Параметры влияния симметричных кабелей
Что бы ни пугало непонятное слово придётся вникнуть в его логический смысл. Всем привычно понятие симметрия. Это когда с двух сторон одинаково — как колёса или фары в машине или глаза на лице, то есть когда правое такое же как и левое. Соответственно асимметрия это когда несимметрично: правое больше левого или наоборот.
Теперь вернёмся к кабелям и линиям. В подавляющем большинстве случаев в кабелях и проводах связи с металлическими жилами используются парные (симметричные) линии, то есть все параметры одного провода пары такие же, как параметры второго провода этой же пары. Параметры эти: сопротивление жил, изоляция, электрическая ёмкость к экрану (земле) и индуктивность. Соответственно разницу в них называют асимметрией. При этом различают асимметрию:
→ по сопротивлению жил — омическая асимметрия
→ по ёмкости к земле (экрану) — емкостная асимметрия
→ по изоляции к земле (экрану) — асимметрия по изоляции
→ по индуктивности — асимметрия индуктивности шлейфа
Асимметрия индуктивности шлейфа не измеряется. Асимметрия по изоляции в случае понижения изоляции одного провода ниже нормы называют «землёй» или повреждением, а в остальных случаях не измеряют.
При плановых и приёмо-сдаточных измерениях измеряется омическая асимметрия. И относительно недавно и в связи с активным использованием DSL-модемов стала измеряться асимметрия емкостная.
Асимметрия омическая
Омическая асимметрия – разница в сопротивлении двух жил пары постоянному току.
Мерить сопротивление одной жилы в проложенном кабеле проблематично. Гораздо проще сравнить сразу две. Для этого в приборах ПКП, ИРК-ПРО и др. предусмотрена соответствующая мостовая схема. Шнуры включаются так же, как при измерении шлейфа, только закороченная пара на другом конце заземляется или присоединяется к экрану кабеля. Выбирается соответствующий режим измерений, получается ответ в Омах. Остаётся сравнить с шлейфом пары и нормой 0,5% (СТС) или 1,0% (ГТС).
↓ Официально ↓
из ОСТ 45.83-96. Сеть телефонная сельская. Линии абонентский кабельные с металлическими жилами. Нормы эксплуатационные
…
5.2 Параметры цепей АЛ СТС из многопарных кабелей
…
5.2.2 Значение асимметрии сопротивлений жил АЛ СТС постоянному току должно быть не более 0,5% от сопротивления цепи.
Пример: Шлейф = 356,3 Ом, асимметрия = 2,1 Ома. Делим второе на первое, получаем 0,0059, или 0.59% т.е. для СТС «не норма». Ну и что теперь делать? Да, в общем-то, ничего. Особенно если кабель уже лежит в земле, и муфт на нём нет. Раньше надо было думать, входной контроль делать доскональный. А так остаётся только «забить». Проблема возникла из-за некачественного кабеля, чуть-чуть разные жилы в паре, и это уже не лечится. Впрочем, можно впаять в плинте сопротивление в 2 Ома на соответствующую жилу. Линию это ухудшит, но настырную проверку «наколоть» можно.
Раньше для соединительных линий существовала сложная система симметрирования в муфтах, с развитием оптоволоконных линий она стала не актуальна.
Схема включения и порядок работы при измерении изоляции и поиска повреждений прибором ПКП-5 есть на этой странице ПКП-5.
Как правило, небольшая асимметрия (1-2%) получается из-за разности диаметров жил в кабельной паре. Что в свою очередь, происходит из-за изношенности фильер при вытяжке жил на кабельном заводе. Или проще, из-за недостаточного контроля технологии изготовления.
Существует представление о том, что асимметрия в смонтированной длине кабеля возникает из-за некачественной скрутки муфт и плохого контакта в плинтах. Сопротивление вносимое контактами плинтов и соединителей в муфтах очень мало и не способно внести существенную разбежку.
• Норма на это сопротивление есть в приложениях к
ОСТ 45.36-97 → Характеристики соединителей токопроводящих жил кабелей
ОСТ 45.62-97 страницы: → Характеристики соединителей жил кабелей и → Характеристики модулей подключения плинтов
Выполняя входной контроль кабеля приходящего с завода можно убедиться, что асимметрия есть уже до монтажа муфт. И, как правило, плохая скрутка при монтаже имеет гораздо бо́льшее сопротивление и очень быстро переходит в обрыв. Так что основной «поставщик» ненормальной асимметрии кабельный завод.
__________
P.S. 12.02.14. Любопытно, что в ГОСТ Р 54429-2011 Кабели связи симметричные для цифровых систем передачи. Общие технические условия требования по омической асимметрии не столь строгие ↓
5.2.2 Требования к электрическим параметрам
5.2.2.1 Электрическое сопротивление жилы постоянному току, пересчитанное на длину 1000 м и температуру 20°С, должно быть:
— не более 95 Ом -для кабелей для СКС с однопроволочной жилой;
— не более 145 Ом — для кабелей для СКС с многопроволочной жилой;
— не более значения, указанного в технических условиях на кабели конкретных марок для ШПД.
5.2.2.2 Oмичecкaя acимметрия жил в рабочей паре должна быть не более 3% для кабелей категорий 3 и 5 и не более 2% — для кабелей категорий 5е, 6, 6А, 7 и 7А.
Так как речь в этом документе идёт о сопротивлении одной жилы, а не о шлейфе, то для пересчёта процента омической асимметрии к сопротивлению шлейфа следует значения 3% и 2% делить на два. То есть получиться 1,5% и 1% и именно эти цифры сравнимы с нормой 0,5% из ОСТ 45.83-96 или 1% из ОСТ 45.36-97
Асимметрия емкостная
Емкостная асимметрия это разница в ёмкости к земле (экрану) двух жил пары. Например, ёмкость жилы «а» к «земле» 36 nF, а ёмкость жилы «б» 35 nF. Отнимаем большее от меньшего (чтобы не выкидывать получившийся минус) и получаем емкостную асимметрию абсолютную в нанофарадах (nF)
здесь
Ac — aсимметрия емкостная
Са — ёмкость жилы «а» к экрану
Сб — ёмкость жилы «б» к экрану
Чтобы вычислить относительную асимметрию (Асо) надо разделить получившееся значение на ёмкость одной жилы и умножить результат на 100%, то есть
Норма «не более 5 %»
Так же как и асимметрия омическая при нормальной изоляции линии не исправляется ремонтом кабеля, а только его заменой.
Проблемы, связанные с асиметрией в кабелях связи. Измерение линий связи. Ассиметрия.
Зачем измеряют асимметрию и на какие параметры линии она оказывает влияние.
Телефонный провод, передающий какой-либо сигнал, окружает себя электромагнитным полем. Второй провод пары, учитывая, что ток течёт в нём в противоположном направлении, полностью уравновешивает это, создающее помехи поле. Если же пара с большой асимметрией, то уравновешивания не происходит. Сигнал на такой паре создаёт помехи в кабеле, и наоборот любая помеха проникает в эту линию. То есть асимметрия влияет на защищённость линии.
Для обычного телефона проблем от небольшой асимметрии, как правило, нет. Проблемы возникают у модемов и факсов, а их в свою очередь, становится на наших линиях всё больше и больше.
Источник
Электрические характеристики симметричных кабелей: параметры передачи
Применимость кабеля для передачи сигналов зависит от его электрических характеристик. А они, в свою очередь, определяются параметрами передачи и параметрами влияния. Параметры передачи характеризуют процесс распространения электромагнитной энергии по симметричной паре, а параметры влияния — переход электромагнитной энергии с одной симметричной пары на другую и защищенность цепей от взаимных и внешних помех.
ПАРАМЕТРЫ ПЕРЕДАЧИ
Суть параметров передачи станет понятнее, если рассмотреть эквивалентную электрическую схему симметричной пары для однородной кабельной линии (строительной длины). Конечно, эта схема сильно упрощена. Во-первых, она асимметрична. Во-вторых, имеет сосредоточенные элементы, в то время как реальная симметричная пара представляет собой цепь с распределенными параметрами. Но поскольку длины волн в спектре передаваемого по кабельной линии сигнала много больше ее физических размеров, она с малой погрешностью может считаться цепью с сосредоточенными параметрами.
Двухпроводная линия обладает сопротивлением R, индуктивностью L, емкостью C и проводимостью изоляции G (проводимость изоляции — величина, обратная сопротивлению изоляции). Это первичные параметры передачи, их величина обусловлена конструкцией кабеля и частотой передаваемого сигнала. Так, сопротивление постоянному току зависит от температуры, материала, сечения и длины провода, а сопротивление переменному току — еще и от частоты, возрастая с увеличением последней. Данное явление известно под названием поверхностного эффекта: чем выше частота тока, тем в большей мере он вытесняется на поверхность проводника, что эквивалентно уменьшению поперечного сечения провода, поскольку его внутренняя область не задействуется.
Рост пропускной способности отразился и на локальных вычислительных сетях — повсеместное внедрение структурированных кабельных систем (СКС) сопровождается одновременным повышением скоростей передачи (см. также кабельные тестеры для сертификации СКС). Если первые симметричные кабели СКС (Категория 3, или Класс C) обеспечивали передачу сигнала на частотах до 16 МГц, то сегодня широко применяются кабели, у которых эта граница сдвинулась до 250 МГц (Категория 6, или Класс E), а разрабатываемые кабели имеют диапазон рабочих частот до 1,2 ГГц (Категория 8). За два десятилетия симметричные кабели СКС стали настолько отличаться от традиционных абонентских (до 20 кГц, Категория 2, или Класс B), что круг тестируемых параметров для сертификации кабелей и каналов СКС пришлось несколько раз менять.
Ниже кратко рассматриваются важнейшие традиционные и новые параметры скрученной пары.
Первичные параметры симметричной пары являются исходными для расчета вторичных параметров передачи (коэффициента затухания a, коэффициента фазы b и волнового сопротивления Zc).
Коэффициент затухания a характеризует ослабление сигнала на выходе симметричной пары длиной 1 км, нагруженной на ее волновое сопротивление. Он измеряется в дБ/км и увеличивается с ростом частоты. Коэффициент фазы b характеризует фазовый сдвиг сигнала определенной частоты при распространении его по кабелю. Как и коэффициент затухания a, он нормирован относительно длины 1 км, а измеряется в рад/км.
Волновое, или характеристическое, сопротивление линии
Zc = [(R + jwL) / (G + jwC)] 1/2
также является функцией первичных параметров линии.
При w = 0 (w = 2?f) характеристическое сопротивление Zc = (R/G) 1/2 . А на достаточно высоких частотах, где справедливы соотношения wL >> R и wC >> G, Zc = (L/C), становится постоянной величиной, не зависящей от частоты. Поскольку R/G >> L/C, то модуль Zc — монотонно убывающая функция от (R/G) 1/2 при w = 0 до (L / C) 1/2 на высоких частотах.
Затухание (Attenuation) — важнейший параметр симметричной пары (линии) или канала, от которого напрямую зависит качество передачи сигнала. Слишком сильное затухание на линии (в канале) приводит к резкому увеличению ошибок в передаваемом сигнале. При этом возникает необходимость его повторной передачи, что снижает пропускную способность линии связи.
Обычно затухание сигнала а — отношение мощностей или амплитуд напряжения сигнала в начале линии и точке измерения — выражают в децибелах:
где P0 и Px — мощности сигнала в начале линии и произвольной точке X, соответственно. Если, например, Px = 0,1 P0, то а = 10 дБ.
Любая двухпроводная линия связи представляет собой фильтр нижних частот. Поэтому затухание линии связи является возрастающей функцией частоты.
Затухание линии увеличивается также с температурой, что следует учитывать при проектировании. Особенно чувствительны к изменению затухания цифровые системы связи: при увеличении затухания линии всего на 1 дБ коэффициент ошибок цифрового сигнала может возрасти на один-два порядка.
Следует отметить, что термин Attenuation относится к так называемому собственному затуханию, которое характерно для однородной линии. Такой линией является строительная длина кабеля с одинаковыми конструктивными и электрическими параметрами на всем ее протяжении. Любая реальная линия связи (например, абонентская или соединительная) — это совокупность множества последовательно включенных строительных длин кабеля, при этом у них могут быть отличающиеся конструктивные и электрические параметры. Поэтому на практике линия связи неоднородна, а основные неоднородности сосредоточены в стыках строительных длин кабелей или вызваны дефектами кабелей из-за отклонений в процессе их производства, монтажа и эксплуатации.
В теории электрической связи затухание такой линии называют вносимым затуханием Insertion Loss (IL). В отличие от собственного затухания, вносимое затухание не связано жесткой зависимостью с ее длиной. Степень связи определяется степенью однородности конкретной линии.
Любая линия связи вносит задержку сигнала. Сигнал будет передан без искажений, если время задержки одинаково во всем рабочем диапазоне частот.
Искажения времени задержки в линии могут возникать вследствие резких изменений ее входного сопротивления в местах стыка или чрезмерного изгиба кабеля, из-за чего появляются отраженные сигналы. Эти эффекты особенно заметны на высоких частотах, где они могут быть вызваны отсутствием скрутки пары в месте установки соединителя. Поэтому такие соединители не используются в СКС, начиная с Категории 5. Все строже становятся и требования к однородности характеристик кабеля по всей его длине, соответствию импеданса витых пар кабеля и соединителей, способам укладки и крепления, а также к качеству монтажа кабельных окончаний.
В случае использования технологий xDSL на абонентских линиях телефонной сети неоднородности составляющих их кабелей также играют отрицательную роль. Кроме упомянутых выше видов неоднородностей они могут быть обусловлены параллельными отводами, наличие которых объясняется тем, что при отказе абонента от пользования телефонными услугами соответствующая абонентская пара распределительного кабеля не всегда отключается.
Наряду с искажениями времени задержки весьма существенное влияние на качество передачи сигнала оказывает сама величина времени задержки (Propagation Delay). Она критически важна, например, при одновременной передаче сигналов в одном направлении по нескольким параллельным парам одного кабеля. Такой способ передачи (его называют еще инверсным мультиплексированием) используется, в частности, при пространственном разделении сигналов, когда высокоскоростной сигнал передается параллельно по нескольким симметричным парам. Следует учесть, что большой разброс времени задержки (Propagation Delay Skew) пар кабеля может нарушить правильный порядок восстановления исходного высокоскоростного сигнала на приеме.
Степень неоднородности линии связи оценивается с помощью параметра Return Loss (RL), который переводится чаще всего как «возвратные потери». Пожалуй, более правильно называть этот параметр затуханием отражения или затуханием несогласованности, поскольку он представляет собой логарифмическую меру коэффициента отражения в месте стыка двух отрезков кабеля:
RL = 20 lg (1 / |p|) дБ,
где |p| — модуль коэффициента отражения, причем
|p| = |(z1 — z2) / (z1 + z2)|,
где z1 и z2 — входные сопротивления отрезков кабеля 1 и 2 в месте стыка.
Все системы связи (и, в первую очередь, цифровые) чувствительны к шумам внешних источников (люминесцентных ламп, микроволновых печей, офисного оборудования и др.), особенно если скрученная пара имеет недостаточную симметрию — в этом случае она становится приемной антенной, легко воспринимающей внешние помехи. Если помехи чрезмерны, а их источник не удается локализовать, то используют экранированные кабели или волоконно-оптические кабели.
Источник