- Параметры передачи электрических кабелей связи: первичные и вторичные. Взаимные влияния. Методы защиты от взаимных влияний.
- Электрические характеристики симметричных кабелей: параметры передачи
- ПАРАМЕТРЫ ПЕРЕДАЧИ
- Электрические характеристики
- Информация предоставлена — компанией АйТи
- 1. Attenuation — собственное затухание
- Первичные параметры
- Сопротивление
- Емкость
- Проводимость
- Индуктивность
Параметры передачи электрических кабелей связи: первичные и вторичные. Взаимные влияния. Методы защиты от взаимных влияний.
Эл.свойства ЛС и качество передачи по ним характеризуется первичными параметрами:
-активным сопротивлением R,
Активное сопротивление складывается изсопротивление проводников самой цепи и доп. сопротивлений, обусловленных потерями в Ме частях кабеля. Сопротивление зависит от материала, диаметра проводника, длины проводников. R=R0+R
Индуктивность цепи обусловлена появлением ЭДС. ЭДС может быть вызвана изменением магн. поля в сосед.цепи и в собствен. цепи. Зависит от материала и размеров проводника, и расстояния между ними. L =Lвт.+LвнмГн/км
Емкость цепи выражается отношением количества электричества к напряжению C=Q/UнФ/км
Проводимость изоляции –это явление частичной электропроводимости изоляционных материалов, в результате чего передаваемая энергия рассеивается в диэлектрике, т.е. происходит утечка тока. G=G0+G
Вторичные параметры: волновое сопротивление Zв, коэф.затухания α, коэф. фазы β, коэф.рапространения¡, скорость распространения.
Вторичные параметры зависят от первичных и от частоты.
Волновое сопротивление- это сопротивление которое встречает на своем пути электромагнитная волна, при распространении вдоль однородной линии без отражения.
¡wC) Ом,
Коэф. затухания показывает уменьшение амплитуды волны напряжения или тока в линии длиной 1 км. α= +
Коэф. фазы показывает изменение фазы волны напряжения или тока на ед. дины линии относительно её фазы в начале β=ωÖLC
Коэф. Распространенияпоказывает изменение амплитуды и фазы волны напряжения или тока в линии длиной 1 км. ¡= ¡wC)
Скорость распространения волны вдоль линии связано с первичными параметрами С=1/ÖLC
Взаимное влияние это явление перехода энергии от одной цепи на другую. Это явление обусловлено электромагнитный воздействием между цепями. При прохождении тока по цепи к примеру 1-2, на проводах этой цепи образуются заряды Q1 и Q2. Эти заряды создают электрическое поле и силовые линии этой цепи частично соприкасаются с проводами другой цепи и создают в нем разность потенциалов, которая создает ток, и этот ток протекает по оболочке кабеля и доходит до приемников сигнала и оказывает мешающее влияние на них.
Методы защиты. Симметрирование методом скрещивания.
Метод скрещивания заключается в компенсации электромагнитной связи одного участка кабеля электомагнитнымы связями другого участка путем соединения жил на прямую или со скрещиванием. При прямом соединении электромагнитные связи алгебраически складываются, при соединении со скрещиванием вычитаются. Если соединяемые жилы имеют разные знаки, то их нужно соединить напрямую. Если же жилы имеют одинаковые знаки, то их нужно соединить со скрезиванием.
При конденсаторном симметрировании емкостные связи (k1k2k3) и ассиметрии (e1e2e3) выравниваются симметрирующими конденсаторами. В этом случае измеряют связи и ассиметрии кабельной четверки и подключают в соединительных муфтах между жилами кабеля и жилами и землей.
Дата добавления: 2018-02-15 ; просмотров: 1224 ; Мы поможем в написании вашей работы!
Источник
Электрические характеристики симметричных кабелей: параметры передачи
Применимость кабеля для передачи сигналов зависит от его электрических характеристик. А они, в свою очередь, определяются параметрами передачи и параметрами влияния. Параметры передачи характеризуют процесс распространения электромагнитной энергии по симметричной паре, а параметры влияния — переход электромагнитной энергии с одной симметричной пары на другую и защищенность цепей от взаимных и внешних помех.
ПАРАМЕТРЫ ПЕРЕДАЧИ
Суть параметров передачи станет понятнее, если рассмотреть эквивалентную электрическую схему симметричной пары для однородной кабельной линии (строительной длины). Конечно, эта схема сильно упрощена. Во-первых, она асимметрична. Во-вторых, имеет сосредоточенные элементы, в то время как реальная симметричная пара представляет собой цепь с распределенными параметрами. Но поскольку длины волн в спектре передаваемого по кабельной линии сигнала много больше ее физических размеров, она с малой погрешностью может считаться цепью с сосредоточенными параметрами.
Двухпроводная линия обладает сопротивлением R, индуктивностью L, емкостью C и проводимостью изоляции G (проводимость изоляции — величина, обратная сопротивлению изоляции). Это первичные параметры передачи, их величина обусловлена конструкцией кабеля и частотой передаваемого сигнала. Так, сопротивление постоянному току зависит от температуры, материала, сечения и длины провода, а сопротивление переменному току — еще и от частоты, возрастая с увеличением последней. Данное явление известно под названием поверхностного эффекта: чем выше частота тока, тем в большей мере он вытесняется на поверхность проводника, что эквивалентно уменьшению поперечного сечения провода, поскольку его внутренняя область не задействуется.
Рост пропускной способности отразился и на локальных вычислительных сетях — повсеместное внедрение структурированных кабельных систем (СКС) сопровождается одновременным повышением скоростей передачи (см. также кабельные тестеры для сертификации СКС). Если первые симметричные кабели СКС (Категория 3, или Класс C) обеспечивали передачу сигнала на частотах до 16 МГц, то сегодня широко применяются кабели, у которых эта граница сдвинулась до 250 МГц (Категория 6, или Класс E), а разрабатываемые кабели имеют диапазон рабочих частот до 1,2 ГГц (Категория 8). За два десятилетия симметричные кабели СКС стали настолько отличаться от традиционных абонентских (до 20 кГц, Категория 2, или Класс B), что круг тестируемых параметров для сертификации кабелей и каналов СКС пришлось несколько раз менять.
Ниже кратко рассматриваются важнейшие традиционные и новые параметры скрученной пары.
Первичные параметры симметричной пары являются исходными для расчета вторичных параметров передачи (коэффициента затухания a, коэффициента фазы b и волнового сопротивления Zc).
Коэффициент затухания a характеризует ослабление сигнала на выходе симметричной пары длиной 1 км, нагруженной на ее волновое сопротивление. Он измеряется в дБ/км и увеличивается с ростом частоты. Коэффициент фазы b характеризует фазовый сдвиг сигнала определенной частоты при распространении его по кабелю. Как и коэффициент затухания a, он нормирован относительно длины 1 км, а измеряется в рад/км.
Волновое, или характеристическое, сопротивление линии
Zc = [(R + jwL) / (G + jwC)] 1/2
также является функцией первичных параметров линии.
При w = 0 (w = 2?f) характеристическое сопротивление Zc = (R/G) 1/2 . А на достаточно высоких частотах, где справедливы соотношения wL >> R и wC >> G, Zc = (L/C), становится постоянной величиной, не зависящей от частоты. Поскольку R/G >> L/C, то модуль Zc — монотонно убывающая функция от (R/G) 1/2 при w = 0 до (L / C) 1/2 на высоких частотах.
Затухание (Attenuation) — важнейший параметр симметричной пары (линии) или канала, от которого напрямую зависит качество передачи сигнала. Слишком сильное затухание на линии (в канале) приводит к резкому увеличению ошибок в передаваемом сигнале. При этом возникает необходимость его повторной передачи, что снижает пропускную способность линии связи.
Обычно затухание сигнала а — отношение мощностей или амплитуд напряжения сигнала в начале линии и точке измерения — выражают в децибелах:
где P0 и Px — мощности сигнала в начале линии и произвольной точке X, соответственно. Если, например, Px = 0,1 P0, то а = 10 дБ.
Любая двухпроводная линия связи представляет собой фильтр нижних частот. Поэтому затухание линии связи является возрастающей функцией частоты.
Затухание линии увеличивается также с температурой, что следует учитывать при проектировании. Особенно чувствительны к изменению затухания цифровые системы связи: при увеличении затухания линии всего на 1 дБ коэффициент ошибок цифрового сигнала может возрасти на один-два порядка.
Следует отметить, что термин Attenuation относится к так называемому собственному затуханию, которое характерно для однородной линии. Такой линией является строительная длина кабеля с одинаковыми конструктивными и электрическими параметрами на всем ее протяжении. Любая реальная линия связи (например, абонентская или соединительная) — это совокупность множества последовательно включенных строительных длин кабеля, при этом у них могут быть отличающиеся конструктивные и электрические параметры. Поэтому на практике линия связи неоднородна, а основные неоднородности сосредоточены в стыках строительных длин кабелей или вызваны дефектами кабелей из-за отклонений в процессе их производства, монтажа и эксплуатации.
В теории электрической связи затухание такой линии называют вносимым затуханием Insertion Loss (IL). В отличие от собственного затухания, вносимое затухание не связано жесткой зависимостью с ее длиной. Степень связи определяется степенью однородности конкретной линии.
Любая линия связи вносит задержку сигнала. Сигнал будет передан без искажений, если время задержки одинаково во всем рабочем диапазоне частот.
Искажения времени задержки в линии могут возникать вследствие резких изменений ее входного сопротивления в местах стыка или чрезмерного изгиба кабеля, из-за чего появляются отраженные сигналы. Эти эффекты особенно заметны на высоких частотах, где они могут быть вызваны отсутствием скрутки пары в месте установки соединителя. Поэтому такие соединители не используются в СКС, начиная с Категории 5. Все строже становятся и требования к однородности характеристик кабеля по всей его длине, соответствию импеданса витых пар кабеля и соединителей, способам укладки и крепления, а также к качеству монтажа кабельных окончаний.
В случае использования технологий xDSL на абонентских линиях телефонной сети неоднородности составляющих их кабелей также играют отрицательную роль. Кроме упомянутых выше видов неоднородностей они могут быть обусловлены параллельными отводами, наличие которых объясняется тем, что при отказе абонента от пользования телефонными услугами соответствующая абонентская пара распределительного кабеля не всегда отключается.
Наряду с искажениями времени задержки весьма существенное влияние на качество передачи сигнала оказывает сама величина времени задержки (Propagation Delay). Она критически важна, например, при одновременной передаче сигналов в одном направлении по нескольким параллельным парам одного кабеля. Такой способ передачи (его называют еще инверсным мультиплексированием) используется, в частности, при пространственном разделении сигналов, когда высокоскоростной сигнал передается параллельно по нескольким симметричным парам. Следует учесть, что большой разброс времени задержки (Propagation Delay Skew) пар кабеля может нарушить правильный порядок восстановления исходного высокоскоростного сигнала на приеме.
Степень неоднородности линии связи оценивается с помощью параметра Return Loss (RL), который переводится чаще всего как «возвратные потери». Пожалуй, более правильно называть этот параметр затуханием отражения или затуханием несогласованности, поскольку он представляет собой логарифмическую меру коэффициента отражения в месте стыка двух отрезков кабеля:
RL = 20 lg (1 / |p|) дБ,
где |p| — модуль коэффициента отражения, причем
|p| = |(z1 — z2) / (z1 + z2)|,
где z1 и z2 — входные сопротивления отрезков кабеля 1 и 2 в месте стыка.
Все системы связи (и, в первую очередь, цифровые) чувствительны к шумам внешних источников (люминесцентных ламп, микроволновых печей, офисного оборудования и др.), особенно если скрученная пара имеет недостаточную симметрию — в этом случае она становится приемной антенной, легко воспринимающей внешние помехи. Если помехи чрезмерны, а их источник не удается локализовать, то используют экранированные кабели или волоконно-оптические кабели.
Источник
Электрические характеристики
Информация предоставлена — компанией АйТи
Основными электрическими параметрами горизонтального кабеля, которые нормируются действующими редакциями стандартов и представляют практический интерес, являются:
- собственное или «погонное» затухание — «Attenuation»;
- переходное затухание — «NEXT» или «FEXT»;
- защищенность — «ACR»;
- сопротивление постоянному току — «Loop Resistance»;
- номинальная скорость распространения — «NVP»;
- возвратные потери — «Return Loss»;
- волновое сопротивление -«Impedance»;
- перекос фаз — «skew».
1. Attenuation — собственное затухание
При распространении сигнала по кабелю он постепенно теряет свою мощность — уменьшается амплитуда тока и напряжения. Численно эта величина выражается следующим образом:
,
где a — затухание, выраженное в децибелах на км или, чаще, на 100 м. Р0, Рl — мощности сигнала в начале и конце линии. Через первичные параметры затухание может быть выражено как:
,
где а — затухание, R,L,C,G — первичные параметры кабеля: Сопротивление, Индуктивность, Емкость и Проводимость изоляции. Рассмотрим их подробнее:
Первичные параметры
Сопротивление
Сопротивление медной жилы определяется главным образом сечением, т.к. при повышении частоты наблюдается так называемый поверхностный эффект, который состоит в следующем:
Рис. Поверхностный эффект и эффект близости
При поверхностном эффекте вихревые токи от переменного магнитного поля проводника с током 1 взаимодействуют с током этого же проводника (рис). В центре эти токи направлены встречно, а по краям попутно вызвавшему их току.В результате плотность тока увеличивается по мере удаления от центра проводника к его поверхности. Внутренние слои проводника при этом как бы не используются.
Эффект близости наблюдается при взаимодействии вихревых токов, наведенных магнитным полем проводника 1 в соседнем проводнике 2, с основным током этого проводника (рис). В результате такого взаимодействия происходит перераспределение плотности тока во втором проводнике, при этом она увеличивается на взаимообращенных друг к другу сторонах проводников симметричной цепи в случае, когда токи в проводниках текут в противоположных направлениях и на взаимно удаленных поверхностях при одинаковом направлении токов.
Оба эти эффекта сказываются тем сильнее, чем выше частота протекаемого тока.Суммарное действие этих эффектов приводит к увеличению сопротивления с ростом частоты. В случае многопроволочного проводника сопротивление дополнительно увеличивается за счет того, что вышеупомянутые эффекты наблюдаются в пределах каждой проволоки, и усиливаются тем, что радиус этих проволок мал. Поэтому требования к затуханию для шнуров, жила которых для гибкости скручивается из проволочек, снижены. К тому же площадь сечения проводника многопроволочных жил выбирается несколько большей по сравнению со сплошной жилой.
Емкость
Емкость двухпроводниковой линии определяется как:
где e -коэффициент диэлектрической проницаемости, D и d –диаметры по изоляции и медной жиле. Как видим, если исключить изменения e от частоты, емкость на высоких частотах не меняется. Коэффициент диэлектрической проницаемости зависит от материала изоляции, например у полиэтилена он равен 2,2-2,3, а у пенополиэтилена – 1,2-1,5, что существенно улучшает вторичные параметры.
Проводимость
Проводимость изоляции определяется выражением:
,
где С – емкость,w — угловая частота, tgd — тангенс угла диэлектрической проницаемости. Проводимость растет с увеличением частоты.
Индуктивность
Индуктивность двухпроводной линии:
,
где a — расстояние между проводниками, d – диаметр проводника, Q(x) – коэффициент учитывающий внутрипроводниковую индуктивность, который уменьшается с ростом частоты, вследствие поверхностного эффекта.
Первичные параметры зависят от частоты передаваемого сигнала следующим образом:
Различают собственное и рабочее затухания. Последнее несколько выше, так как в нем учитываются дополнительные потери, вызванные рассогласованием нагрузки и затухание вызванное соединениями и разъемами.
Как следствие изменяется от частоты и затухание. Оно растет приблизительно пропорционально квадратному корню из частоты. Точная зависимость определяется конструкцией конкретного кабеля, однако затухание во всем частотном диамазоне не должно превышать норм, определенных стандартами. В зависимости от категории кабеля требования к затуханию выражаются как:
Источник