Проверка динамической стойкости кабеля

Проверка динамической стойкости кабеля

ГОСТ Р 52736-2007

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Короткие замыкания в электроустановках

МЕТОДЫ РАСЧЕТА ЭЛЕКТРОДИНАМИЧЕСКОГО
И ТЕРМИЧЕСКОГО ДЕЙСТВИЯ ТОКА КОРОТКОГО ЗАМЫКАНИЯ

Short-circuits in electrical installations.
Calculation methods of electrodynamics and thermal effects of short-circuit current

Дата введения 2008-07-01

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0-2004 «Стандартизация в Российской Федерации. Основные положения»

Сведения о стандарте

1 РАЗРАБОТАН Филиалом ОАО «НТЦ электроэнергетики» — ВНИИЭ, Московским энергетическим институтом (Техническим университетом) (МЭИ (ТУ))

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 437 «Токи короткого замыкания»

Информация об изменениях к настоящему стандарту публикуется ежегодно в издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

1 Область применения

Настоящий стандарт распространяется на трехфазные электроустановки промышленной частоты и определяет методы расчета и проверки проводников и электрических аппаратов на электродинамическую и термическую стойкость при коротких замыканиях (КЗ).

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 687-78 Выключатели переменного тока на напряжение свыше 1000 В. Общие технические условия

ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией. Технические условия

ГОСТ 18410-73 Кабели силовые с пропитанной бумажной изоляцией. Технические условия

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный документ заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) документом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

термическое действие тока короткого замыкания в электроустановке: Изменение температуры элементов электроустановки под действием тока короткого замыкания.

электродинамическое действие тока короткого замыкания в электроустановке: Механическое действие электродинамических сил, обусловленных током короткого замыкания, на элементы электроустановки.

интеграл Джоуля: Условная величина, характеризующая тепловое действие тока короткого замыкания на рассматриваемый элемент электроустановки, численно равная интегралу от квадрата тока короткого замыкания по времени, в пределах от начального момента короткого замыкания до момента его отключения.

ток термической стойкости электрического аппарата при коротком замыкании (ток термической стойкости): Нормированный ток, термическое действие которого электрический аппарат способен выдержать при коротком замыкании в течение нормированного времени термической стойкости.

ток электродинамической стойкости электрического аппарата при коротком замыкании (ток электродинамической стойкости): Нормированный ток, электродинамическое действие которого электрический аппарат способен выдержать при коротком замыкании без повреждений, препятствующих его дальнейшей работе.

4 Общие положения

4.1 Исходные положения

4.1.1 При проверке проводников и электрических аппаратов электроустановок на электродинамическую и термическую стойкость при КЗ предварительно должны быть выбраны расчетные условия КЗ, т.е. расчетная схема электроустановки, расчетный вид КЗ в электроустановке, расчетная точка КЗ, а также расчетная продолжительность КЗ в электроустановке (последнюю используют при проверке на термическую стойкость проводников и электрических аппаратов, а также при проверке на невозгораемость кабелей).

4.1.2 Расчетная схема электроустановки должна быть выбрана на основе анализа возможных электрических схем этой электроустановки при продолжительных режимах ее работы. К последним следует относить также ремонтные и послеаварийные режимы работы.

4.1.3 В качестве расчетного вида КЗ следует принимать:

— при проверке электрических аппаратов и жестких проводников с относящимися к ним поддерживающими и опорными конструкциями на электродинамическую стойкость — трехфазное КЗ;

— при проверке электрических аппаратов и проводников на термическую стойкость — трех- или однофазное КЗ, а на генераторном напряжении электростанций — трех- или двухфазное КЗ, в зависимости от того, какое из них приводит к большему термическому воздействию;

— при проверке гибких проводников по условию их допустимого сближения во время КЗ — двухфазное КЗ.

4.1.4 В качестве расчетной точки КЗ следует принимать такую точку на расчетной схеме, при КЗ в которой проводник или электрический аппарат подвергается наибольшему электродинамическому или термическому воздействию.

Примечание — Исключения из этого требования допустимы лишь при учете вероятностных характеристик КЗ и должны быть обоснованы требованиями соответствующих ведомственных нормативных документов.

4.1.5 Расчетную продолжительность КЗ при проверке проводников и электрических аппаратов на термическую стойкость следует определять путем сложения времени действия основной релейной защиты, в зону которой входят проверяемые проводники и электрические аппараты, и полного времени отключения соответствующего выключателя, а при проверке кабелей на невозгораемость — путем сложения времени действия резервной релейной защиты и полного времени отключения ближайшего к месту КЗ выключателя.

При наличии устройств автоматического повторного включения (АПВ) цепи следует учитывать суммарное термическое действие тока КЗ.

4.1.6 При расчетной продолжительности КЗ до 1 с допустимо процесс нагрева проводников под действием тока КЗ считать адиабатическим, а при расчетной продолжительности КЗ более 1 с и при небыстродействующих АПВ следует учитывать теплоотдачу в окружающую среду.

5 Электродинамическое действие тока короткого замыкания

5.1 Расчет электродинамических сил взаимодействия проводников

5.1.1 Электродинамические силы взаимодействия , Н, двух параллельных проводников с токами следует определять по формуле

, (1)

где — постоянный параметр, Н/А ;

— мгновенные значения токов проводников, А;

— длина проводников, м;

— расстояние между осями проводников, м;

Для проводников прямоугольного сечения коэффициент формы следует определять по кривым, приведенным на рисунке 1.

Рисунок 1 — Диаграмма для определения коэффициента формы проводников прямоугольного сечения

Для круглых проводников сплошного сечения, проводников кольцевого сечения, а также проводников (шин) корытообразного сечения с высотой профиля 0,1 м и более следует принимать =1,0.

5.1.2 Наибольшее значение электродинамической силы имеет место при ударном токе КЗ.

5.1.3 Максимальную силу , Н, (эквивалентную равномерно распределенной по длине пролета нагрузки), действующую в трехфазной системе проводников на расчетную фазу при трехфазном КЗ, следует определять по формуле

, (2)

где — длина пролета, м;

— ударный ток трехфазного КЗ, А;

— коэффициент, зависящий от взаимного расположения проводников.

Значения коэффициента для некоторых типов шинных конструкций (рисунок 2) указаны в таблице 1.

Рисунок 2 — Схемы взаимного расположения шинных конструкций

Источник

Выбор и проверка силовых кабелей на соответствие их параметров расчетным при коротких замыканиях

Силовые кабели выбирают по расчетному току, номинальному напряжению, способу прокладки, условиям окружающей среды и проверяют на термическую устойчивость при коротком замыкании путем расчета минимальной площади сечения токоведущей жилы по формуле:

где — ?т.у – минимальная площадь сечения токоведущей жилы кабеля; ?– установившейся ток короткого замыкания; ?пр – приведенное время короткого замыкания, сек, в течение которого установившейся ток ? выделяет такое же количество теплоты, что и изменяющийся ток короткого замыкания за действительное время; С – термический коэффициент, соответствующий разности значений теплоты, выделенной в проводнике после и до короткого замыкания, значения которого принимаются для кабелей с медными жилами С = 141, с алюминиевыми С = 85.

После расчета минимальной площади сечения токоведущей жилы по термической устойчивости уточняют сечение токоведущих жилы силовых кабелей с учетом установленной мощности электроприемников и проверяют его по допустимым потерям напряжения, термической стойкости к воздействию токов КЗ и на невозгорание при протекании токов КЗ.

Проверка силовых кабелей на невозгорание при протекании тока КЗ осуществляется из предположения, что максимальный ток, протекающий в кабеле, равен действующему значению тока короткого замыкания в начале линии.

Проверка силовых кабелей на нагрев при протекании тока КЗ производится в соответствии с циркуляром Ц02-98 (Э) «О проверке кабелей на невозгорание при протекании тока короткого замыкания». Проверка производится для каждого выбранного сечения кабелей, при этом для проверки выбирается кабельная линия с наиболее «тяжелыми» условиями, т.е. с максимальным значением тока КЗ в начале линии.

Температура жилы силового кабеля при протекании тока КЗ определятся по формуле:

где ϑн – максимальная температура жилы до КЗ; ? = 228 ℃ − величина, обратная температурному коэффициенту электрического сопротивления при 0 ℃;

где ϑн– фактическая температура окружающей среды, ℃ ; ϑдд– длительно допустимая температура токопроводящих жил кабеля, ℃ ; ϑокр – температура окружающей среды:

  • для кабелей в земле 15 ℃ ;
  • для кабелей на воздухе 25 ℃ ;

?раб – рабочий ток, А; ?дд – длительно допустимый ток нагрузки кабеля, А;

где b – постоянная, характеризующая теплофизические характеристики материала токопроводящей жилы:

(?к) ∙ ? – суммарный тепловой импульс;

?к –действующее значение тока КЗ, кА;

t – длительность тока КЗ (время срабатывания резервной защиты вышестоящего АВ), с;

S – сечение токоведущей жилы кабеля, мм 2 .

Термическая стойкость проводника обеспечивается, если площадь сечения S, мм 2 , удовлетворяет неравенству: ? ≥ ?тер . где ? ≥ ?тер . — минимальное сечение проводника по условию термической стойкости, мм 2 , которое следует определять по формуле:

?откл – время срабатывания защиты, зависящее от уровня напряжения (регламентированное время отключения тока КЗ), для сетей 220 кВ обычно принимается равным 0,1 с;

– параметр, принимаемый по таблице 8 стандарта ГОСТ Р 52736-2007 «Короткие замыкания в электроустановках. Методы расчёта электродинамического и термического действия токов короткого замыкания» и значения которого равны:

  • для кабеля 220 кВ – 90;
  • для кабеля 10 кВ – 65.

Отметим, что температура жилы силового кабеля с изоляцией из сшитого полиэтилена не должна превышать 350 градусов Цельсия.

Термическая стойкость электропроводящего экрана силового кабеля обеспечивается, если обеспечивается следующее условие:

где – ?д.э – допустимый ток медного экрана, кА, значения которого:

  • для кабеля 220 кВ (сечение экрана 120 мм2) – 24,36 кА;
  • для кабеля 10 кВ (сечение экрана 25 мм2) – 19,2 кА.

– ток двухфазного короткого замыкания, кА.

Основным назначением экрана является обеспечение равномерности электрического поля, воздействующего на главную изоляцию кабеля (изоляцию «жила-экран»), что достигается только в случае заземления экрана. Поэтому электропроводящая оболочка кабеля (экран), как правило, заземлена на его концах и в ряде промежуточных точек (муфтах или транспозиционных узлах). При этом для токов нагрузки образуется путь в земле, параллельный проводнику. В этом отношении металлическая оболочка кабеля аналогична заземленным тросам у воздушной линии. На распределение тока между оболочкой и землей существенное влияние оказывает не только собственное сопротивление оболочки (экрана), но и сопротивление ее заземлений, значения которых зависят от характера прокладки кабеля (траншея, блоки, туннель, эстакада и т.д.) и ряда других факторов.

В однофазном режиме ток нагрузки протекает по экрану и земляному каналу, обладающего сопротивлением ?з (рис. 1).

Активное сопротивление линии «экран – земля» складывается из активного сопротивления экрана ?э и дополнительного сопротивления ?з, учитывающего потери активной мощности в земле от протекающего в ней тока:

На частоте ? = 50 Гц удельное сопротивление земли ?з = 0,05 Ом⁄км, что свидетельствует о практическом постоянстве потерь активной мощности в земле при заданной частоте.

Рис. 1. Кабель с изоляцией из сшитого полиэтилена: а) в однофазном включении; б) схема замещения

Сопротивление, обусловленное взаимоиндукцией между двумя параллельными линиями «провод-земля» с расстоянием ? ≪ ?з между осями их проводов:

где , м, – эквивалентная глубина возврата тока через землю.

На промышленной частоте 50 Гц и среднем значении удельной проводимости земли ? = 10 −4 (Ом ∙ см) −1 , получим ?з = 935 м.

Рис. 2. Заземление экранов с двух сторон трех однофазных кабелей с изоляцией из сшитого полиэтилена

При отсутствии данных о проводимости земли обычно принимают

Отметим, что взаимоиндукция с другими фазами уменьшает сопротивление фазы для токов прямой (обратной) последовательности и увеличивает его для токов нулевой.

При расчете режима экранов однофазных кабелей с изоляцией из сшитого полиэтилена в трехфазном включении необходимо учитывать взаимоиндукцию с другими фазами (рис. 2) с учетом расстояния между центрами кабелей при выбранном способе прокладки.

Источник

Читайте также:  Кабель апвбвнг ls 10