Разделка концов оптического кабеля

Содержание
  1. Работа с оптоволокном: не так страшно, как кажется
  2. Вводная информация
  3. Разделка волоконно-оптического кабеля
  4. Способы соединения волоконно-оптического кабеля
  5. Выводы
  6. Разделка оптоволоконного кабеля
  7. Чем разделать оптический кабель
  8. Технология разделки кабеля
  9. Монтаж оптических коннекторов: полное руководство!
  10. СОДЕРЖАНИЕ:
  11. Устройство и место оптического коннектора
  12. Монтаж оптических коннекторов при помощи пигтейлов
  13. Монтаж кабельных окончаний при помощи сварных (Splice On) оптических разъемов
  14. Монтаж усиленных Splice On коннекторов для установки на уличный оптический кабель
  15. Особенности усиленных Splice On коннекторов:
  16. Монтаж кабельных окончаний при помощи Fast коннекторов (FAOC, механических оптических коннекторов) для оптоволокна
  17. Достоинства Fast коннектора
  18. Технология монтажа FAST Connector (быстрого коннектора, механического коннектора)
  19. Сравнительная таблица преимуществ и недостатков технологий монтажа оптических коннекторов

Работа с оптоволокном: не так страшно, как кажется

В прошлом году мы проводили ряд семинаров, посвященных системам передачи информации по оптоволоконному кабелю. Общаясь со слушателями, часто сталкивались с ситуацией, когда люди готовы применять данные системы: у них есть проекты, преимущества решения превалируют над стоимостью — ставь и сдавай проект, получай деньги и уверенность в том, что у заказчика не будет претензий к качеству выполненных работ. Но тот факт, что у специалистов нет никакого опыта работы с подобным оборудованием, их останавливал. Все неоднократно слышали о сложностях, о необходимости высокой квалификации специалистов. Многие считают, что сварка оптоволокна и монтаж оборудования с использованием оптоволоконного кабеля — рискованный процесс, требующий дорогих материалов и высокооплачиваемых сотрудников, что это не для них.


С.А. Карачунский
Руководитель отдела маркетинга компании «В1 электроникс»

На самом деле, работа с оптоволокном хоть и требует определенного опыта и навыков, но их наработать — не такая сложная задача. Тем более что сейчас рынок предлагает большое количество инструментов и оборудования для разделки и монтажа кабеля. Этому вопросу и посвящена данная статья.

Читайте также:  Что такое длина трассы кабеля

Вводная информация

Одно из главных требований при работе с оптоволоконными кабелями — внимательное отношение ко всем этапам процесса монтажа кабельной системы: укладке, разделке, соединению и оконцовке. Ошибка дорогого стоит — это затраты на поиск места повреждения и замена участка кабеля. Замена поврежденного участка не только увеличивает трудозатраты, но и снижает качество всей системы: каждый соединительный элемент, каждая спайка вносит свои искажения в передаваемый сигнал, уменьшает расстояние передачи сигнала, требует увеличения оптического бюджета системы. Для специалистов, которые только начинают свою работу по монтажу оптоволокна, рекомендуется приобрести готовый комплект основных инструментов и материалов, необходимых для проведения работ: тара, дозаторы, распределители, расходные материалы и защитные средства. Спустя некоторое время, когда вы получите начальные навыки работы с оптоволоконным кабелем и сформируете предпочтения в разнообразии используемых инструментов и материалов, вы сможете комбинировать набор «под себя».

Разделка волоконно-оптического кабеля

Волоконно-оптический кабель представляет собой несколько оптических волокон, которые вместе с армирующими нитями заключены в защитную полимерную оболочку. Для защиты от агрессивных внешних воздействий кабель помещают в броневую защиту из гофрированной алюминиевой или стальной защитной ленты либо из стальной проволоки. Из-за того, что оптическое волокно в достаточной степени чувствительно к осевым и радиальным деформациям, для его разрезания непригодны недорогие кабелерезы, которые используются для работы с медными кабелями. Рекомендуется использовать инструмент, лезвия которого рассчитаны на резку стали.

Начальный этап разделки волоконно-оптических кабелей — удаление верхнего слоя защитных и броневых покровов, выполняется теми же инструментами, что и разделка обычных кабелей. Полимерная изоляция и фольга вскрываются резаками, а стальная проволока выкусывается бокорезами. Рекомендуется применять кабельные ножи: они позволяют снимать полимерное покрытия с кабеля диаметром от 4 до 35 мм, и при этом кабельный нож имеет специальную насадку, ограничивающую глубину разреза оболочки, что исключает повреждение оптоволоконных жил.

Читайте также:  У собаки щенки бывают от разных кабелей

Но в дальнейшей работе без специальных инструментов все равно не обойтись:

  • ножницы или кусачки с керамическими лезвиями — используются для удаления армирующих нитей из кевлара. Обычные ножницы эти тонкие, гибкие и прочные волокна не режут, а выдавливают или гнут;
  • стрипперы — предназначены для снятия буферного слоя. Их применение снижает риск повреждения оптического волокна: в первую очередь из-за того, что его рабочие поверхности имеют фиксированную настройку;
  • скалыватель оптических волокон — применяется для отсекания лишнего отрезка волокна под углом 90 град. Скалыватели бывают ручные и автоматические. При подготовке оптоволокна для последующей сварки или соединения волокон при помощи сплайса рекомендуется использовать автоматические скалыватели, которые позволяют получить чистый и ровный скол без дефектов под углом 90±0,5 град. Например, скол с углом более 2 град. может привести к увеличению потерь в соединении до 1 дБ, что при оптическом общем бюджете системы в 15-25 дБ — зачастую непозволительная роскошь;
  • микроскопы позволяют диагностировать разъемы оптических волокон на качество полировки жилы, наличие трещин, царапин;
  • кримперы предназначены для обжимки наконечников, разъемов и контактов.

Способы соединения волоконно-оптического кабеля

Широко применяются три способа монтажа оптоволокна:

  • сварка оптических волокон;
  • соединение при помощи механических разъемов;
  • соединение при помощи сплайса.

Сварка оптических волокон

Осуществляется с помощью специальных сварочных аппаратов и обычно выполняется в три этапа:

  • подготовка и зачистка кабеля, получение качественного торца;
  • сваривание сварочным аппаратом;
  • тестирование и оценка качества соединения. Сварочный аппарат осуществляет соединение оптоволокна с хорошими параметрами места соединения просто и быстро. Современные сварочные аппараты позволяют снизить потери в месте соединения до 0,04 дБ и менее. Аппарат автоматически выполняет все необходимые операции: юстирует оптоволокна, расплавляет концы оптоволокон, сваривает их. Наиболее функциональные (но и, к сожалению, более дорогие) модели также проверяют качество соединения. После чего место сварки защищают, обычно при помощи термоусаживающей трубки.

Соединение при помощи механических разъемов

Сварка оптического волокна также используется при оконцовке волокна коннекторами. Для этих целей используются готовые волоконно-оптические перемычки -пигтейлы (англ. pigtail — гибкий проводник). Пигтейл обычно изготавливается в заводских условиях, он представляет собой отрезок оптоволоконного кабеля, который имеет с одной стороны оптический коннектор. Волокно оптического кабеля сваривается с волокном пигтейла, а уже при помощи коннектора его подключают к оборудованию.

Соединение при помощи сплайса

Сплайс — устройство для сращивания волоконно-оптического кабеля без применения сварки. В сплайс через специальные направляющие навстречу друг другу вводятся подготовленные концы оптических волокон и фиксируются в нем. Для уменьшения вносимых потерь стык между волокнами помещают в специальный (иммерсионный) гель, который зачастую находится внутри сплайса.

Технология соединения при помощи сплайса включает в себя несколько этапов:

  • разделка волоконно-оптического кабеля;
  • обработка торцов;
  • выполнение соединения;
  • тестирование и оценка качества соединения;
  • нанесение защитных покрытий, восстановление защитной оболочки и брони.

Применение сплайсов облегчает процесс сращивания оптоволокна, но работа с ними требует практических навыков. Вносимые потери при этом методе соединения волокон меньше, чем при использовании пары волоконно-оптических вилок и адаптера, но все же могут составлять 0,1 дБ и выше. Согласно требованиям стандартов на СКС IS0 11801, TIA EIA 568B вносимые потери в сплайсе не должны превышать 0,3 дБ. Для этого в ходе монтажа проводится корректировка положения волокон относительно друг друга, в процессе работ также необходимо проводить постоянный замер потерь на месте соединения.

Кроме того, следует принимать во внимание тот факт, что со временем потери в месте соединения при помощи сплайса могут увеличиться из-за смещения волокон в пространстве или высыхания иммерсионного геля.

Выводы

Материал, который здесь представлен, кому-то может показаться неполным, кому-то поверхностным. Я и не ставил себе задачу изложить всю информацию об инструментах и оборудовании, применяющихся при работе с оптоволокном — да и не уверен, что для этого хватит всего журнала: информации много, она разнообразна.

Но, для того чтобы приступить к работе, вполне достаточно начальных знаний и навыков. Читайте, спрашивайте, приходите на семинары и тренинги — поставщики оборудования должны быть сами заинтересованы в повышении вашей грамотности. Не боги горшки обжигали — и у нас все получится.

Источник

Разделка оптоволоконного кабеля

Чем разделать оптический кабель

Проще всего купить готовый набор монтажника-спайщика, где все необходимое уже идет в комплекте.

В нем должны быть следующие инструменты и материалы:

стриппер для модулей;

Как правило, в таких кейсах монтажника недостаточно расходных материалов. Поэтому нужно будет доукомплектовать его хомутами, стяжками, безворсовыми салфетками и др.

При выборе комплекта нужно обращать внимание на качество самого «чемоданчика» и его начинки. Довольно часто все это выглядит очень даже презентабельно, но на деле оказывается хлипким и практически непригодным для работы.

Технология разделки кабеля

Прежде чем приступить к разделке, нужно проверить условия хранения кабеля. Кевлар, как губка, впитывает влагу, а само оптоволокно портится во влажной среде. Поэтому если торцы предварительно не загидроизолировали, то безжалостно обрезайте с каждого конца не менее метра кабеля. Далее приступайте к разделке.

1. Если вы работаете с оптическим кабелем на тросу, то сначала нужно выкусить тросокусами и обрезать ножом трос.

2. Внешняя защитная оболочка кабеля обрезается ножом-стриппером.

Для этого нужно точно выставить на нем толщину разреза (слишком мелкий разрез недорежет, глубокий – повредит оптоволокно). Если вы не очень уверены в том, что правильно выбрали глубину – потренируйтесь сначала на отрезанном ранее уже испорченном конце.

Потом нужно установить стриппер на кабель и повернуть его вокруг оси 5-10 раз. Затем от кругового разреза сделать два продольных от середины к концу кабеля. После этого, если вы все сделали правильно, оболочка распадется на 2 части.

3. Технология разделки брони зависит от материала:

Кевларовую броню нужно срезать ножницами с керамическим лезвием или тросокусами.

Броню из стальной гофроленты нужно срезать усиленным плужковым ножом – делать продольный, а не поперечный разрез. Действовать нужно очень аккуратно, чтобы не повредить расположенные под броней модули.

Броню из стальной проволоки можно обкусить бокорезами или тросокусами.

4. Внутренние оболочки можно разрезать макетным ножом, ножом-стриппером (технология та же, что и при разделке внешней оболочки), стриппером-прищепкой.

5. Тонкую пленку легко снять обычным ножом.

6. Гидрофобная смазка – крайне неприятная и трудно смываемая субстанция, к которой лучше не прикасаться без перчаток. Снимать ее с модулей нужно смоченными в растворителе D-Gel (или в бензине) салфетками. Если есть «чулок» из нитей, то их лучше снять крючком стриппера.

Некоторые асы надкусывают оболочки, а затем все сразу стягивают «чулком». Но этот метод требует аккуратности и точности, поэтому не подходит новичкам.

7. Разделка модулей производится по технологии, которую выбирают в зависимости от конструкции кабеля.

Если в кабеле один модуль в пластиковой трубке, то нужно сделать на ней круговой надрез, а затем по разрезу осторожно надломать.

При наличии нескольких модулей задача усложняется. Поэтому лучше делать ее вдвоем с помощником – пока вы занимаетесь одним модулем, он должен придерживать остальные. Модули-заглушки (в них не оптоволокна) нужно просто вырезать под корень. Модули с начинкой надкусить стриппером на нужную глубину. Здесь очень важно выбрать ее правильно. Если вы надкусите слишком глубоко, то повредите и испортитеоптоволокно. Если «недокусите», то придется стягивать модуль с усилием. А при этом, опять же, велик риск повредить тонкое и хрупкое волокно.

8. Очистка волокон – самая деликатная часть работы. С них нужно удалить безворсовыми салфетками гидрофоб, а затем протереть спиртом (спиртом для протирки пропитывается такая же безворсовая, но чистая салфетка).

Если оптоволокно осталось идеально целым, то можно приступать к сварке или монтажу в муфту. Если у вас есть хоть малейшее подозрение, что он поврежден, то лучше начать все заново.

Источник

Монтаж оптических коннекторов: полное руководство!

Оконечивание оптоволоконного кабеля – процесс сложный и ответственный. От качества его выполнения зависит надежность и долговечность дальнейшей работы ВОЛС. В этом материале вы найдете детальный обзор всех существующих методов монтажа оптических коннекторов, узнаете, как правильно проводить монтаж окончаний оптического кабеля, а также получите большую удобную таблицу, которая поможет определиться, какой метод монтажа оптических разъемов идеален для вашего случая.

СОДЕРЖАНИЕ:

Устройство и место оптического коннектора

Неотъемлемым компонентом любой оптической сети, впрочем, как и медной, являются разъёмные соединители. В сетях, построенных на базе оптического волокна, они называются коннекторными соединениями и состоят из двух основных компонентов: двух оптических коннекторов и розетки (адаптера) для их соединения.

Рисунок 1 – Структура разъемного оптического соединения

Оптическая розетка (адаптер) – это приспособление со сквозным продольным отверстием и крепежными элементами для коннекторов определенного типа с обеих сторон. Назначением оптической розетки является точное сведение ферул двух коннекторов и фиксация их в таком положении для обеспечения передачи данных.

В зависимости от диаметра ферулы соединяемых коннекторов, диаметр сквозного отверстия может быть 2,5 мм (например, для FC, SC, ST коннекторов) или 1,25 мм (например, для LC и E2000 коннекторов).

Оптические адаптеры устанавливаются в оптическом кроссе, распределительных ящиках и т.д. В виде оптических адаптеров выполнены также выходы SFP модулей приемо-передающей аппаратуры, а также выходы контрольно-измерительных приборов.

Оптический коннектор – это часть оптического разъема, представляющая собой кабельное окончание.

Рисунок 2 – размещение адаптеров (розеток) и коннекторов в оптическом кроссе)

Рисунок 4 – схема подключения оптического кабеля к приемо-передающей аппаратуре

Как видно из рисунка 4, к оптическому кроссу можно отнести кабельное окончание и оптические розетки, установленные на оптической патч панели, а также коммутационные патч-корды.

Качество оптического кросса напрямую зависит от характеристик прохождения оптического сигнала через разъемный соединитель, а именно от потерь и отражения сигнала в нем. Поэтому высокое качество применяемых в кроссе или распределительном ящике конструктивных элементов, качественное монтажное оборудование и профессионализм монтажника гарантируют отличные характеристики сети, высокую и стабильную скорость доступа и как следствие – удовлетворенность абонентов.

И если с розетками и патч-кордами все понятно – достаточно просто купить этот элемент уже проверенного качества, то с оптическими коннекторами не все так однозначно. Ведь существует несколько способов оконечивания оптического кабеля. Каждый из этих способов имеет свои преимущества и недостатки. Рассмотрим их более детально.

Монтаж оптических коннекторов при помощи пигтейлов

Рисунок 5 – оптические пигтейлы: а) в плотном буфере; б) в свободном буфере

Оптический пигтейл (Pig tail – дословный перевод — свиной хвост) – это оконеченный с одной стороны оптический кабель длиной 1,5 м.

Обычно пигтейлы имеют диаметр буферной оболочки 0,9 мм. Причем поставляются они как в плотном буфере (рис 5а) так и в свободном буфере (рис.5б). Основная разница между этими двумя типами буферного слоя состоит в его удалении. Плотный буфер удаляется только вместе с акриловым 250 мкм покрытием волокна. Плавающий буфер пигтейла удаляется отдельно от лакового покрытия волокна.

Рисунок 6 – сплайс кассета оптическая

Для экономии места в сплайс-кассете, некоторые операторы требуют удалять 900 микронную оболочку с кабеля перед монтажом.

Сплайс кассета – это конструктивный элемент любого оптического распределительного бокса или оптической муфты. Она имеет посадочные места для установки КДЗС, а также место для размещения запаса волокна с допустимым радиусом изгиба.

Также пигтейлы отличаются по типу использованного в них оптического волокна, по типу корпуса и полировке установленного оптического разъема.

Рисунок 7 – оптический бокс (ODF): а) на стороне оператора; б) на стороне абонента

Для оконечивания оптоволокна при помощи пигтейла, необходимо проделать следующее:

  1. Надеть на одно из свариваемых волокон (волокно с кабеля или пигтейла) защитную гильзу – КДЗС. Стоит отметить, что КДЗС (комплект для защиты сварного соединения) – представляет собой изделие, состоящие из двух трубок (одна внутри другой) и металлического или керамического элемента жесткости, размещенного между ними. Верхняя трубка усаживается (уменьшается в диаметре) под влиянием температуры, не допуская попадания пыли и влаги к месту сварки волокна). Элемент жесткости – предохраняет место сварки от изгибов. Наиболее распространенными являются КДЗС длиной 40 и 60 мм. Однако с развитием технологии Splice On набирают популярности и микро КДЗС длиной менее 20 мм.
  2. Удалить буферный слой волокна кабеля и пигтейла при помощи стриппера буфферного слоя
  3. Протереть волокна безворсовой салфеткой, смоченной в изопропиловом или этиловом 96% спирте
  4. Сколоть волокна при помощи прецизионного скалывателя
  5. Сварить волокна при помощи сварочного аппарата
  6. Надвинуть гильзу КДЗС (комплект для защиты сварного соединения) на место сварки
  7. Выполнить термоусадку КДЗС в печи сварочного аппарата
  8. Выполнить маркировку КДЗС при помощи маркера или специального стикера с порядковым номером
  9. Установить КДЗС в специальный зажим на сплайс кассете
  10. Уложить запас оптических волокон в сплайс кассету

Как видите, процедура достаточно простая. Применение такого способа монтажа коннекторов на оптоволокно вполне оправдано на кроссе оператора, или больших распределительных боксах. Вместе с тем на абонентской стороне все не так просто.

Во-первых, на абонентской стороне чаще всего оконечивается только одно, ну максимум два волокна. Использование большого ODF (как изображено на рисунке 7а) не имеет смысла.

Во-вторых, в маленьком абонентском ящике намного меньше места, что приводит к большим изгибам волоконно-оптического кабеля. И если для пигтейлов, которые чаще всего выполнены на базе менее чувствительного к изгибам волокна стандарта G.657 это не сильно критично, то для волокна кабеля (другого стандарта) – это ощутимо. В месте изгиба волокна появляются дополнительные потери сигнала. Это можно легко проверить, просветив такое волокно визуализатором повреждений (источник красного света).

Рисунок 8 – потеря мощности оптического сигнала в месте макроизгиба

Поэтому на абонентской стороне рекомендуется оконечивать кабель при помощи Splice-On коннекторов (КДЗС при этом размещается в хвостовике самого коннектора) с минимальным количеством петель запаса.

Монтаж кабельных окончаний при помощи сварных (Splice On) оптических разъемов

Splice On коннекторы (SOC) – это оптические коннекторы, которые устанавливаются при помощи сварочного аппарата непосредственно на приходящее с кабеля волокно таким образом, что КДЗС размещается в хвостовике самого коннектора.

КДЗС (комплект для защиты сварного соединения) – представляет собой изделие, состоящие из двух трубок (одна внутри другой) и металлического или керамического элемента жесткости, размещенного между ними. Верхняя трубка усаживается (уменьшается в диаметре) под влиянием температуры, не допуская попадания пыли и влаги к месту сварки волокна). Элемент жесткости – предохраняет место сварки от изгибов. Во внутреннюю же трубку – помещается непосредственно волокно таким образом, чтобы место сварки было посредине трубки. Наиболее распространенными являются КДЗС длиной 40 и 60 мм. Однако с развитием технологии Splice On набирают популярности и микро КДЗС длиной менее 20 мм.

Применяются Splice On коннекторы при организации всех оптических кроссов и распределительных панелей, где нужны надежные, долговечные и высококачественные оптические соединения.

Рисунок 9 – Конструкция Splice On коннектора

Такая конструкция не требует применения сплайс кассеты (в которой обычно размещается КДЗС) и экономит время монтажа, сохраняя при этом высокие оптические и механические характеристики коннектора.

Splice On коннектор с уверенностью можно назвать заводским полуфабрикатом. Ведь на заводе его полностью подготавливают к установке, которая для монтажника ВОЛС заключается в выполнении сварного соединения (процесс практически не отличается от сварки двух волокон между собой) и сборки корпуса (не сложнее простенького LEGO конструктора для детей дошкольного возраста).

Рисунок 10 – составные части Splice On коннектора Ilsintech

На заводе внутрь ферулы коннектора вклеивают оптическое волокно, которое выступает за пределы коннектора на 2-3 сантиметра. С торцевой стороны волокно скалывается и полируется.

Впрочем, данная технология ничем не отличается от установки клеевых коннекторов на кабель. Однако качество заводской полировки не идет ни в какое сравнение с ручной. В этом не трудно убедиться, проведя инспекцию торца коннектора при помощи оптического микроскопа .

Можно взять для сравнения Splice On коннектор Ilsintech и обычный оптический патчкорд за 200 рублей (хотя при его изготовлении применяется не ручная полировка). Но даже в этом случае разница будет ощутима. Обратите внимание на качество полировки ферулы (рис. 10). Из него видно, что на рисунке 11б наблюдается «зернистость» торца ферулы, что говорит о невысоком качестве полировки.

Рисунок 11 – Качество полировки ферулы оптического коннектора

В результате, получается что-то вроде пиглейла, только с хвостом 2-3 сантиметра (рис. 4)., а не 1,5 м, как у обычных пигтейлов.

Рисунок 12 — Splice On коннектор SC в упаковке от производителя

Большинство производителей сварочных аппаратов для ВОЛС предлагают в качестве аксессуара или в базовом комплекте сварочника специальные держатели, в которые вместо одного из волокон, помещается коннектор. Для подготовки сварочного аппарата к монтажу коннектора, достаточно снять один из держателей волокна, обычно закреплен одним винтиком, и вместо него установить держатель коннектора. В остальном, как уже говорились выше, процесс мало чем отличается от сварки двух волокон между собой. Технология монтажа SC коннектора состоит в следующем:

  • На кабель надевается хвостовик коннектора. Хвостовики коннекторов отличаются в зависимости от диаметра и формы кабеля, для установки на который они предназначены. Компания СвязьКомплект поставляет коннекторы для кабеля диаметром 900 мкм, 2-3 мм, Indor, плоский наружный оптический кабель 8.1×4.5 мм, 5.4×3.0 мм, наружный кабель диаметром 5.0 и 5.8 мм.

Рисунок 13 – Монтаж SOC: надевание хвостовика коннектора на кабель

  • На этот же кабель надевается мини КДЗС из комплекта поставки коннектора

Рисунок 14 – Монтаж SOC: надевание КДЗС на кабель

  • Оптический кабель устанавливается в держатель волокна. Чаще всего сварочные аппараты для ВОЛС поставляются с универсальным держателем волокон, который позволяет зажимать как голое волокно 250 мкм, так и волокна в буфере 900 мкм, патч-кордный кабель 2-3 мм и плоский Indor кабель. Однако в случае монтажа коннекторов удобнее пользоваться съёмными держателями волокон. В ассортименте производителя присутствуют держатели для всех распространенных кабелей, включая и многоволоконные MPO.

Рисунок 15 – Монтаж SOC: крепление волоконно-оптического кабеля в держателе

  • Удаление буферного слоя. В данном примере удаление буферного слоя выполняется при помощи термостриппера. Этот способ наиболее комфортен и не повреждает оболочку волокна. Вместе с тем, эту же процедуру можно выполнить и при помощи ручного стриппера буферного слоя.

Рисунок 16 – Монтаж SOC: удаление буферного слоя с оптического волокна

  • Удаление остатков буферного слоя и жира при помощи спиртовой салфетки и скол оптического волокна. Прецизионный скалыватель делает насечку (как стеклорез) и ломает волокно таким образом, что угол скола получается 90 ± 5 градусов. Такое качество скола позволяет выполнить высококачественное сварное соединение с низкими вносимыми потерями.

Рисунок 17 – Монтаж SOC: скол оптического волокна

  • Установка держателя с волокном в сварочный аппарат

Рисунок 18 – Монтаж Splice On коннектора: Установка держателя с волокном в сварочный аппарат

  • Оптический Splice On разъем устанавливается в держатель коннектора. С ним производятся те же операции, что и с оптическим кабелем, описанные в пунктах 3-6. Опционально производитель поставляет указанные держатели. Все они перечислены во вкладке «Опции и аксессуары» в описании сварочных аппаратов.

Рисунок 19 – Монтаж SOC: крепление Splice On коннектора в держателе

  • Производится сварка волокон из коннектора и оптического кабеля.

Рисунок 20 – Монтаж SOC: приваривание Splice On коннектора к кабелю

  • На место сварки надвигается КДЗС и производится его усадка в термоусадочной печи сварочного аппарата. Уличные коннекторы кроме КДЗС имеют и внешнюю защитную термоусадочную трубку. Для ее усадки можно пользоваться газовой горелкой, или специальной термоусадочной печью.

Рисунок 21 – Монтаж SOC: Термоусадка КДЗС в печи сварочного аппарата

  • Производится сборка коннектора. Сначала надевается хвостовик коннектора (до легкого щелчка)

Рисунок 22 – Монтаж SOC: внешний вид Splice On коннектора после термоусадки

Рисунок 23 – Монтаж SOC: на сваренный с оптическим кабелем коннектор надевается хвостовик

  • Затем надевается внешний корпус коннектора

Рисунок 24 – Монтаж SOC: на Splice On коннектор надевается внешний корпус

Рисунок 25 – Монтаж SOC: готовый к работе Splice On коннектор

Технология монтажа SC коннектора при помощи сварочного аппарата KF4A также показана на этом видео:

Подобным образом осуществляется установка и усиленного коннектора на уличный кабель, однако сама его сборка немного сложнее.

Монтаж усиленных Splice On коннекторов для установки на уличный оптический кабель

Усиленные Splice On коннекторы – это уникальное решение для организации распределения оптического кабеля в сетях FTTx и PON. Они устанавливаются при помощи сварочного аппарата на уличный кабель круглого (5,0 мм и 5,8 мм) и плоского (8.1×4.5 мм и 5.4×3.0 мм) сечения. Благодаря конструктивным особенностям Splice On разъемы не боятся воздействия температуры, солнца и осадков, поэтому распределительный ящик может быть установлен прямо на столбе освещения.

Особенности усиленных Splice On коннекторов:

  • Низкие вносимые потери: ≤0.15 дБ
  • Возвратные потери: > 60 дБ (APC)
  • Устойчивость корпуса к прямому растяжению (0°): 20 кгс / 10 мин
  • Устойчивость адаптера к прямому растяжению (0°): 11,3 кгс / 60 сек
  • Устойчивость адаптера к боковому растяжению (0°): 6,8 кгс / 60 сек
  • Устойчивость к проникновению воды: 3,04 м в течении не менее чем 7 дней

Технология монтажа усиленного коннектора на уличный кабель ВОЛС продемонстрирована в видео:

Как следует из видео, внешние термоусадочные трубки по габаритам не помещаются в штатную печь сварочного аппарата. Для их усадки можно пользоваться газовой горелкой (как в видео) или специальной термоусадочной печью.

Монтаж кабельных окончаний при помощи Fast коннекторов (FAOC, механических оптических коннекторов) для оптоволокна

Fast коннектор (FAOC, механический коннектор, коннектор быстрого монтажа) – это вид оптического разъема, который устанавливается на оптоволокно без использования сварочного аппарата и не требует полировки торца ферулы. Простота и высокая скорость установки обусловлена его конструкцией.

Рисунок 26 – конструкция оптического Fast коннектора

Иммерсионный гель – это вязкая жидкость, показатель преломления которой близок к показателю преломления сердцевины оптического волокна. Показатель преломления иммерсионных гелей различных производителей несколько отличается и находится в диапазоне от 1,4 до 1,6.

Для сравнения, показатель преломления оптоволокна равен 1,46, а показатель преломления воздуха — 1,0029.

В связи с тем, что иммерсионный гель заполняет пространство между соединяемыми волокнами, в Fast коннекторе отсутствует воздух. Оптический сигнал, проходящий через такое соединение, «не замечает» перехода в другую среду и, соответственно не отражается от границы раздела сред (по закону Френеля).

Достоинства Fast коннектора

  • Самое короткое время монтажа (менее 2-х минут)
  • Для монтажа не требуется электропитание и дорогостоящее монтажное оборудование
  • Достаточные для сети доступа вносимые потери и отражение
  • Возможность многократного использования (коннекторы будут выполнять свои функции до тех пор, пока в пространстве между соединяемыми волокнами будет оставаться иммерсионный гель)
  • Не требуют полировки торца ферулы

Однако не все так хорошо, как кажется на первый взгляд. К сожалению, иммерсионный гель имеет свойство высыхать. И чем выше температура окружающей среды, тем быстрее происходит этот процесс. При высыхании геля пространство между оптическими волокнами снова заполняется воздухом, что приводит к увеличению вносимых потерь и отражения в таком коннекторе. Разные производители декларируют различные сроки жизни своих коннекторов. На практике же характеристики коннектора начинают ухудшаться уже после года эксплуатации. Этим обусловлено некоторое ограничение в применении Fast коннекторов на ВОЛС.

Рекомендации по монтажу оптических Fast коннекторов:

  • Оконечивание оптического кабеля на кроссе или распределительных коробках в ходе выполнения ремонтных работ. В последующем, такие коннекторы необходимо заменить на более долговечные Splice On коннекторы или пигтейлы.
  • Массовое подключение абонентов при развертываниии FTTx и PON сетей. Во избежание жалоб абонентов, в течении года такие коннекторы тоже необходимо заменить более долговечными
  • Временное оконечивание оптоволокна для выполнения тестирования (например при приемке кабеля от поставщика или проверке целостности кабеля после его монтажа) или организации технологической голосовой связи при помощи оптических телефонов, благо, Fast коннекторы можно неоднократно использовать для этих целей.
  • Оконечивание волоконно-оптического кабеля в местах с возможным скоплением взрывоопасных газов (шахтах, кабельных колодцах и т.д.)

Технология монтажа FAST Connector (быстрого коннектора, механического коннектора)

Несмотря на то, что оптические Fast коннекторы разных производителей построены по одному принципу, отличия все же между ними некоторое есть. В основном отличия заключаются в способе фиксации кабеля. Поэтому сама технология установки не значительно отличается в зависимости от производителя конкретного коннектора. Разберем технологию установки на примере Fast коннектора производства компании Tempo Communication (США).

Рисунок 27 – комплект поставки быстрого коннектора Tempo Communication

  • Надеть хвостовик коннектора на оптоволокно. Удалить 40 мм оболочки кабеля и защитного буфера. Удалить 3-х миллиметровую оболочку кабеля и 900 мкм буферный слой можно при помощи стриппера буфферного слоя (с тремя пазами).

Рисунок 28 – Монтаж оптического Fast коннектора: удаление верхней оболочки кабеля

  • Акриловый лак удаляется с волокна на участке 20 мм от конца волокна, после чего волокно необходимо протереть безворсовой салфеткой, смоченной в изопропиловом спирте (рис. 29).

Рисунок 29 – Удаление буферного слоя с оптического волокна

Рисунок 30 – Удаление буферного слоя с оптоволокна

  • Выполнить скол оптического волокна при помощи прецизионного скалывателя. Чем выше качество скола оптоволокна, тем больше срок жизни быстрого коннектора.

Рисунок 31 – Выполнение скола оптического волокна при помощи прецизионного скалывателя Greenlee 920CL

Рисунок 32 – Выполнение скола оптического волокна при помощи прецизионного скалывателя стороннего производителя

Компания Tempo адаптировала свои скалыватели 920CL к работе с Fast коннекторами. Так, в качестве аксессуара к ним поставляется специальный держатель для патчкордного кабеля. В этом случае не требуется отмерять 20 мм перед снятием буферного слоя. Его удаление происходит как изображено на рисунке 30. Далее, этот же держатель устанавливается в скалыватель 920CL для выполнения скола.

При установке волокна в скалывателе (за исключением Greenlee 920CL) следует обеспечить, чтобы 250-ти микронный буфер волокна заканчивался напротив цифры «10» мерной линейки (рис. 7). Таким образом, расстояние от окончания буферного слоя (акрилового лака) до окончания волокна после скола будет 10 мм.

В случае, если Fast коннектор используется для оперативного восстановления работоспособности сети с последующей заменой на Splice On коннектор или пигтейл, то скол можно выполнить и при помощи более дешевого ручного скалывателя. Пока в коннекторе достаточно иммерсионного геля, коннектор будет обеспечивать допустимые характеристики соединения. Вместе с тем стоит учитывать, что качество скола ручным скалывателем значительно хуже, чем прецизионным. Соответственно, если в случае высыхания геля в смонтированном при помощи прецизионного скалывателя коннекторе просто повысятся потери и отражение, то в случае использования ручного скалывателя он перестанет работать вовсе. И выход из строя произойдет намного раньше. Обычно период жизни коннектора в этом случае составляет не более 1 – 1,5 месяцев. Такого срока вполне достаточно, чтобы найти время и возможность заменить механическое соединение более надежным – сварным.

  • Сколотое оптическое волокно вставляется в коннектор до упора, пока часть волокна, находящаяся в хвостовике коннектора, не начнет изгибаться. Это значит, что торец волокна оконечиваемого кабеля соприкасается с вклеенным в коннектор на заводе волокном.

Рисунок 33 – Вставка оптического волокна в Fast коннектор

  • Для фиксации волокна в таком положении необходимо снять монтажный зажим, как изображено на рисунке 34.

Рисунок 34 – Фиксация волокна в коннекторе

После этого необходимо слегка прижать корпус разъема к волокну, чтобы волокно в месте изгиба (рис 33) выровнялось.

  • Фиксация самого кабеля в разъеме осуществляется при помощи хвостовика коннектора. Закрутите хвостовик таким образом, чтобы он зажал кевларовые нити. Остаток нитей необходимо обрезать при помощи ножниц.

Рисунок 35 – Фиксация кабеля в коннекторе и окончательная сборка коннектора

Вывод: как видите, установка быстрого коннектора очень проста, требует минимум инструментов и может быть выполнена в очень короткие сроки. Вместе с тем, недолговечность такого соединения накладывает некоторые ограничения на применение этой технологии. Поэтому наиболее предпочтительным применением Fast коннекторов является оперативное устранение поломок, когда нет «под рукой» сварочного аппарата.

Самым простым комплектом инструментов для установки такого коннектора может быть: стриппер буфферного слоя, ручной скалыватель, ножницы или нож, спиртовые салфетки.

Сравнительная таблица преимуществ и недостатков технологий монтажа оптических коннекторов

Итак, выделим преимущества и недостатки описанных выше технологий установки оптических коннекторов.

Сравнительная таблица преимуществ и недостатков применения различных методов установки оптических коннекторов:

Источник