;

х0,3 – индуктивное сопротивление прямой последовательности: три жилы – нулевой проводник.

В расчетах рекомендуется принимать сопротивление земли х3 равным 0,6 Ом/км.

В связи с этим необходимо отметить несколько существенных деталей.

ПУТИ ПРОТЕКАНИЯ ТОКОВ НУЛЕВОЙ ПОСЛЕДОВАТЕЛЬНОСТИ

Принятая схема замещения предполагает, что нулевой проводник должен быть обязательно заземлен не только со стороны источника питания, но и со стороны потребителя. Однако сооружение заземлителя у всех потребителей в сети до 1 кВ с глухозаземленной нейтралью вовсе не обязательно.

Обратимся к ПУЭ [4]. Согласно трактовке п. 1.7.3., «система TN – система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника посредством нулевых защитных проводников».

При этом в системе TN-С нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всем ее протяжении (рис. 2), а в системе TN-S нулевой защитный и нулевой рабочий проводники разделены на всем ее протяжении, кроме начальной точки у источника питания (рис. 3).

Так называемое повторное заземление нулевых защитных проводников рекомендуется выполнять на вводах в здания, на распределительных щитах и т.п. местах. В целом ряде других случаев это сделать невозможно, или нецелесообразно.

Например, нулевую жилу PEN или PE кабеля, подходящего к распределительным этажным и квартирным щиткам внутри многоэтажных зданий, присоединить к земле (в прямом смысле этого слова) у этих щитков никак нельзя.

То же самое можно сказать и относительно кабелей, питающих отдельных потребителей.

Что касается системы TN-S, то в ней при однофазном коротком замыкании (ОКЗ) возможны два повреждения:

а) замыкание фазы на нулевой рабочий проводник N;

б) замыкание фазы на защитный проводник PE.

В первом случае токи нулевой последовательности при ОКЗ возвращаются только по нулевому рабочему проводнику, не связанному с заземляющими устройствами со стороны потребителя. Во втором – ток возвращается по защитному проводнику, который в зависимости от конкретных условий может быть связан с заземляющим устройством со стороны потребителя.

Эти два случая ОКЗ могут существенно отличаться величиной сопротивлений нулевой последовательности, если отличаются характер и сечения проводников N и PE, а также их расположение относительно фазных проводников. Так, если нулевой рабочий проводник обычно находится в одном кабеле с фазными, то нулевой защитный проводник может быть проложен отдельно. Кроме того, согласно п. 1.7.121 ПУЭ в качестве нулевого защитного проводника могут быть использованы такие сторонние токопроводящие части, как:

— металлические строительные конструкции зданий и сооружений (фермы, колонны и т. п.);

— арматура железобетонных строительных конструкций зданий (при условии выполнения требований п. 1.7.122);

— металлические конструкции производственного назначения (подкрановые рельсы, галереи, площадки, шахты лифтов, подъемников, элеваторов, обрамления каналов и т.п.).

Очевидно, что при таком разнообразии нулевых защитных проводников их сопротивления будут заметно отличаться, что необходимо учитывать в расчетах.

СОПРОТИВЛЕНИЯ КОНТУРА НУЛЕВОЙ ПОСЛЕДОВАТЕЛЬНОСТИ

Рекомендация о введении в формулы постоянного значения сопротивления земли х3 = 0,6 Ом/км представляется не совсем корректной. Эта величина принята согласно рекомендациям [5].

Однако там она определена для кабеля с проводящей оболочкой, проложенного в земле. При этом сопротивление х3 принято исходя из средней величины удельной проводимости грунта, равной s = 0,1 Ом -1 м -1 . Но в тех случаях, когда речь идет о кабеле с непроводящей оболочкой, токи нулевой последовательности могут возвращаться через землю, только пройдя через заземляющее устройство у потребителя (или в промежуточных точках).

Таким образом, последовательно с х3 в эту цепочку должно было бы войти также сопротивление заземляющих устройств. Между тем величину сопротивлений повторных заземлителей при питании кабелями ПУЭ не нормирует, а это значит, что оно может быть весьма большим. Лишь для воздушных линий 380/220 В сопротивление повторных заземлителей не должно превышать 10 Ом. Таким образом, сопротивление заземляющих устройств может в десятки раз превышать величину х3 = 0,6 Ом/км, равно как и сопротивление нулевых проводников N и PE. Из этого следует, что учет пути тока ОКЗ непосредственно через землю практически теряет свой смысл.

Примечание автора: В пользу необходимости учета сопротивления заземлителей говорит следующее. Если бы сопротивления заземляющих устройств можно было не учитывать, тогда в системе ТТ при сопротивлении земли х3 = 0,6 Ом/км токи замыкания на землю были бы настолько велики, что отсутствовала бы необходимость в применении специальных устройств защитного отключения (УЗО), как требует п. 1.7.59 ПУЭ. При этом, как следует из формулы, приведенной в этом пункте (IаRа50 В), величина тока, проходящего через землю, Iа определяется через Rа – «суммарное сопротивление заземлителя и заземляющего проводника».

В действительности на промышленных объектах путь обратного тока ОКЗ часто проходит не через землю, а через другие токопроводящие части. Дело в том, что на современных предприятиях кабели прокладываются в основном не в земле, а по кабельным конструкциям на электротехнических и технологических эстакадах, в тоннелях и каналах. Внутри промышленных зданий машиностроительных предприятий кабели прокладываются в межферменном пространстве, по специальным кабельным конструкциям, в трубах, коробах, на лотках и т.п. Перечисленные конструкции и коммуникации выполнены из металла, поэтому в случае ОКЗ в сети TN 380/220В они могут выполнять роль проводника обратного тока.

В свое время в системе «Главэлектромонтажа» проводились специальные экспериментальные работы по замерам и изучению сопротивления так называемой петли «фаза–ноль» в низковольтных сетях при различных условиях прокладки кабелей и шинопроводов.

Горьковским отделением ГПИ «Электропроект» была выпущена работа, в которой была сделана попытка обобщить известные на тот период расчетные и экспериментальные данные [6]. В ней, в частности, отмечалось, что полное сопротивление току ОКЗ между фазной жилой кабеля и металлоконструкциями различного назначения зависит от размеров, материала металлоконструкции, от расстояния между кабелем и металлоконструкцией, а также от величины плотности тока ОКЗ. Анализ этих материалов показывает, что при одном и том же сечении жил кабеля, в зависимости от вышеуказанных параметров, сопротивление петли «фаза–ноль» может изменяться в достаточно широком диапазоне: zмакс / zмин 1,5.2.

К сожалению, в этой работе приведены, как правило, величины полных сопротивлений цепи «фаза–ноль» без разделения на активную и реактивную составляющие, что не позволяет суммировать их с другими сопротивлениями контура нулевой последовательности, как этого требуют руководящие указания.

Если сравнивать приведенные в [6] величины удельных сопротивлений току ОКЗ различных металлоконструкций, то они, как правило, оказываются больше значения 0,6 Ом/км.

Наряду с вышеупомянутыми условиями, когда различные токопроводящие металлоконструкции влияют на величину сопротивления нулевой последовательности, могут быть и условия, когда ветвь, параллельная нулевому или защитному проводнику, отсутствует.

Например, как уже упоминалось выше, такие условия имеют место при прокладке кабеля в пластмассовых трубах и коробах в административно-бытовых и жилых зданиях. В этих случаях ток нулевой последовательности может возвращаться только по нулевой жиле кабеля N, PEN или по защитному проводнику PE.

О КОРРЕКТИРОВКЕ ФОРМУЛ

Необходимо также отметить, что приведенные формулы, в частности (1), неадекватно отражают влияние сопротивления собственно нулевого проводника кабеля R0 на результирующее сопротивление нулевой последовательности z0. Так, в отмеченных случаях, когда ток нулевой последовательности протекает (возвращается) только по нулевому проводнику R0, принимая в (1)

получим Re z0 = 4R1, что означает, что активная составляющая сопротивления нулевой последовательности z0 не зависит от активного сопротивления нулевого проводника R0. Однако в общем случае, когда R1R0, результат должен быть другим: Re z0 = R1 + 3R0.

В заключение следует отметить, что режимы ОКЗ в сети до 1 кВ с глухозаземленной нейтралью могут быть достаточно разнообразны, поэтому в каждом случае необходимо выбирать тот, который отвечает цели расчета. Так, при проверке чувствительности или времени работы защитной аппаратуры расчетным режимом будет тот, при котором ток ОКЗ оказывается минимальным.

В некоторых случаях расчетный режим является очевидным.

Например, во внутренних сетях административно-бытовых и жилых зданий сторонние проводящие части в цепи тока ОКЗ обычно не участвуют и ток целиком проходит по специально проложенным проводникам N, PEN или PE. Наоборот, в цехах машиностроительных и им подобных предприятий, где ПУЭ допускает использование сторонних проводящих частей в качестве единственных нулевых защитных проводников (пп.1.7.121 и 1.7.122), может потребоваться рассмотрение нескольких режимов ОКЗ: замыкание «фаза – сторонняя проводящая часть», «фаза – нулевой рабочий проводник» или «фаза – нулевой защитный проводник».

1. В общем случае величина сопротивления нулевой последовательности в сети до 1 кВ TN, выполненной кабелем, зависит от характера повреждения при ОКЗ – «фаза – нулевой рабочий проводник», «фаза – нулевой защитный проводник», «фаза – сторонняя токопроводящая часть».

2. При расчете сопротивления нулевой последовательности необходимо учитывать не только параметры питающего кабеля, но и параметры сторонних токопроводящих частей, по которым возможно протекание токов нулевой последовательности.

3. Для повышения достоверности результатов расчетов было бы целесообразно продолжить накопление экспериментальных и расчетных данных о влиянии различных сторонних проводящих частей на величину сопротивления нулевой последовательности токам ОКЗ в сетях до 1 кВ с глухозаземленной нейтралью.

1. ГОСТ 28249-93. Короткие замыкания в электропроводках. Методы расчета в электроустановках переменного тока напряжения до 1 кВ.

2. Руководящие указания по расчету токов короткого замыкания и выбору электрооборудования. РД 153-34.0-20-527-98.

3. Каменский М.К., Холодный С.Д. Силовые кабели 1–10 кВ с пластмассовой изоляцией. Расчет активного и индуктивного сопротивлений // Новости ЭлектроТехники. – 2005. – № 4(34).

4. Правила устройства электроустановок, разд. 1.7., 7-е изд.

5. Холодный С.Д., Филиппов М.М., Кричко В.А., Миронов И.А. Расчет токов в оболочках и экранах и их термической стойкости при однофазном двойном замыкании в разветвленной кабельной сети // Электричество. – 2001. – № 8.

6. Рекомендации по расчету сопротивления цепи «фаза-ноль» / Министерство монтажных и специальных строительных работ СССР. Главэлектромонтаж. ЦБНТИ. – Москва. – 1988 г.

Источник

Силовые кабели 1-10 кВ с пластмассовой изоляцией. Расчет активного и индуктивного сопротивлений

Авторы:
Каменский М.К., к.т.н., заведующий лабораторией силовых кабелей ОАО «ВНИИКП»
Холодный С.Д., д.т.н., старший научный сотрудник ОАО «ВНИИКП»

«Подскажите, где можно найти таблицы с удельными сопротивлениями силовых кабелей с пластмассовой изоляцией?».

Подобные вопросы в последнее время всё чаще появляются в редакционной почте. Их задают специалисты проектных и электроснабжающих организаций, которым необходимы эти данные для правильного расчета токов коротких замыканий. Нормативно-техническая документация с точными параметрами отсутствует.

Мы обратились во Всероссийский НИИ кабельной промышленности (ВНИИКП), специалисты которого Михаил Кузьмич Каменский и Станислав Дмитриевич Холодный сегодня рассказывают о методике расчета удельных сопротивлений силовых кабелей.

При расчете токов коротких замыканий в электрических сетях в соответствии с ГОСТ 28249-93 [1] необходимо знать величины активного и индуктивного сопротивлений прямой, обратной и нулевой последовательностей силовых кабелей. В настоящее время промышленность освоила выпуск нового поколения кабелей с пластмассовой изоляцией на напряжение 1–10 кВ. В связи с этим назрела необходимость уточнения параметров таких кабелей и внесения их в нормативную документацию. Во ВНИИКП разработан инженерный метод расчета сопротивлений прямой, обратной и нулевой последовательностей многожильных силовых кабелей на напряжение 0,6/1 кВ и одножильных кабелей на напряжение 6/10 кВ с изоляцией из сшитого полиэтилена как наиболее востребованной группы кабелей для распределительных сетей.

Основа методики расчета

В основу метода расчета положено представление несимметричных напряжений (токов) в трехфазной симметричной сети в виде суммы трех симметричных составляющих: прямой, обратной и нулевой последовательностей, различающихся чередованием фаз. В этом случае значения фазных напряжений будут определены в виде комплексных величин:

(1)

где , – единичные векторы. Решая систему уравнений (1) относительно трех неизвестных U1, U2 и U0, получим:

(2)

где – симметричные составляющие фазных напряжений прямой, обратной и нулевой последовательностей соответственно.

Если к симметричной цепи приложена симметричная система фазных напряжений прямой, обратной и нулевой последовательностей, то в ней возникает симметричная система токов прямой, обратной и нулевой последовательностей. Отношения симметричных составляющих фазных напряжений к соответствующим симметричным составляющим токов являются комплексными сопротивлениями прямой (z1), обратной (z2) и нулевой (z0) последовательностей. Для симметричной трехфазной цепи сопротивления прямой и обратной последовательностей одинаковы и равны [2]:

z1 = z2 = R – jwL, (3)

где R – активное сопротивление жилы кабеля, Ом/м;
L – индуктивность жилы кабеля, Гн/м

Понятие средней индуктивности

Следует иметь в виду, что сопротивление некоторых конструкций кабелей не является симметричным, например, четырехжильных кабелей или одножильных кабелей, расположенных в одной плоскости. В этом случае при расчетах вводят понятие средней индуктивности Lср. В этой связи средняя индуктивность четырехжильного кабеля или одножильных кабелей, расположенных в плоскости, будет равна:

(4)

где – среднее расстояние между центрами жил кабеля, мм;
d0 – диаметр токопроводящей жилы, мм;
m 0 = 4 p • 10 –7 Гн/м – относительная магнитная проницаемость.

Для четырехжильных кабелей (рис. 1) среднее расстояние между центрами жил в соответствии с [2] может быть рассчитано по формуле:

(5)

где – расстояние между центрами жил кабеля, мм.

Рис. 1. Схема четырехжильного кабеля

Рис. 2. Схема прокладки одножильных кабелей

При прокладке одножильных кабелей в одной плоскости среднее расстояние между центрами жил будет равно:

(6)

где – расстояние между центрами кабелей (рис. 2).

Эффект близости

При расчете индуктивности следует учитывать и влияние поверхностного эффекта и эффекта близости. Индуктивность симметричной цепи из двух изолированных жил можно рассчитать по формуле [3]:

(7)

где L1-2 – индуктивность цепи, Гн/км;
d0 – диаметр токопроводящей жилы, мм;
– расстояние между центрами жил, мм;
Q (Х) – коэффициент, учитывающий внутреннюю индуктивность токопроводящей жилы.

Значения Q (Х) в зависимости от параметра Х принимаем по данным [3]. Параметр Х рассчитываем по формулам:

– для медных жил;

– для алюминиевых жил, где f – частота, Гц.

При расчетах индуктивности кабелей с секторными жилами следует принимать значение эквивалентного диаметра жилы, который равен диаметру круглой жилы, имеющей ту же площадь поперечного сечения, что и секторная жила. Для четырехжильных кабелей среднее расстояние между центрами основных жил:

Тогда индуктивность в пересчете на одну жилу получим по формуле:

(8)

где L – индуктивность в пересчете на 1 жилу четырехжильного кабеля, мГн/км;
k – коэффициент формы. Для трехжильных кабелей k = 1, для четырехжильного кабеля k = 1,12.

Значение коэффициента Q(Х) в зависимости от сечения токопроводящей жилы принимают от 0,5 до 1. Как правило, для большинства типов силовых кабелей значение Q(Х) принимают равным 0,5 или 0,75 [5, 6]. Результаты расчета параметров четырехжильных кабелей типа АПвПГ (АПвВГ) на 0,6/1 кВ (производство по ТУ 16.К71-277-98) – в табл. 1.

Особенности расчета одножильных кабелей

При расчете сопротивлений одножильных кабелей с пластмассовой изоляцией среднего напряжения надо учитывать, что токи в металлических экранах приводят к увеличению эффективного активного сопротивления и снижению индуктивного сопротивления. В этом случае полное сопротивление одножильного кабеля в трехфазной системе (z) можно рассчитать вместо формулы (3) по формуле:

z = R1(1 + y) + jw(L – wMЭ • m 2 ), (9)

где у – коэффициент потерь энергии в металлическом экране,

(10)
(11)

где RЭ – активное сопротивление металлического экрана, Ом/км;
R1 – активное сопротивление токопроводящей жилы, Ом/км;
МЭ – коэффициент взаимной индуктивности для экранов, мГн/км,

(12)

где dЭ – диаметр металлического экрана, мм.

При расположении одножильных кабелей в плоскости с расстоянием между кабелями, равным диаметру кабеля, значение взаимной индуктивности (МЭ) примерно равно МЭ = 0,322 мГн/км, w МЭ = 0,1 Ом/км. Значение m 2 МЭ при сечениях экрана до 35 мм 2 не более 2% от общей индуктивности кабеля, поэтому его влиянием можно пренебречь. Однако увеличение сопротивления жилы за счет потерь в экране кабеля при сечении токопроводящих жил более 300 мм2 достигает 22,6%, поэтому оно должно учитываться при расчетах полного сопротивления одножильного кабеля.

Результаты расчета параметров одножильного кабеля марки АПвП 6/10 кВ (производство по ТУ 16.К71-335-2004) – в табл. 2.

Таблица 1. Расчетные значения параметров прямой последовательности кабелей марки АПвПГ (АПвВГ) 0,6/1 кВ

Сечение токопроводящих жил, мм 2 25 35 50 70 95 120 150 185 240
Толщина изоляции, мм 0,9 0,9 1,0 1,1 1,1 1,2 1,4 1,6 1,7
Наружный диаметр, мм 24 26 27 32 35 39 42 47 52
Активное сопротивление при 90 о С, Ом/км 1,54 1,11 0,822 0,568 0,411 0,325 0,265 0,211 0,162
Индуктивность, мГн/км 0,267 0,260 0,255 0,252 0,247 0,246 0,247 0,248 0,245
Индуктивное сопротивление, Ом/км 0,083 0,082 0,080 0,079 0,076 0,077 0,076 0,078 0,077

Таблица 2. Расчетные значения параметров кабеля марки АПвП (АПвВ) 6/10 кВ

Сечение жилы, мм 2 25 35 50 70 95 120 150 185 240 300 400 500
Сечение экрана, мм 2 16 16 16 16 16 16 25 25 25 25 35 35
Наружный диаметр кабеля, мм 23 24 26 27 29 30 32 33 36 39 42 45
Активное сопротивление при 90 о С, Ом/км 1,540 1,110 0,820 0,568 0,410 0,324 0,264 0,210 0,160 0,128 0,0997 0,0776
Активное сопротивление с учетом потерь в экране, Ом/км 1,550 1,120 0,825 0,570 0,414 0,332 0,276 0,222 0,173 0,141 0,118 0,0955
Индуктивное сопротивление при прокладке треугольником, Ом/км 0,163 0,156 0,149 0,141 0,136 0,131 0,119 0,117 0,112 0,110 0,104 0,100
Индуктивное сопротивление при прокладке в плоскости, Ом/км 0,230 0,214 0,208 0,199 0,193 0,188 0,176 0,172 0,170 0,167 0,162 0,158

Таблица 3. Расчетные значения параметров нулевой последовательности кабеля марки АПвПГ (АПвВГ) 0,6/1 кВ

Сечение жилы, мм 2 25 35 50 70 95 120 150 185 240
Толщина изоляции, мм 0,9 0,9 1,0 1,1 1,1 1,2 1,4 1,6 1,7
Индуктивность (при Q(х) = 0,5), мГн/км 0,282 0,272 0,271 0,263 0,263 0,257 0,260 0,262 0,261
Индуктивное сопротивление, Ом/км 0,0880 0,0852 0,0850 0,0826 0,0826 0,0810 0,0816 0,0822 0,0820
Активное сопротивление жилы при 90 о С, Ом/км 1,54 1,11 0,822 0,568 0,411 0,325 0,265 0,211 0,162
Активная составляющая сопротивления нулевой последовательности (Rez0), Ом/км 2,060 1,790 1,780 1,480 1,220 1,030 0,880 0,735 0,580
Реактивная составляющая сопротивления нулевой последовательности (Imz0), Ом/км 0,490 0,446 0,40 0,367 0,316 0,294 0,282 0,270 0,260

Рис. 3. Схема токов нулевой последовательности в 4-жильном кабеле

Рис. 4. Схема замещения цепи «фаза – нулевая жила»

О сопротивлении нулевой последовательности

Для расчета сопротивлений нулевой последовательности рассмотрим схему токов нулевой последовательности в четырехжильном кабеле, приведенную на рис. 3. Падение напряжения в цепи нулевой последовательности (фаза – нулевая жила) рассмотрим по схеме замещения цепи, приведенной на рис. 4, которая аналогична схеме замещения в [2]:

U0 = I0z0 , (13)

где U0 – падение напряжения нулевой последовательности;
I0 – ток нулевой последовательности;
z0 – сопротивление нулевой последовательности.

Сопротивление нулевой последовательности будет равно:

z0 = R1 + 3jx0,3 + 3z0,3 , (14)

где R1 – активное сопротивление прямой последовательности жилы кабеля, Ом/км;
х0,З – индуктивное сопротивление прямой последовательности: три жилы – нулевой проводник;
z0,З – суммарное сопротивление нулевого проводника (R0) и реактивного сопротивления земли (хЗ).

Значение z0,З можно рассчитать по формуле:

(15)

где R0 — активное сопротивление нулевого проводника, Ом/км.

Активную (Rez0) и реактивную (Imz0) составляющие z0 получим по формулам:

(16)
(17)

Значение реактивного сопротивления х0,З для четырехжильного кабеля можно определить по формуле:

x0,З = j w L0,З , (18)

где L0,З – индуктивность прямой последовательности: три жилы – нулевой проводник, которую можно рассчитать по формуле (8).

В расчетах хЗ в соответствии с рекомендациями [4, 5] принимают равным 0,6 Ом/км.

Результаты расчета параметров четырехжильных кабелей марки АПвВГ (АПвПГ) приведены в табл. 3. Приведенные в таблицах 1–3 параметры силовых кабелей могут быть использованы для практических целей при проектировании кабельных линий.

Нужно обратить внимание на то обстоятельство, что индуктивное сопротивление одножильных кабелей с полиэтиленовой изоляцией в трехфазной сети в значительной мере зависит от взаимного расположения кабелей. Эта зависимость особенно проявляется в случае параллельной прокладки в плоскости двух и более кабелей на одну фазу.

В этом случае при расчете индуктивности по выражению (4) необходимо в качестве среднего расстояния между осями кабелей (ср) использовать среднее геометрическое значение расстояния между осями проложенных совместно кабелей.

Руководствуясь предложенным методом расчета, можно определить сопротивления прямой, обратной и нулевой последовательностей для кабелей с пластмассовой изоляцией любого конструктивного исполнения.

При этом дополнительно необходимо учитывать увеличение индуктивности, если кабель содержит металлическую оболочку или броню из стальных лент или других ферромагнитных материалов.

Литература

ГОСТ 28249-93. Короткие замыкания в электропроводках. Методы расчета в электроустановках переменного тока напряжения до 1 кВ.

Ульянов С.А. Короткие замыкания в электрических системах. – М.: Госэнергоиздат, 1949.

Основы кабельной техники. Уч. пособие для вузов / Под редакцией В.А. Привезенцева. – М.: Энергия, 1975.

Холодный С.Д., Филиппов М.М., Кричко В.А., Миронов И.А. Расчет токов в оболочках и экранах и их термической стойкости при однофазном двойном замыкании в разветвленной кабельной сети // Электричество. – 2001. – № 8.

Платонов В.В., Быкадоров В.Ф. Определение мест повреждения на трассе кабельной линии. – М.: Энергоатомиздат, 1993.

Электротехнический справочник / Под редакцией профессоров МЭИ. Том 2. – М.: Энергоатомиздат, 1986.

Источник