- Расчет диаметра трубы для прокладки кабеля
- Как рассчитать условный диаметр электротехнической трубы ПНД для прокладки кабеля?
- Простой способ расчета минимального диаметра трубы для прокладки кабелей и проводов
- Как выбрать диаметр трубы для кабеля
- Определение группы сложности прокладки трассы
- Как рассчитать внутренний диаметр трубы
- Выбор типа трубы
- Как правильно рассчитать и подобрать диаметр труб для прокладки кабеля
Расчет диаметра трубы для прокладки кабеля
Закладка кабеля в защитные пластиковые трубы производится, когда необходимо защитить кабель от воздействия блуждающих токов, агрессивных грунтов и от механических повреждений. Прокладка кабеля в ПНД (ПВХ) трубе часто практикуется при монтаже силовых линий.
В случае, если при прокладке кабеля пересекаются дороги, трубопроводы и прочие коммуникации, использование защитной пластиковой трубы является обязательным.
Наиболее распространенные виды труб, используемые для прокладки в них кабеля:
Пластиковые (ПНД, ПВХ)
Наиболее практичными и распространенными являются электротехнические трубы ПНД, которые используются, как для телефонных кабелей, так и для силовых проводов и кабелей. Популярность данных трубы обуславливается невысокой ценой, удобством транспортировки (труба ПНД легкая) и монтажа, к тому же, трубы ПНД совершенно безвредны для окружающей среды и человека — не токсична и абсолютно взрывобезопасна.
И так, после того, как был определен тип трубы, который будет использоваться для прокладки кабеля, необходимо рассчитать внутренний диаметр ПНД трубы, подходящий для кабеля.
Как рассчитать условный диаметр электротехнической трубы ПНД для прокладки кабеля?
На практике используется 2 варианта расчета диаметра трубы. Назовем эти варианты нетривиально — простой и сложный:
Простой — не требует специальных расчетов и учета нюансов (тип кабеля, количество проводов в одной трубе, количество и величина поворотов, длина трассы и т.д.) прокладки кабеля. Данный способ, естественно, допускает некоторую погрешность в точном определении внутреннего диаметра трубы для прокладки кабеля.
Сложный — необходимы расчеты и определения группы и шифров сложности кабельной трассы, учет типа кабеля и т.д.
Простой способ расчета минимального диаметра трубы для прокладки кабелей и проводов
Расчет производится по формуле в зависимости от группы сложности прокладки (формула используется при прокладке одного кабеля в трубе):
Прямые участки 100 м.; участки 75 м. с одним поворотом 90° или двумя большими углами; участки 50 м. с двумя углами 90° или тремя большими углами; участки 40 м. с тремя углами 90° или тремя большими углами; участки 30 м. с четырьмя углами 90° или пятью большими углами;
Прямые участки 75 м.; участки 50 м. с одним углом 90° или двумя большими углами; участки 30 м. с двумя углами 90° или тремя большими углами; участки 20 м. с четырьмя углами 90° или пятью большими углами;
Прямые участки 50 м.; участки 30 м. с одним углом 90° или двумя большими углами; участки 20 м. с двумя углами 90° или тремя большими углами; участки 10 м. с четырьмя углами 90° или пятью большими углами.
где dвн — внутренний диаметр ПНД трубы, мм, dкаб — наружный диаметр кабеля, мм
На практике большинство проектировщиков используют усредненный коэффициент — 1,4, без учета группы сложности |
Важно: торговые организации и производители электротехнической трубы ПНД указывают в своих каталогах и прайс-листах внешний диаметр трубы: 16, 20, 25, 32, 40 и т.д. Расчет внутреннего диаметра трубы очень прост:
где dвн – внутренний диаметр трубы, dнар – наружный диаметр трубы, e – толщина стенки трубы.
Пример. Труба техническая ПНД 110х8,1 мм
110-(8,1х2) = 93,8 мм
Для расчета внутреннего диаметра трубы ПНД при прокладке в ней нескольких кабелей с одинаковыми или разными диаметрами используются следующие формулы:
Кликните для увеличения
где dвн — минимальный внутренний диаметр трубы, dкаб — диаметр кабеля (или его максимальный поперечный размер), dкаб1, dкаб2 и n1, n2 — диаметры кабелей и их количество. Для плоского кабеля в формулу необходимо подставить его ширину деленную на 2.
Для более детального расчета, при котором учитываются все нюансы прокладки кабеля в трубе, Вы можете воспользоваться инструкцией по монтажу электропроводок в трубах.
Источник
Как выбрать диаметр трубы для кабеля
Укладка кабеля в пластиковые или металлические трубы осуществляется для его защиты от наружного электромагнитного поля, воздействия грунта и механических повреждений. Современные стандарты требуют проводить кабельные магистрали в жёстких либо гофрированных трубах, рукавах всегда, но на практике чаще всего это делается при монтаже силовых кабельных линий, при проведении подземных работ и при укладке электропроводки в деревянных домах.
Определение группы сложности прокладки трассы
Сложность укладки магистрали является основным фактором для подбора диаметра трубы. Различают три группы сложности:
- Группа I. Имеются прямые сегменты длиной 100 метров либо участка длиной 75 метров с одним поворотом под прямым углом или двумя углами свыше 60 градусов. К этой группе относятся сегменты протяжённостью 50 метров с двумя прямыми углами, участки длиной 40 метров с тремя прямыми углами или с тремя поворотами на 60 либо более градусов, участки в 30 метров с 4-мя прямыми углами либо с 5-ю более 60 градусов;
- Группа II. Подразумевает непрерывную трассу в 75 м, участки в 50 метров с одним прямым углом либо тремя поворотами на 60 и более градусов, сегменты длиной 20 метров с четырьмя прямыми углами либо с пятью свыше 60 градусов;
- Группа III. Допускается прямая магистраль не длиннее 50 метров, а также 30-метровые сегменты с одним прямым углом либо с двумя поворотами свыше 60 градусов. К этой же группе сложности относятся 20-метровые сегменты с одним прямым углом и тремя поворотами на 60 и более градусов.
Как рассчитать внутренний диаметр трубы
Существуют сложные методики расчёта диаметров прокладываемых кабелей в трубах. Они применяются при проектировании внутренних и наружных магистралей на крупных объектах. Однако имеются более простые формулы, которые учитывают вышеупомянутую классификацию. Они предполагают умножение наружного диаметра прокладываемого кабеля на коэффициент запаса. Главное – чтобы внутри трубы оставалось свободное место для поворотов кабеля, который не должен плотно соприкасаться с трубой во избежание износа слоя наружной изоляции.
Основные формулы следующие.
Для первой группы внутренний диаметр трубы (здесь и далее он будет обозначен как Двн) считается следующим образом:
Двн > = 1.65 * Дк
где Дк — наружный диаметр кабеля. Т.е., внутренний диаметр трубы должен быть не меньше данной величины, помноженной на коэффициент 1.65;
Для второй группы применяется следующая формула:
Двн > = 1.4 * Дк
При третьей группе сложности минимально допустимое сечение трубы рассчитывается так:
Двн > = 1.25 * Дк
Необходимо учитывать, что производители труб при их маркировке указывают наружный диаметр — 16, 20, 25 мм и т. д. Чтобы вычислить внутренний размер, необходимо из наружного вычесть удвоенную толщину стенки.
Выбор типа трубы
При подземной укладке кабеля оптимальным вариантом будет толстостенная гофрированная труба из металла или ПНД. Она может выдержать высокие нагрузки, при этом может изгибаться, её легко прокладывать.
При вводе кабеля в здание применяют жёсткие трубы с гладкой текстурой (из пластика или асбоцемента). Внутри помещений применяются гофрированные трубы из ПВХ, реже — гладкие из ПВД, металлорукава. Исключение составляют деревянные строения. В соответствии с ПУЭ в них можно для укладки кабеля использовать только металлические защитные трубы без острых краёв и заусенцев (чтобы не повредить кабельную оболочку). В качестве материалов используется сталь, реже — медь. Такое нормативное требование связано с соображениями пожарной безопасности.
Источник
Как правильно рассчитать и подобрать диаметр труб для прокладки кабеля
В этой статье мы расскажем о трех самых простых и популярных формулах расчета диаметра труб при прокладке кабеля в земле или на воздухе. В зависимости от длины участков и углов изгибов необходимо будет применить правильный метод расчета. Ниже вы найдете примерную сводную таблицу по подбору трубы для конкретных ситуаций.
Несмотря на относительную точность формул и подбора мы всегда рекомендуем обратиться к нам за бесплатным расчетом и подбором труб. Это позволит вам избежать ошибок при проектировании электрических магистралей.
Типоразмеры труб ПРОТЕКТОРФЛЕКС ®
Классификация безнапорных труб традиционно производится не по величине стандартного размерного отношения (SDR), а по классу кольцевой жесткости (SN). Принципиальное отличие SDR и SN в том, что SDR — это геометрическая характеристика трубы (отношение внешнего диаметра трубы к толщине ее стенки), тогда как SN — это механическая характеристика.
Кольцевая жесткость SN позволяет судить о свойствах трубы сопротивляться давлению грунта и определяется как нагрузка на трубу (кН/м2), при которой труба сдавливается на 3% от своего диаметра. Величина SN зависит не только от диаметра трубы и толщины ее стенки, а еще и от модуля упругости E материала при сжатии.
Маркировка трубы для прокладки кабельной линии должна включать в себя диаметр трубы D, толщину стенки e, кольцевую жесткость SN, предельное усилие тяжения F1MAX, длительно допустимую температуру T, при которой кольцевая жесткость сохраняется не менее всего срока службы кабеля.
Параметры D, e, SN и T должны контролироваться при поставках труб на строящиеся объекты. Значение F1MAX может потребоваться позже — уже на стадии выполнения работ по затяжке труб в буровой канал, когда оператор ГНБ установки будет контролировать фактическое усилие тяжения F и прерывать процесс затяжки пучка из N труб в случае F > 0,5 · N · F1MAX с целью не допустить обрыва трубы.
На рисунке 1 показана труба внешнего диаметра D и толщины стенки e, внутри которой проложен кабель внешним диаметром d. Согласно нормативным документам, при выборе внешнего диаметра труб следует придерживаться следующего правила:
Толщина стенки трубы e определяется в ходе механических расчетов на основе основной информации об условиях прокладки трубы и опирается на понятие кольцевой жесткости SN .
Рисунок 1. Полимерная труба с кабелем: без давления грунта (а), с давлением грунта (б)
Связь толщины стенки и кольцевой жесткости устанавливается выражением:
где E — модуль упругости материала трубы при сжатии.
Толщина стенки трубы e (мм) в зависимости от диаметра трубы D (мм) и кольцевой жесткости SN (кН/м 2 )
Внешний диаметр трубы D, мм | Кольцевая жесткость SN, кН/м 2 | ||||||||
12 | 16 | 24 | 32 | 48 | 64 | 96 | |||
Толщина стенка трубы е, мм | |||||||||
32* | — | — | 2 | 2,2 | 2,5 | 2,7 | 3,1 | ||
40* | — | 2,2 | 2,5 | 2,8 | 3,1 | 3,4 | 3,9 | ||
50* | 2,5 | 2,8 | 3,1 | 3,4 | 3,9 | 4,3 | 4,8 | ||
63* | 3,2 | 3,5 | 4 | 4,3 | 4,9 | 5,4 | 6,1 | ||
75* | 3,8 | 4,2 | 4,7 | 5,2 | 5,9 | 6,4 | 7,2 | ||
90* | 4,6 | 5 | 5,7 | 6,2 | 7 | 7,7 | 8,7 | ||
110 | 5,6* | 6,1 | 6,9 | 7,6 | 8,6 | 9,4 | 10,6 | ||
125 | 6,3* | 6,9 | 7,9 | 8,6 | 9,8 | 10,7 | 12 | ||
140 | 7,1* | 7,8 | 8,8 | 9,6 | 10,9 | 11,9 | 13,5 | ||
160 | 8,1 | 8,9 | 10,1 | 11 | 12,5 | 13,6 | 15,4 | ||
180 | 9,1 | 10 | 11,3 | 12,4 | 14 | 15,3 | 17,3 | ||
200 | 10,1 | 11,1 | 12,6 | 13,8 | 15,6 | 17 | 19,3 | ||
225 | 11,4 | 12,5 | 14,2 | 15,5 | 17,6 | 19,2 | 21,7 | ||
250 | 12,7 | 13,9 | 15,7 | 17,2 | 19,5 | 21,3 | 24,1 | ||
280 | 14,2 | 15,5 | 17,6 | 19,3 | 21,8 | 23,9 | 27 | ||
315 | 15,9* | 17,5 | 19,8 | 21,7 | 24,6 | 26,8 | 30,4 | ||
355 | 18 | 19,7 | 22,3 | 24,4 | 27,7 | 30,3* | 34,2* | ||
400 | 20,2 | 22,2 | 25,2 | 27,5 | 31,2 | 34,1 | 38,5 | ||
450 | 22,8 | 24,9 | 28,3 | 31 | 35,1 | 38,3 | 43,4 | ||
500 | 25,3 | 27,7 | 31,5 | 34,4 | 39 | 42,6 | 48,2 | ||
560 | 28,3 | 31 | 35,3 | 38,6 | 43,7 | 47,7 | 54 | ||
630 | 31,9 | 34,9 | 39,7 | 43,4 | 49,2 | 53,7 | — |
* Производятся в однослойном исполнении
Примечание: Внешний диаметр труб ПРОТЕКТОРФЛЕКС® ПРО указан без учета толщины защитного покрытия.
Существует два основных способа размещения труб в грунте — это укладка в предварительно подготовленную траншею (рисунок 2а) или затяжка труб в грунт в подготовленный канал, чаще выполняемый горизонтально-направленным бурением (рисунок 2б). В обоих случаях расчет трубы построен на понятии кольцевой жесткости SN, на основе которой можно определить не только толщину стенки трубы, но и предельное усилие тяжения трубы при ее затаскивании в буровой канал.
Рисунок 2. Основные способы прокладки полимерных труб: траншейный (а), метод ГНБ (б)
Выбор кольцевой жесткости труб
Вертикальное давление грунта (и транспорта) на трубу является силой, приложенной к трубе и стремящейся вызвать ее овальность, однако возникающий «отпор грунта», расположенного по бокам трубы, стремится вернуть форму поперечного сечения трубы к исходному круглому. Плотный грунт по бокам трубы — это фактор, повышающий ее механическую прочность.
где q и SN измеряются уже в кН/м2, а E’S — фактор жесткости грунта, который называется секущим модулем грунта (МПа).
Секущий модуль грунта E’S зависит от типа грунта, которым засыпается труба, и степени его уплотнения. Как правило, для этих целей используется песок, и тогда рекомендуется использовать данные таблице.
Глубина засыпки H, м | Состояние песка, которым засыпана труба | ||
Неуплотненный | Уплотненный вручную | Уплотненный механически | |
Секущий модуль грунта E’ s , МПа | |||
1 | 0,5 | 1,2 | 1,5 |
2 | 0,5 | 1,3 | 1,8 |
3 | 0,6 | 1,5 | 2,1 |
4 | 0,7 | 1,7 | 2,4 |
5 | 0,8 | 1,9 | 2,7 |
6 | 1,0 | 2,1 | 3,0 |
Вертикальная нагрузка на трубу (кН/м2) складывается из трех составляющих:
где q r — нагрузка от веса грунта (кН/м 2 ); q AT — нагрузка от автотранспорта (кН/м 2 ); q ЖТ — нагрузка от ж/д транспорта (кН/м 2 ).
Нагрузка от грунта в наиболее неблагоприятном случае, когда на трубу давит весь столб грунта высотой Н,
где ρ r — удельный вес грунта (обычно не более 2 т/м 3 ); g = 9,81 м/с 2 — ускорение свободного падения; H — глубина расположения трубы под землей (м).
Нагрузка от транспорта может быть определена как
Результаты расчета предельной глубины заложения труб Н даны в таблице ниже. Видно, что при прокладке труб в траншеях опасно применять трубы с кольцевой жесткостью менее 8 и нет необходимости применять трубы с SN более 64.
Предельная глубина H (м) при прокладке открытым способом под газонами / скверами / автодорогами
SN, кН/м 2 | Секущий модуль грунта E’s, МПа | ||||||
0 | 0,5 | 1 | 1,5 | 2 | 2,5 | 3 | |
Предельная глубина прокладки H, м | |||||||
4 | 0,4 / — | 0,8/- | 1,3/- | 1,7/- | 2,1/- | 2,5/- | 2,9/- |
6 | 0,7 / — | 1,1/- | 1,5/- | 1,9/- | 2,3/- | 2,7/- | 3,1/- |
8 | 0,9/- | 1,3/- | 1,7/- | 2,1/- | 2,5/- | 2,9/- | 3,3/- |
12 | 1,3/- | 1,7/- | 2,1/- | 2,5/- | 2,9/- | 3,4/- | 3,8/- |
16 | 1,7/- | 2,2/- | 2,6/- | 3,0/- | 3,4/- | 3,8/1,7 | 4,2/2,4 |
24 | 2,6/- | 3,0/- | 3,4/0,7 | 3,8/1,8 | 4,3/2,5 | 4,7/3,0 | 5,1/3,6 |
32 | 3,5/0,9 | 3,9/1,9 | 4,3/2,5 | 4,7/3,1 | 5,1/3,7 | 5,5/4,2 | 5,9/4,7 |
48 | 5,2/3,8 | 5,6/4,3 | 6,1/4,8 | 6,5/5,3 | 6,9/5,8 | 7,3/6,2 | 7,7/6,7 |
64 | 7,0/5,9 | 7,4/6,4 | 7,8/6,8 | 8,2/7,3 | 8,6/7,7 | 9,0/8,2 | 9,4/8,6 |
Выбор предельных усилий тяжения
При прокладке методом ГНБ трубы подвергаются двум видам воздействий: во-первых, продольным силам тяжения F, которые возникают при протаскивании трубы в буровой канал; во-вторых, вертикальному давлению грунта и транспорта уже в процессе эксплуатации трубы. Выбор кольцевой жесткости и толщины стенки определяется главным образом усилиями тяжения.
Усилие тяжения трубы F создает силы трения, возникающие из-за утяжеления трубы под действием навалившегося на трубу грунта вследствие плохого закрепления стенок бурового канала буровым раствором (бентонит) или даже полной невозможности закрепления (плывуны, тяжелый сценарий).
где qr — вес грунта в кН/м2; DЭКВ — эквивалентный диаметр протаскиваемой плети труб; µ — коэффициент трения полимерной трубы о грунт (обычно равен 0,2).
Проверка допустимости усилий тяжения F, возникающих при затягивании трубы (пл ети труб) в буровой канал, выполняется следующим образом
где 0,5 — коэффициент запаса; N — число труб в плети (одна или четыре); F1MAX — предельное усилие тяжения каждой трубы (кН), которое может быть найдено как
где D и e — внешний диаметр и стенка трубы (в мм); σ — предел текучести материала трубы (МПа).
Предельные усилия тяжения F1MAX приведены в таблице ниже
Предельное усилие тяжения трубы F 1MAX (кН) в зависимости от диаметра трубы D (мм) и кольцевой жесткости SN (кН/м 2 )
Источник