Приборы для фазировки кабеля

Проверка чередования фаз силовых кабелей

Простые способы фазировки кабеля

Простейшим способом отыскания в конце кабеля токоведущих жил, соответствующих определенным фазам его начала, является способ проверки «прозвонки» жил кабелей при помощи телефонных трубок, например при проверке силовых кабелей, прокладываемых между различными помещениями станций и подстанций. Схема присоединения телефонных трубок показана на рисунке 1.

В качестве одного из проводов для установления связи используют заземленные конструкции (заземленную металлическую оболочку кабеля), к которым подсоединяют телефонные трубки. Далее, с одной из сторон кабеля провод от батарейки соединяют с токоведущей жилой (допустим, фазой С).

Схема присоединения телефонных трубок при фазировке кабеля

С другой стороны кабеля вторым проводом от телефонной трубки поочередно касаются токоведущих жил, каждый раз подавая голосом сигнал в трубку. Найдя жилу, по которой будет получен отзыв проверяющего, ее помечают как фазу С и в том же порядке продолжают поиск других жил. Вместо обычных телефонных трубок целесообразно применение телефонных гарнитуров, пользование которыми освобождает руки проверяющих для работы.

Для проверки чередования фаз достаточно широко используют мегаомметр, схема включения которого показана на рисунке 2. Для этого поочередно заземляют жилы в начале кабеля, а в конце производят измерение сопротивления изоляции жил относительно земли.

Схема присоединения мегаомметра при фазировке кабеля

Заземленную жилу обнаруживают по показаниям мегаомметра, так как сопротивление ее изоляции на землю будет равно нулю, а двух других жил — десяткам и даже сотням мегаом.

При этом способе проверки трижды устанавливают и снимают заземления. Кроме того, персонал, находящийся у концов кабеля, должен иметь между собой связь, чтобы координировать свои действия. Все это относится к недостаткам такого способа проверки.

Более совершенным способом фазировки кабеля является способ измерений по схеме, приведенной на рисунке 3.

Одну из трех жил кабеля (назовем ее фазой А) жестко соединяют с заземленной оболочкой, другую жилу (фазу С) заземляют через сопротивление 8—10 МОм В качестве сопротивления обычно используют трубку с резисторами указателя УВНФ. Третью жилу (фазу В) не заземляют, она остается свободной. С другого конца кабеля мегаомметром измеряют сопротивление жил относительно земли.

Очевидно, что фазе А будет соответствовать жила, сопротивление которой на землю равно нулю, фазе С — жила, имеющая сопротивление на землю 8 — 10 МОм, и фазе В — жила с бесконечно большим сопротивлением.

Схема присоединения мегаомметра и дополнительного резистора при фазировке кабеля

Техника безопасности при производстве фазировки кабелей

По условиям безопасности при производстве фазировки кабелей фазировка производится только на отключенной со всех сторон кабельной линии. При этом должны быть приняты меры против подачи на кабель рабочего напряжения. Перед началом фазировки при помощи мегаомметра весь персонал, находящийся вблизи кабеля, предупреждается о недопустимости прикосновения к токоведущим жилам.

Соединительные провода от мегаомметра должны иметь усиленную изоляцию (например, провод типа ПВЛ). Присоединение их к токоведущим жилам производится после того, как кабель будет разряжен от емкостного тока. Для снятия остаточного заряда кабель заземляют на 2—3 мин.

Проверка чередования фаз силовых кабелей по расцветке изоляции жил

Токоведущие жилы силовых кабелей с изоляцией из пропитанной бумаги расцвечивают навитыми на их изоляцию лентами цветной бумаги. Одну из жил, как правило, опоясывают красной лентой, другую — синей, а изоляцию третьей специально не расцвечивают — она сохраняет цвет кабельной бумаги.

При изготовлении кабелей жилы скручивают между собой так, что на протяжении одного шага скрутки каждая жила меняет свое положение в площади сечения, делая один оборот вокруг оси кабеля. Рассматривая площади сечений с обоих концов кабеля, можно обнаружить, что по отношению к наблюдателю фазы в сечениях чередуются в разных направлениях. Эти особенности конструкции кабелей учитывают при фазировке и соединении жил.

Чередования фаз в сечениях кабеля. Стрелками показаны направления обхода фаз.

Допустим, что необходимо произвести фазировку и соединение жил двух концов трехфазного кабеля. Фазировка в данном случае элементарно проста. Она заключается в том, что из шести жил выбирают пары, имеющие одинаковую расцветку. Эти жилы замечают и готовят к соединению. Для соединения необходимо, чтобы оси жил одинаковой расцветки совпадали, а направление чередования фаз в площади сечения одного конца кабеля было зеркальным отражением другого.

Некоторые варианты чередования расцвеченных жил в сечениях двух кабелей: а — соединение жил одинакового цвета возможно; б — то же после поворота сечения на 180°; в — соединение трех жил по их цветам невозможно.

При укладке кабелей в траншею вероятность совпадения осей жил невелика. Чаще всего фазы одного цвет а оказываются повернутыми относительно друг друга на некоторый угол, значение которого может доходить до 180°.

Кабели с несовпадающими осями одинаково расцвеченных жил при монтаже (или ремонте) подкручивают вокруг оси, пока не будет зафиксировано точное совпадение осей жил. Однако сильное подкручивание не безопасно. Оно вызывает механические напряжения в защитных и изоляционных покровах кабелей и влечет за собой снижение надежности в работе.

Для того чтобы по цвету совпали все соединяемые между собой жилы, направления чередований фаз в сечениях кабелей должны быть противоположными. Это проверяется заранее, до укладки кабеля в траншею, если на его концах отсутствуют метки с указанием направления чередования фаз. Заметим, что у кабелей с чередованием фаз, направленным в одну сторону, по цвету совпадает только одна жила, а две другие не могут совпадать.

Преимущество способа соединения кабелей одинаково расцвеченными жилами состоит в том, что фазировка здесь не является самостоятельной операцией, она выполняется в ходе самих работ, а процесс прокладки, ремонта и эксплуатации кабелей приобретает более стройную систему и требует меньших трудозатрат.

Проверка чередования фаз силовых кабелей прибором ФК-80

Для фазировки на две жилы кабеля на питающем его конце накладываются два излучателя: на фазу А — излучатель непрерывного сигнала И1, на фазу В — излучатель прерывистого сигнала И2, фаза С остается свободной. Заземление с кабельной линии не снимается — оно не мешает проведению фазировки. На время фазировки или задолго до этого прибор ФК-80 включается в сеть 220 В. Излучатели наводят в жилах кабеля соответствующие ЭДС. На другом конце линии телефонные трубки подсоединяют одним проводом к заземлению (заземленной оболочке кабеля), а другим проводом поочередно касаются токоведущих жил кабеля.

Применение прибора ФК-80 при фазировке кабеля

Принадлежность жилы кабеля той или иной фазе определяется по характеру звука в телефонных трубках. Если будет услышан непрерывный сигнал — трубки подключены к фазе А, прерывистый — к фазе В и отсутствие звука укажет, что трубки подключены к фазе С. Наводимая в жилах кабеля ЭДС звуковой частоты (ее значение не превышает 5 В) не является помехой для выполнения ремонтных работ на кабельной линии.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Источник

Проверка фазировки

Время на чтение:

Проверять фазировку необходимо на устройствах, работающих с электрическим оборудованием от 3-фазного тока. Это необходимо для трансформаторов, линий электропередач, компенсаторов и холодильников. Делается она до ввода электроприбора в эксплуатацию и после произведения ремонта. Контроль значений фазы должен проверяться и при проведении планово-предупредительных работ. В этом материале рассмотрено, что такое фазировка кабеля, и зачем она осуществляется более подробно.

Зачем нужно проверять

Выполняют проверку фаз кабелей и электроприборов для того, чтобы проконтролировать электронапряжение на каждой точке токопроводящей жилы какого-либо электрооборудования. Оно должно соответствовать электрическому напряжению этих же жил в электросети. Если подобное не соблюдается, то могут появляться такие явления, как перекос фаз проводов. Из-за этого в промышленных установках может происходить снижение мощности, а в быту это приводит к выходу из строя даже новой и защищенной бытовой техники и электроприборов.

Прибор для определения фаз

К сведению! Согласно действующим нормативным документам, проверку фаз должны осуществлять специалисты в количестве от двух и более человек. Требования к ним таковы: прохождение обучения, понимание требований нормативных и технических документов на выполнение работ, а также наличие группы электробезопасности от 3 и выше.

Какие есть приборы для проверки

Существуют два способа выполнения проверки фаз:

  • прямой. Метод, при котором проверка производится на вводах электроприборов, находящихся под рабочим электронапряжением. Обычно его применяют для приборов до 110 кВ;
  • косвенный. Метод, при котором процесс проводится на вторичном электронапряжении. Такую проверку обычно выполняют при наличии напряжения от 110 кВ и выше.

Схема фазировки трансформаторов с установкой перемычки

Приборов, используемых при проверке, не так много. Среди них популярны:

  • вольтметры. Обычно применяются в приборах с напряженностью до 1 кВ. Они подключаются непосредственно к выводам оборудования или частям устройств, которые проводят ток. Что касается точности, то она от таких приборов не требуется;
  • фазоуказатель. Следования фаз и их порядок определяют индукционными фазоуказателями. Они состоят из нескольких катушек, внутри которых расположены ферромагнитные сердечники и диск из алюминия. Принцип действия аппарата схож с действием электродвигателя асинхронного типа. При подключении его к трехфазной сети все катушки начинают вращения электромагнитного поля вокруг них. Из-за этого начинает вращаться диск, что показывает последовательность фаз сети.

Как правильно проверять

Порядок проверки фазировки трехфазного напряжения, согласно нормативным документам, таков:

  1. Проверить отсутствие напряжения на оборудовании, которое вводится в эксплуатацию.
  2. Отсоединить кабеля от шин.
  3. Заземлить одну из жил.
  4. Измерить сопротивление изоляционного слоя жил относительно земли.
  5. Промаркировать жилу, сопротивление которой равняется нулю (относительно заземления).
  6. Выполнить фазировку других жил.
  7. Подключить кабель к распределительному устройству согласно отмеченной ранее маркировке.
  8. Прозвонить кабеля.
  9. Произвести фазировку под напряжением.

Важно! Сама проверка делается между одинаковыми фазами. Если между ними напряженности нет, а между разными оно есть, то этот кабель меняют.

Таким образом, выполнять фазировку важно и нужно перед введением электрических приборов в работу, а также в ходе ремонта электроустановок. Делается это при четком соблюдении всех норм электробезопасности и нормативных документов.

Источник

Фазировка оборудования — Приборы и приспособления, употребляемые при фазировке

Содержание материала

Вольтметры.

Для фазировки в электроустановках до 1000 В применяют вольтметры переменного тока, непосредственно подключаемые к выводам электрического оборудования или токопроводящим частям аппаратов. Большой точности от этих приборов не требуется, к ним не предъявляется также никаких требований и в отношении принципа действия. Шкала прибора должна быть рассчитана на двойное фазное или линейное напряжение установки в зависимости от метода фазировки и вида фазируемого оборудования.
При фазировке оборудования напряжением 6 кВ и выше вольтметр юдключают к измерительным трансформаторам напряжения стационарной установки (шинным, генераторным) Применение переносных трансформаторов напряжения с вольтметром на стороне НН не рекомендуется, так как это небезопасно для персонала.

Фазоуказатель.

Порядок следования фаз проверяют индукционным фазоуказатслем типа И-517 или аналогичным по устройству фазоуказателем типа ФУ-2, внешний вид которого показан на рис. 14, а. Прибор состоит из трех катушек 1. 2, 3, намотанных на ферромагнитных сердечниках, и легкого алюминиевого диска 4, укрепленного на оси. Действие прибора основано на том же принципе, что и действие асинхронного двигателя. Если три катушки прибора подключить к трехфазной системе токов, то они образуют круговое вращающееся в пространстве магнитное поле, приводящее в движение диск в том направлении, в котором вращается оно само. Направление вращения магнитного поля, а значит, и диска зависит исключительно от Порядка следования фаз токов в катушках.
Для определения порядка следования фаз фазоуказатель подключают к проверяемой системе напряжений.
Зажимы прибора маркированы, т. с. обозначены буквами А, В. С. Если фазы сети совпадут с маркировкой прибора, то диск будет вращаться в направлении, указанном стрелкой на кожухе прибора. Такое вращение диска соответствует прямому порядку следования фаз сети Л. В. С (рис. 14,6). Если к прибору подвести фазы в обратном порядке следования, а именно фазу А — к зажиму А, фазу С — к зажиму В, фазу В к зажиму С, то диск будет вращаться в обратном направлении (рис. 14.). Получение прямою порядка следования фаз из обратного производится переменой мест двух любых фаз.
Приборы рассчитаны на включение в сеть напряжением 50—500 В на время не более 5 С при напряжении ДО 100 В и не более 3 с при напряжении выше 100 В. Вращение диска начинается при нажатии кнопки 5.
Универсальные приборы. Широкое применение при фазировках нашли универсальные приборы: портативный вольтамперфазоиидикатор ВАФ-85 и универсальный фазоуказатель типа Э 500/2. Прибор ВАФ-85 (рис. 15) позволяет измерять ток в пределах 1 10 А, напряжение промышленной частоты до 250 В, угол сдвига между векторами напряжения и тока, определять порядок следования фаз.
В приборе ВАФ-85 в качестве измерителя используется магнитоэлектрический прибор М-494. Для выпрямления переменного тока применены германиевые выпрямители. Измерение тока 1 10 А производится при помощи токосьемной приставки.


Рис. 13. Внешний вид прибора ВАФ-85 векторная диаграмма напряжений при измерении фазы (б)

Рис. 14. Внешний вид фазоуказателя (л) и направление вращения диска при прямом (б) и обратном (в) порядке следования фаз


Pиc. 16. Определение фазы вектора одного напряжения относительно вектора другого прибором Э-500/2

Приставка работает как трансформатор тока. Она позволяет охватывать провод с током и производить измерение без разрыва электрической цепи. Измерение малых токов возможно без токосъемной приставки — подключением цепи к зажимам 9.
Для измерения прибором тока (или напряжения) переключатель 4 устанавливают в положение «Величина», а переключатель пределов. 3 — на соответствующий предел тока (или напряжения). Переключатель 8 ставится в положение /, V. При измерении тока вилка токосъемной приставки вставляется в гнезда 2 с соблюдением обозначенной на них полярности. Отмеченная звездочкой сторона токосъемной приставки должна быть обращена к генераторному концу цепи (к трансформатору тока, к которому подключен провод).
При измерении напряжения используются зажимы 1. К зажиму, отмеченному звездочкой, присоединяется генераторный конец провода, соответствующий условно принятому началу вектора напряжения.
Для измерения фазы тока или напряжения в приборе предусмотрены механический выпрямитель, включаемый последовательно с измерительным прибором, и заторможенный с помощью рычага 7 сельсин с трехфазной обмоткой ротора. На статор сельсина (на зажимы А, В, С прибора) подается трехфазное напряжение с прямым порядком следования фаз А, В, С. Две фазы ротора сельсина связаны с механическим выпрямителем. В обмотках ротора как в трансформаторе индуцируется ЭДС. От положения ротора сельсина зависит фаза возбуждения механического выпрямителя, а следовательно, и момент включения и отключения его контактов относительно фазы тока, проходящего по измерительному прибору.


Рис. 17. Внешний вид (л) и схема (б) мегаомметра М-1101

Отсчет угла производится по лимбу 6, механически связанному с ротором сельсина, в момент, когда стрелка измерительного прибора 5 устанавливается на нуль его шкалы. Нуль лимба отградуирован по фазе вектора напряжения АВ. Это означает, что если к зажиму, отмеченному на приборе звездочкой, подвести напряжение фазы А, а к зажиму V — напряжение фазы В, то измерительный прибор покажет нуль при установке на контрольную риску отметки нуль лимба.
Для измерения фазы вектора тока или напряжения переключатель 4 устанавливают в положение «фаза», переключатель 8 — в положение I. U. На зажимы прибора А, В, С подают трехфазное напряжение (обычно от трансформатора напряжения) и проверяют порядок следования фаз. Для этого отпускают рычаг 7, тормозящий лимб 6, при этом лимб начинает вращаться. Если направление его вращения совпадает с направлением движения часовой стрелки, то это является признаком того, что фазы напряжения подведены к прибору правильно. В противном случае меняют местами два провода, подключенных к прибору.
Измерение фазы подведенного к зажимам 1 напряжения (или к зажимам 2 тока) состоит в том, что заторможенный рычагом лимб поворачивают до тех пор, пока стрелка измерительного прибора не установится на нуль, тогда и производится отсчет угла по лимбу. Считается, что угол φ между векторами (рис. 15,6) установлен правильно, если при перемещении лимба стрелка измерительного прибора начнет двигаться в ту же сторону, что и лимб.
Угол между двумя различными векторами вычисляется как разность углов, полученных при двух измерениях.
Прибор Э-500/2 предназначен для измерения фазового угла между векторами напряжений в симметричных трехфазных системах, а также для определения порядка следования фаз и групп соединения обмоток трансформаторов. Напряжение питания прибора 110 и 300 В. На рис. 16 показано включение прибора Э-500/2 при определении фазового угла между двумя напряжениями.

Источник

Читайте также:  Кабель обогревающий саморегулирующийся пищевой