Согласование антенны 300 ом с кабелем 75 ом

Согласование и симметрирование

Я спрошу у вас, что может быть более интересное для изучения, чем переменный ток?

Николо Тесла.

Всевозможные схемы согласования и симметрирования при соединении антенны и коаксиального фидера достаточно подробно описаны в любом букваре по антеннам. Однако не только неискушенный аноним, но и посетители достаточно серьезных форумов, часто впадают в шоковое состояние, увидев, например, схему согласования вибратора Пистолькорса с помощью полуволнового U-колена. «Это какой то бред!» — пишут они — «Как может работать схема, в которой один конец подключен к антенне, а второй висит в воздухе? Цепь то не замкнута!» Это не бред, дорогой аноним, это переменный ток, текущий по «длинной линии». Вернее будет сказать — электромагнитная волна, распространяющаяся по длинной линии. Давайте разберемся в этом.

Для начала определимся зачем вообще городить этот огород с петлями, шлейфами, стаканами и т.д. Если у антенны входное сопротивление 50(75) Ом, можно ли непосредственно соединить ее с фидером? Можно, но не всегда. Из-за скин-эффекта ВЧ ток протекает в тонком поверхностном слое проводника толщиной в несколько микрометров. В результате коаксиальный кабель можно представить как систему из трех проводников — центрального, внутренней поверхности оплетки и совершенно независимой от нее внешней поверхности оплетки. Если коаксиальный кабель соединить напрямую с симметричным вибратором, то последний нагрузится несимметрично, диаграмма направленности его исказится, причем этот эффект еще усугубится подключением к вибратору внешней стороны оплетки, которая при этом становится частью антенны. В итоге мы можем прийти к ситуации, когда антенна с таким подключением становится эквивалентна куску провода, заброшенному на дерево. Так что, чтобы «посадить оплетку на ноль», придется мудрить петли, уважаемый аноним. Этот процесс называется симметрированием.

Читайте также:  Подбор кабеля для акустики авто

У симметричного вибратора Пистолькорса входное сопротивление около 300 Ом и его придется не только симметрировать, но и одновременно трансформировать это сопротивление к сопротивлению фидера. Этот процессс называется согласованием. У петлевого вибратора точка нулевого потенциала находится на его геометрическом центре. При этом он представляется состоящим из двух одинаковых половин («0-a» и «0-b«) с противофазными источниками напряжения и сопротивлениями по 150 Ом. Соединяем «0-a» с «0-b» с помощью полуволновой петли. Петля не изменяет сопротивление, но переворачивает фазу на 180°. В результате на входе коаксиального кабеля оказываются два синфазных параллельных источника с сопротивлениями по 150 Ом. Напряжения суммируются, сопротивление из-за параллельного соединения, делится пополам и 75-омный фидер оказывается согласованным с источником. В сложных антеннах, например Uda-Yagi, варьируя размерами, прежде всего расстоянием до рефлектора, можно сделать входное сопротивление вибратора равным 200 Ом. Тогда «половинки» вибратора будут по 100 Ом и он согласуется по той же схеме с фидером 50 Ом. Поскольку свойства полуволновой петли не зависят от ее волнового сопротивления, возникает вопрос, какое сопротивление выбрать. Обычно используют тот же кабель, что и для фидера или пигтейла. Полоса пропускания такой системы получается около 30% от центральной частоты, что в большинстве случаев достаточно. Однако, если использовать петлю с волновым сопротивлением равным сопротивлению половинок вибратора (150 или 100 Ом), то она будет работать в режиме бегущей волны и не будет ограничивать полосу пропускания антенно-фидерной системы в целом. Так что если вам попался в руки кусок коаксиала с волновым сопротивлением 150 (100) Ом, приберегите его для U-колена.

Мы не зря в начале статьи привели цитату Н.Тесла, который стоял у истоков современной системы электроснабжения. Как известно, при симметричной нагрузке в трехфазной сети можно отказаться от использования нейтрали, поскольку сумма токов от всех фаз в ней равна нулю. В нашем случае, на концах петли присутствует противофазное напряжение и на участке 0-0` сумма токов равна нулю, поэтому этот кусок провода можно выбросить и схема останется работоспособной. Многие специалисты советуют оставить это соединение. Действительно, на метровых и дециметровых волнах в таком случае антенна работает лучше. Однако иногда, как у антенны Бабочка или Amos, нулевая точка находится «в воздухе» и подключаться просто некуда. На СВЧ лишний кусок провода — уже сам длинная линия, поэтому там лучше использовать минимально короткие выводы без лишних соединений. На следующем рисунке слева можно видеть как надо соединять петлю и фидер на частотах 3G, а справа — как не надо.

Читайте также:  Зажим натяжной пластиковый для оптического кабеля

В случае разрезного вибратора, имеющего сопротивление около 75 (50) Ом, как у антенны Uda-Yagi конструкции DL6WU, можно также применять для симметрирования полуволновую петлю с небольшим дополнением. Вибратор также представляется состоящим из двух противофазных половинок с сопротивлениями 37,5 (25) Ом. К каждой половинке подключается четвертьволновый трансформатор, который трансформирует его в величину 150 (100) Ом в точки a и b (см. формулу для четвертьволнового трансформатора в статье о длинных линиях), после которых работает уже та же схема с полуволновой петлей. Конечно же нет необходимости делать разрыв в точке a, это сделано только для лучшего понимания механизма работы. Реально практическая конструкция петли для 75(50)-омного вибратора состоит из двух кусков с электрической длиной 3λ/4 и λ/4 такого же волнового сопротивления.

Поскольку волновое сопротивление фидера практически совпадает с входным сопротивлением разрезного вибратора, то хорошо было бы подключить его напрямую, отрезав при этом протекание тока по внешней стороне оплетки. Такие схемы симметрирования существуют и называются схемами с отсечкой тока. Одна из них — схема с четвертьволновым стаканом. Идея заключается в том, что ток на внешней стороне оплетки попадает в дополнительный короткозамкнутый четвертьволновый отрезок линии с бесконечным сопротивлением (к сожалению только в теории бесконечным), отсекается ним, и дальше этого стакана не течет. Сложность заключается в некоторой геморройности конструктивного исполнения такого стакана, поскольку он висит на фидере. Как упростить эту задачу хорошо описано здесь .

Другим способом отсечки паразитного тока на внешней стороне оплетки фидера, с меньшими конструктивными сложностями, является применение четвертьволнового шлейфа. В принципе — это тот же четвертьволновый короткозамкнутый отрезок, только выполненный не в виде стакана, а в виде двухпроводной длинной линии. Иначе можно сказать, что параллельно основному фидеру, вернее его внешней стороне оплетки, подключается такой же провод с противофазным током от другой половинки вибратора и эти противофазные токи потом взаимно компенсируются в точке замыкания. Такая схема в свое время широко популяризировалась для антенны Тройной квадрат. Шлейф можно сделать из таких же трубок, как и вибратор, так и из коаксиального кабеля, такого же как и фидер. Еще один способ симметрирования называется коаксиально-щелевым. Во внешней трубке коаксиальной линии делают два λ/4 пропила. Верхние половинки трубки подключаются к вибратору, а центральный проводник замыкается на одну из половинок. Данную схему можно упростить, сделав полукруглые половинки плоскими.

Шлейфы и стаканы являются резонансными цепями и ограничивают полосу пропускания, однако они достаточно широкополосны, с полосой до 60% от центральной частоты. В тоже время, для таких антенн, как антенна Харченко для цифрового телевидения — этого недостаточно. Выходом из положения является применение широкополосных трансформаторов на длинных линиях с ферритовыми сердечниками, ШПТЛ — в нашей литературе, TLT — в зарубежной. Теоретически такие ШПТЛ в режиме бегущей волны не имеют частотных ограничений, однако на практике их полоса ограничена сверху и снизу . Такие трансформаторы используются во всех польских усилителях и симметризаторах с коэффициентом трансформации 4:1. Они намотаны на ферритовое кольцо или на «бинокль» и неплохо работают как в режиме 300:75, так и 200:50, имея полосу пропускания, охватывающую почти весь ДМВ диапазон. Для согласования (симметрирования) антенн с входным сопротивлением 75(50) Ом также можно использовать ШПТЛ, но с коэффициентом трансформации 1:1. С этой целью можно переделать «польский» трансформатор, удалив из него одну из линий и произведя соединения по схеме на последнем рисунке под буквой д). Иногда можно встретить такие же ШПТЛ, но реализованные в виде полосковых линий на печатной плате. На частотах выше 1 ГГц можно просто надеть несколько ферритовых колец на фидер, получив суррогат ШПТЛ. Хотя ввиду сильной частотной зависимости магнитной проницаемости феррита и ограниченности его работоспособности на СВЧ такое решение выглядит довольно сомнительно, можно для надежности отсечки тока комбинировать это решение с четвертьволновым стаканом, как это сделано в конструкции коллинеарной антенны.

В зарубежной литературе схемы согласования и симметрирования называются одним словом балун. Это понятие в последнее время получило распространение и у нас. Балуны делятся на два класса: Voltage balun и Current balun. Для полного понимания их отличий следует всегда нагрузку рассматривать не как двухполюсник, а как трехполюсник с «нейтралью». Даже если «нейтраль» не задана явно, как в примере с вибратором Пистолькорса, ее нужно представлять виртуально. Однако это уже тема отдельной большой статьи, которую можно прочитать здесь на английском. Если же, как принято у нас на сайте, подойти к вопросу упрощенно, то отличие Voltage и Current балунов легко видно из следующей схемы:Мы видим, что токовый балун является по сути дросселем для синфазного тока, в то время как Voltage balun осуществляет трансформацию напряжения. Упомянутые выше ферритовые ШПТЛ по схемам а) — д) являются классическими токовыми балунами или, по имени автора, балунами Гуанеллы (Guanella current balun). Стакан и шлейф также можно отнести к классу Current balun, а вот полуволновая петля относится к классу Voltage balun. К классу балунов напряжения относятся также ШПТЛ балуны Рутрофа (Ruthroff voltage balun):Чем выше частота, тем выше вредное влияние паразитных индуктивностей и емкостей выводов. Кроме того популярные ферритовые материалы (например 67-ой) перестают работать на СВЧ. Поэтому применение ферритовых ШПТЛ на частотах выше 1000 МГц представляется нецелесообразным. Но ведь линия передачи прекрасно работает и без феррита. Например коаксиально-щелевой балун на самом деле является модификацией 1:1 балуна напряжения Рутрофа. Чтобы убедиться в этом, посмотрите внимательно на схемы подключения.

Вообще, конструирование эффективных балунов на СВЧ довольно непростая задача. По этой причине многие отказываются от применения специальных симметрирующих устройств, некоторые вполне сознательно (зачем мне заморачиваться этой вашей теорией, оно и так нормально работает!), а некоторые и по незнанию, как например сделал проф. Маршалл. Однако наилучшим способом решения проблемы согласования и симметрирования является применение антенн не требующих ни того ни другого. Такие антенны разработаны специально для СВЧ диапазона, например патч-антенна.

  • Широкополосная антенна Харченко 1700-2100 МГц — использование балуна не только для симметрирования и согласования, но и для расширения полосы пропускания антенны;
  • Резонансное симметрирование отрезками линий — DL2KQ;
  • Balun 1:1 в фидерном тракте — Анализ различных типов балунов в симуляторе LTspice от DL2KQ;
  • 1/4 ВОЛНОВЫЕ СТАКАНЫ,они же traps или ловушки — RA6FOO;
  • Ферритовые кольца на кабеле антенны УКВ — RA6FOO;
  • Описание малоизвестных Tsai Balun и Marchand balun от microwaves101.com (на английском);

Источник

Согласование антенны 300 ом с кабелем 75 ом

Согласование импедансов антенны и кабеля.

1. Согласование сопротивлений, не содержащих реактивную составляющую.

Эта статья посвящена тому, как рассчитать элементы согласования нагрузки(антенны) с кабелем.

Существует множество программ для этой цели, но как быть если ваш компьютер сломался, или программа запорчена, а вам надо рассчитать согласование? Вот для этого случая и надо знать методику расчета. Методика не сложная, поэтому освоить ее — под силу каждому. Расчет элементов согласования — это конечная цель измерений импеданса антенны, нагрузки кабеля.

Ранее уже рассматривался вопрос важности согласования импеданса нагрузки и волнового сопротивления коаксиального кабеля, при помощи которого производится питание антенны. Я не буду описывать теорему, доказывающую, что максимальный сигнал с генератора, у которого внутреннее сопротивление равно R, можно получить только в том случае, если сопротивление нагрузки этого генератора, будет точно равно сопротивлению генератора R.

В нашем случае, кабель(источник)с известным волновым сопротивлением, будем замещать источником сигнала, последовательно с которым включено сопротивление, равное волновому сопротивлению кабеля. Нагрузку(импеданс антенны), будем изображать резистором с последовательно включенным конденсатором, или индуктивностью. Задача будет состоять в том, как согласовать между собой эти два, в большинстве случаев, различных сопротивления.

В качестве примера, на Рис.1 приведена эквивалентная схема, на которой изображен кабель 50 Ом, питающий антенну, которая имеет импеданс 100 Ом.

Мы видим, что нагрузка в 100 Ом, не будет согласована с кабелем 50 Ом, в результате чего, в кабеле возникнут нежелательные стоячие волны, КСВ будет 100/50 = 2 и как следствие, потери передаваемой мощности, примерно 10%. Требуется рассчитать элементы согласования нагрузки с кабелем.

Для расчета, достаточно владеть основными навыками в алгебре.

Необходимо запомнить следующее правило:

При согласовании двух сопротивлений, элемент с большим сопротивлением, всегда будет трансформирован(преобразован) в элемент с меньшим сопротивлением, путем параллельного подключения к нему емкости.

Если мы имеем кабель 50 Ом и нагрузку 100 Ом, то нагрузка 100 Ом будет преобразована в сопротивление 50 Ом, путем подключения к ней параллельного конденсатора.

Иными словами, сопротивление можно только понизить, т.е привести к наименьшему из двух в данной цепи. В этом случае, всегда параллельно большему сопротивлению, будет включен конденсатор. Запомним это правило.

А теперь собственно сам расчет. Для лучшего усвоения, рассмотрим сначала более простую ситуацию, когда нагрузка не содержит реактивной составляющей, и согласовать надо только два чисто активных сопротивления(Рис.1)

Расчет состоит из пяти несложных шагов:

1. Рассчитаем коэффициент Q

Q = SQRT[(100/50)-1] = 1

2. Далее рассчитаем значение реактивности индуктивно(последовательной) ветви

ХL = Q x R1 = 1 х 50 = j50 Ом

3.Рассчитаем значение реактивности емкостной(параллельной) ветви

Хc = R2/Q = 100/1 = -j100 Ом

Знак минус – не результат вычислений, а для того, чтобы показать, что это емкостной реактанс.

Выберем рабочую частоту. Предположим, что мы согласуем два сопротивления для частоты 7 МГц( 7х10 6 Гц)

Тогда, зная значение индуктивной ветви, легко рассчитать саму индуктивность для заданной частоты

L = j50/(6.28 х 7х106) = 1.13мкГн

С = 1/(6.28 х 7х106 х j100)= 227пФ

Знаки реактивности здесь не учитываются.

Теперь вспомним из раздела ,,Основы работы антенн,, что катушка и конденсатор имеют противоположные знаки реактивности. Если мы включим последовательно катушку и емкость, у которых реактивности равны по модулю на определенной частоте, т.е без учета их знаков, то в результате цепь не будет содержать никакого сопротивления. Наступит последовательный резонанс, резко возрастет ток в этой цепи, т.к. суммарное сопротивление на заданной частоте будет равно нулю.

Далее, для того чтобы понять ход рассуждений, я сделаю небольшое отступление в теорию. Обратимся к Рис.2, на котором показана схема из двух эквивалентных сопротивлений.

Если к резистору R2=100 Ом, параллельно подключить емкость C1= -j100, то эту схему можно полностью заменить эквивалентной схемой, у которой последовательно с резистором R3=50 Ом включена емкость C2= -j50. Иными словами, импеданс обеих схем, относительно точек А и В, будет абсолютно одинаковым. Это называется переводом параллельного импеданса в последовательный. Эту замену, можно производить с помощью программы tlcalc1.zip. Во втором разделе этой программы, можно переводить последовательный импеданс в параллельный и наоборот.

Далее, если мы теперь в схеме на Рис.1, заменим нагрузку R2=100 Ом на параллельно включенные R2 и C1 из рисунка 2(слева), а затем заменим на эквивалентную схему R3 и C2, показанную на Рис.2( справа), то получим схему,

показанную на Рис.3.

В этой схеме мы замечаем, что имеем два одинаковых сопротивления R1 и R3, равные 50 Ом, и одну емкостную реактивность C2 -j50. Для ее компенсации, мы введем в схему индуктивную реактивность равную по значению С2. Поскольку, как мы уже знаем, катушка полностью нейтрализует емкость, т.к. имеет противоположный знак реактивного сопротивления. НаРис.4, у нас получилась согласованная схема, в которой остаются всего два равных резистора 50 Ом. Реактивности L1 и C2 взаимно уничтожаются, о чем уже говорилось выше.

Теперь осталось пройти последний шаг. Поскольку мы заменяли сопротивление R2=100 Ом и параллельно включенный ему конденсатор C1=-j100(Рис.2, слева) на последовательный эквивалент R3 и C2(Рис.2 справа), возвратимся к исходной нагрузке, поскольку, исходное сопротивление нагрузки равно 100 Ом. Полученная схема показана на Рис.5.

Окончательная схема согласования приводится на Рис.6, и обведена пунктиром. Итак, мы имеем нагрузку 100 Ом, и два согласующих элемента С1 и L1.

В расчете, который мы произвели выше, мы определили значения емкости и индуктивности для частоты 7 Мгц. Подставляем эти значения в схему.

Обратите внимание, что параллельный конденсатор в схеме оказался у того конца, на котором большее сопротивление.

Отступление мною делалось для того, чтобы читатель понял, почему в конечной схеме появляется индуктивность.

Рассмотрим для практики еще один пример:

Кабель 75 Ом питает антенну(нагрузку) 25 Ом(Рис.7) В этом случае, нагрузка R2 меньше сопротивления кабеля R1.

Источник