- Какие технические характеристики кабелей и проводов важно учитывать для надежной эксплуатации Любые промышленные изделия, включая кабельную и проводную продукцию для энергетики, принято классифицировать и описывать строго по определённым критериям, которые называют техническими характеристиками. Они позволяют оптимально выбрать конкретную модель из большого разнообразия имеющихся изделий, обеспечить ее длительную и бесперебойную работу. Кабели и провода создаются для передачи электрической энергии на расстояния с минимально возможными потерями. Чтобы наиболее эффективно передавать мощность от источника к потребителям их создают с: 1. максимальной проводимостью токопроводящих магистралей: 2. исключением образования случайных, несанкционированных путей стекания энергии токами утечек. Только одновременное выполнение этих условий позволяет надежно и длительно передавать и получать электрическую энергию. Как обеспечивается высокая проводимость токопроводящих жил Потери мощности, происходящие при прохождении токов по металлам, напрямую связаны с величиной их электрического сопротивления. Они возрастают при его увеличении. Чтобы улучшить прохождение электрического тока по проводам и кабелям снижают величину сопротивления их жил за счет: подбора материала токопроводящих проводников по величине удельного сопротивления металлов и сплавов; изготовления поперечного сечения жилы по допустимой величине токовой нагрузки; учета температуры рабочей среды; влияния времени протекания технологических процессов; ограничения общей протяженности магистралей электрической цепи. В процессе эксплуатации состояние проводимости и электрического сопротивления токопроводящих жил постоянно контролируется различными измерительными и защитными устройствами в ручном или автоматическом режиме. Выбор проводника по удельному сопротивлению материала жил Напомним, что этим параметром характеризуют величину электрического сопротивления металла в Омах, представленного цилиндром длиной в 1 метр и с поперечным сечением площади в 1 м кв. Она выражается единицей измерения «Ом∙мм2/м» и составляет для меди, алюминия, стали и латуни 0,017; 0,026; 0,103; 0,025 Ом∙мм2/м соответственно. По этому показателю медные проводники используют там, где требуется максимально снизить потери тока на преодоление внутреннего сопротивления цепи. Как правило, их чаще всего применяют в кабелях или шнурах питания с многопроволочными жилами. Показатели алюминия и его сплавов несколько хуже по проводимости, но они дешевле в производстве и обладают меньшим весом. Поэтому алюминиевые проводники используют на протяженных магистралях, которые дополнительно подняты на большую высоту посредством специальной конструкции опор и системы изоляторов. Проволоку из стальных сплавов или латуни добавляют для повышения жесткости и прочности протяженных трасс чтобы исключить обрывы проводов при увеличенных нагрузках, создаваемых порывами мощного ветра, наносами снега и другими аномальными действиями природных явлений. Выбор токопроводящих жил по площади поперечного сечения Для проведения электротехнических расчетов при проектирования систем электроснабжения все оборудование создается с едиными стандартизированными показателями, сведенными в таблицы. Жилы проводов и кабелей изготавливают с калиброванной площадью поперечного сечения. Например, для средств связи и телефонных линий диаметр круглого сечения одной проволоки может быть 1,2; 0,9; 0,7; 0,64; 0,5; 0,4; 0,32 мм, а у многопроволочной жилы — от 0,52 до 0,1 мм. Для промышленных целей выпускают провода и кабели с жилами 1,5; 2,5; 4; 6 мм кв и другими стандартизированными площадями сечений. Допустимая нагрузка, создаваемая мощностями, проходящими по жилам кабеля, зависит от марки металла, площади его сечения и условий эксплуатации, обеспечивающих баланс между нагревом провода и отводом тепла в окружающую среду. По виду протекающей по кабелю нагрузки их классифицируют на: силовые, передающие электрическую энергию повышенных мощностей; контрольные, работающие в цепях измерения, защит, автоматики; управления, используемые для коммутации автоматических устройств; связи и телекоммуникаций; Способы предотвращения токов утечек Движение электрических зарядов всегда происходит по замкнутой цепи от потенциала генераторного конца к приемному по двум изолированным жилам. Если ее разомкнуть, то ток прекращается. Когда же между жилами нарушается диэлектрический слой, то часть тока, в зависимости от создавшегося сопротивления перехода, начинает стекать через место повреждения и может создать короткое замыкание. В результате происходит бесполезная потеря энергии, которая могла бы приносить пользу. Чтобы исключить подобные случаи оголенные металлические провода на ВЛ отделяют друг от друга воздушным зазором, обладающим свойствами надежного диэлектрика. В кабелях токопроводящие жилы располагают максимально близко друг к другу, а предотвращение токов утечек и коротких замыканий возлагают на слой органической или пластиковой изоляции, покрывающей поверхности металлических проволок. Ее диэлектрические свойства рассчитаны на то, чтобы надежно выдерживать только определенный уровень напряжения, которое создается между жилами под нагрузкой кабеля. Если его допустимая величина будет превышена, то вполне возможен электрический пробой слоя изоляции и протекание тока утечки через место образовавшегося дефекта. Эта особенность конструкций кабелей и проводов диктует необходимость их применения в строгом соответствии с границами напряжений, на которое рассчитана изоляция. Другими словами, телефонный кабель с медными жилами, например, 1 мм кв нельзя использовать для слаботочных цепей управления 380 или 220 вольт даже в том случае, когда создан большой запас по токам нагрузки. Иначе повышенное для него напряжение просто пробьет слой изоляции. При монтаже и эксплуатации кабели подвергаются механическим и тепловым нагрузкам, действующим в разных направлениях. Для предохранения от их разрушительного воздействия создается защита — внешняя оболочка или дополнительная броня различных конструкций. Защитные оболочки создаются в герметичном исполнении. Они дополнительно предотвращают разрушительное действие грунтовых вод, кислот и щелочей, содержащихся в почве, куда чаще всего помещаются кабели. Нарушение герметичности оболочки кабеля приводит к образованию внутри него влаги, которая уменьшает сопротивление диэлектрического слоя и может стать причиной пробоя изоляции. Важной характеристикой изоляции и защитной оболочки кабеля является ее свойство противостоять возгоранию. В нормальных условиях эксплуатации диэлектрический слой подвергается только действию рабочей температуры, создаваемой нагрузкой. Она не является критической для его применения. Однако, при аварийных ситуациях одни материалы, такие как бумага и масло, подвержены возгоранию и сами являются после этого источниками распространения огня. Другие же — могут просто не поддерживать горение, но плавиться, разрушаться от воздействия повышенной температуры. Кабели с такой изоляцией называют «не поддерживающими горение» и в маркировке обозначаются индексами «нг». Они подразделяются на две группы, которые не поддерживают процесс горения при: 1. одиночной прокладке: 2. групповом размещении. Выбором кабельной продукции для промышленных целей занимаются инженеры проектных организаций. Рассмотрим, как самостоятельно выполнить этот вопрос для бытовых целей. Как подобрать кабель и провод для домашней проводки Сразу заметим, что старые правила, разрешающие использовать алюминий и его сплавы для проводов и кабелей жилых зданий, уже не действуют. Причина этого: низкие механические нагрузки и склонность к излому при деформациях и изгибах. По этой причине старые алюминиевые провода, смонтированные в советское время, постепенно дорабатывают свой ресурс. В современной же электропроводке разрешено прокладывать только медь. Чтобы постоянно не заниматься сложными электротехническими расчетами соответствия жил проводов допустимому температурному нагреву от протекающих нагрузок создана следующая таблица. Соотношения площадей медных проводов по допустимым токам нагрузок и мощностям потребителей для бытовой проводки. Ассортимент кабельной продукции очень обширен. Для бытовых целей пользуются популярностью: провода марок: ПУНГП, ПВС; ПВ; кабели марок: NYM; ВВГнг; ВВГнгls. Смотрите также по этой теме: Виды кабелей и их различия Источник Силовые кабели. Виды и структура. Характеристики и маркировки Силовые кабели предназначены для передачи переменного тока от энергетических и коммунальных предприятий к потребителю. Преимущественно рассчитаны на напряжение до 10-35 кВ, но есть марки, которые выдерживают напряжение до 220 и 330 кВ. К силовому кабелю могут подключаться стационарные объекты и передвижные установки. Структура силового кабеля Устройство силового кабеля зависит от сферы его применения, но есть четыре основных элемента, без которых не обходится ни одна марка. Современные силовые кабели состоят из следующих частей: Токопроводящих жил. Изоляции каждой жилы. Оболочки. Наружного защитного покрова. Общая изоляция называется поясной. Количество токопроводящих жил варьируется от одной до пяти. Они могут быть круглыми, треугольными и секторными, состоящими из одиночной проволоки или нескольких переплетенных проволок. Их прокладывают параллельно в кабеле или скручивают. Зачастую присутствует нулевая жила, которая выполняет функцию нулевого проводника, и провод заземления для защиты от утечек тока. Применяют также экран, который ослабляет влияние электромагнитных полей, и делает симметричным поле, возникающее вокруг проводника. В дополнение к этому экран повышает прочность изоляции и защищает от внешнего воздействия среды. Там где возникает повышенный риск механического повреждения, применяют бронированные кабели. Они покрыты стальными лентами или оплеткой, противостоящей зубам грызунов, случайному воздействию ручного инструмента, пережатию горными породами и прочее. Чтобы ленты не повредили внутреннюю оболочку, делают специальную подушку под броню. Жилы силового кабеля бывают алюминиевыми или медными. Алюминиевые жилы площадью поперечного сечения до 35 мм кв. включительно делают из одиночной проволоки. Если площадь сечения составляет 300-800 мм кв., то используют несколько алюминиевых проволок. В промежуточном значении площади (до 300 мм кв.) применяют как одну, так и несколько проволок. С медью ситуация обстоит немного иначе. Однопроволочные жилы делают до площади 16 мм кв., а многопроволочные – 120-800 мм кв. Если же площадь сечения составляет 25-95 мм кв., то используют как несколько, так и одну проволоку. У нулевой жилы площадь поперечного сечения уменьшена. Ее размещают между другими жилами, маркируют синим цветом при трехфазном токе. Почему медный кабель лучше Основное преимущество алюминиевого кабеля или провода состоит в его невысокой цене. Алюминий – недорогой и доступный проводник, который используют для протяженных линий электропередач. Но все же домашнюю проводку рекомендуется делать из медных проводов, и для этого есть несколько причин: Медь более пластична, поэтому не ломается при частых перегибах. Алюминиевые контакты часто ослабевают и плавятся из-за повышенного контактного сопротивления, медные контакты значительно надежнее в этом плане. Удельное сопротивление меди меньше, а значит электрическая проводимость больше, и медный провод может выдерживать большие нагрузки, чем алюминиевый при одинаковом сечении. Все это является причиной замены алюминиевых проводов медными при сечении до 16 мм кв. Провода с большим сечением тоже можно менять, но цена такой замены будет высокой из-за высокой стоимости меди. Основные характеристики В зависимости от назначения и особенностей производства, силовые кабели отличаются по ряду параметров: Количеству жил (1-5). Материалу жилы (медь, алюминий). Площадью поперечного сечения. Типу изоляции. В соответствии с этими характеристиками будет меняться рабочее напряжение, на которое рассчитан кабель, диапазон температур его применения и срок службы. Так, кабель с изоляцией из сшитого полиэтилена можно использовать при температурах в диапазоне -50…+50 °C. Его срок службы достигает 30 лет. Рассчитан на работу под напряжением до 330 кВ. Силовые кабели с бумажной изоляцией применяют для электросетей с номинальным напряжением до 35 кВ, с резиновой изоляцией – для сетей постоянного тока напряжением до 10 кВ, с ПВХ оболочкой – для сетей переменного тока с номинальным напряжением до 6 кВ. Разновидности изоляции На каждую жилу накладывается изоляция, чтобы не допустить электрического пробоя. Помимо этого существует поясная изоляция, наложенная поверх всех вместе применяемых в кабеле жил. Устаревший способ изоляции – бумага с пропиткой. Современные силовые кабели снабжают преимущественно полимерной изоляцией и резиновой. Пропитку бумажного кабеля делают из синтетических изоляционных смол или вязкого состава канифоли и масла с добавлением других составляющих. У таких кабелей есть ограничения по применению на участках трассы с большим перепадом высот, поскольку при нагревании смола стекает вниз. Для прокладки на вертикальных участках можно применять кабеля с бумажной изоляцией и пропиткой повышенной вязкости. Для прокладки сетей переменного тока напряжением до 1кВ и постоянного, напряжением до 10 кВ, можно применяют силовые кабели с резиновой вулканизированной изоляцией. Резину накладывают сплошным полотном или в виде лент. Полимерная изоляция представляет собой слой поливинилхлорида (ПВХ) или сшитого полиэтилена (СПЭ). В целях пожарной безопасности используют специальное покрытие, не поддерживающее горение. Применение полиэтилена делает кабель более легким и гибким. Он устойчив к влиянию ультрафиолета, низких температур, выдерживает нагревание до +90°C. Силовые кабели с полиэтиленовой изоляцией можно прокладывать на сложных трассах. Благодаря простой прокладке себестоимость монтажных работ снижается. Маркировка Чтобы было удобно определять назначение каждой жилы кабеля, предусмотрена цветовая маркировка изоляции. Увидев провод определенного цвета, электрик сразу понимает, куда его можно подсоединить. В разных странах маркировка может немного отличаться, но существуют Международные стандарты, и мировые производители стараются их придерживаться. В однофазных сетях жила с нулевой фазой и заземляющая жила также обозначаются синим и желто-зеленым цветом. Фазную жилу обычно делают коричневого или черного цвета, но встречаются и другие варианты (красный, белый, серый и т.д.). В соответствии с ГОСТом предусмотрена буквенная маркировка: В самом начале маркировки стоят 4 или 3 буквы. Если первая буква А – то применяется алюминиевая жила. Если буквы А нет, то жила медная. Следующая буква указывает на материал изоляции всего кабеля. В – винил (поливинилхлорид), Р – резина. Затем идет буква, указывающая на изоляцию каждой жилы. Расшифровка такая же, как для изоляции кабеля. Третья (или четвертая) буква указывает на особенности внешней оболочки. А – асфальтовая оболочка, Б – бронированные свойства, Г – голый, незащищенный кабель. После заглавных могут идти маленькие буквы «нг». Они означают, что кабель негорючий. Шв говорит о том, что наружный покров – ПВХ шланг, Шп – полиэтиленовый шланг. Зная все обозначения, можно без проблем расшифровать загадочную маркировку ВВГ-нг, АВБ или что-то подобное. Цифры обозначают следующее: Количество жил. Площадь сечения в мм кв. Напряжение в вольтах. У изделий иностранного производства своя буквенная маркировка. Согласно немецкому стандарту буквой N обозначают силовой кабель, Y – изоляция из ПВХ, HX – изоляция из сшитого полиэтилена, С – медный экран, RG – броня. Известные марки Строение жил большинства кабелей одинаковое. Они могут состоять из нескольких тонких переплетенных проволок или из одной цельной проволоки большего диаметра. В случае переплетения конструкция получается более гибкой, при равном диаметре сечения и материале проводящие свойства не отличаются. Важную роль играет изоляция, поскольку от ее свойств зависит, в каких условиях можно эксплуатировать кабели. Наиболее известны силовые кабели АВВГ и ВВГ. Первый имеет алюминиевые жилы, изоляцию и внешнюю оболочку из ПВХ. Его можно использовать для сетей номинальным напряжением 0,6-1 кВт, частотой 50 Гц, прокладывать в помещениях и в земле, коллекторах, траншеях. Второй снабжен медными жилами, область применения такая же. Марка ВВГнг отличается устойчивостью к горению. ВВГп представляет собой плоскую модификацию, удобную для монтажа. NYM – усовершенствованный аналог силового кабеля ВВГ с заполнением из мелованной резины, которая противостоит горению. Однако от прямого воздействия солнечного света кабели надо защищать, поскольку ПВХ неустойчиво к влиянию ультрафиолета. Широко известна марка гибкого круглого кабеля КГ. Его делают с медными жилами, резиновой изоляцией каждой жилы и общей. Первый слой изоляции может быть из ПЭТ (полиэтилен). Применяют для подключения переносных электрических установок, сварочных аппаратов, садовой и снегоуборочной техники и других мобильных электрических устройств. К бронированному виду кабелей относится марка ВБбШв. Жилы могут быть как медными, так и алюминиевыми (в этом случае добавляется буква А). Диапазон сечения жил 1,5…240 мм кв. Применяется для прокладки под землей к зданиям и сооружениям, монтируется внутри помещений, разрешена прокладка в местах повышенной взрывоопасности. Источник
- Силовые кабели. Виды и структура. Характеристики и маркировки
- Структура силового кабеля
- Устройство силового кабеля зависит от сферы его применения, но есть четыре основных элемента, без которых не обходится ни одна марка. Современные силовые кабели состоят из следующих частей:
- Почему медный кабель лучше
Какие технические характеристики кабелей и проводов важно учитывать для надежной эксплуатации
Любые промышленные изделия, включая кабельную и проводную продукцию для энергетики, принято классифицировать и описывать строго по определённым критериям, которые называют техническими характеристиками. Они позволяют оптимально выбрать конкретную модель из большого разнообразия имеющихся изделий, обеспечить ее длительную и бесперебойную работу.
Кабели и провода создаются для передачи электрической энергии на расстояния с минимально возможными потерями. Чтобы наиболее эффективно передавать мощность от источника к потребителям их создают с:
1. максимальной проводимостью токопроводящих магистралей:
2. исключением образования случайных, несанкционированных путей стекания энергии токами утечек.
Только одновременное выполнение этих условий позволяет надежно и длительно передавать и получать электрическую энергию.
Как обеспечивается высокая проводимость токопроводящих жил
Потери мощности, происходящие при прохождении токов по металлам, напрямую связаны с величиной их электрического сопротивления. Они возрастают при его увеличении.
Чтобы улучшить прохождение электрического тока по проводам и кабелям снижают величину сопротивления их жил за счет:
подбора материала токопроводящих проводников по величине удельного сопротивления металлов и сплавов;
изготовления поперечного сечения жилы по допустимой величине токовой нагрузки;
учета температуры рабочей среды;
влияния времени протекания технологических процессов;
ограничения общей протяженности магистралей электрической цепи.
В процессе эксплуатации состояние проводимости и электрического сопротивления токопроводящих жил постоянно контролируется различными измерительными и защитными устройствами в ручном или автоматическом режиме.
Выбор проводника по удельному сопротивлению материала жил
Напомним, что этим параметром характеризуют величину электрического сопротивления металла в Омах, представленного цилиндром длиной в 1 метр и с поперечным сечением площади в 1 м кв. Она выражается единицей измерения «Ом∙мм2/м» и составляет для меди, алюминия, стали и латуни 0,017; 0,026; 0,103; 0,025 Ом∙мм2/м соответственно.
По этому показателю медные проводники используют там, где требуется максимально снизить потери тока на преодоление внутреннего сопротивления цепи. Как правило, их чаще всего применяют в кабелях или шнурах питания с многопроволочными жилами.
Показатели алюминия и его сплавов несколько хуже по проводимости, но они дешевле в производстве и обладают меньшим весом. Поэтому алюминиевые проводники используют на протяженных магистралях, которые дополнительно подняты на большую высоту посредством специальной конструкции опор и системы изоляторов.
Проволоку из стальных сплавов или латуни добавляют для повышения жесткости и прочности протяженных трасс чтобы исключить обрывы проводов при увеличенных нагрузках, создаваемых порывами мощного ветра, наносами снега и другими аномальными действиями природных явлений.
Выбор токопроводящих жил по площади поперечного сечения
Для проведения электротехнических расчетов при проектирования систем электроснабжения все оборудование создается с едиными стандартизированными показателями, сведенными в таблицы.
Жилы проводов и кабелей изготавливают с калиброванной площадью поперечного сечения. Например, для средств связи и телефонных линий диаметр круглого сечения одной проволоки может быть 1,2; 0,9; 0,7; 0,64; 0,5; 0,4; 0,32 мм, а у многопроволочной жилы — от 0,52 до 0,1 мм.
Для промышленных целей выпускают провода и кабели с жилами 1,5; 2,5; 4; 6 мм кв и другими стандартизированными площадями сечений.
Допустимая нагрузка, создаваемая мощностями, проходящими по жилам кабеля, зависит от марки металла, площади его сечения и условий эксплуатации, обеспечивающих баланс между нагревом провода и отводом тепла в окружающую среду.
По виду протекающей по кабелю нагрузки их классифицируют на:
силовые, передающие электрическую энергию повышенных мощностей;
контрольные, работающие в цепях измерения, защит, автоматики;
управления, используемые для коммутации автоматических устройств;
связи и телекоммуникаций;
Способы предотвращения токов утечек
Движение электрических зарядов всегда происходит по замкнутой цепи от потенциала генераторного конца к приемному по двум изолированным жилам. Если ее разомкнуть, то ток прекращается.
Когда же между жилами нарушается диэлектрический слой, то часть тока, в зависимости от создавшегося сопротивления перехода, начинает стекать через место повреждения и может создать короткое замыкание. В результате происходит бесполезная потеря энергии, которая могла бы приносить пользу.
Чтобы исключить подобные случаи оголенные металлические провода на ВЛ отделяют друг от друга воздушным зазором, обладающим свойствами надежного диэлектрика.
В кабелях токопроводящие жилы располагают максимально близко друг к другу, а предотвращение токов утечек и коротких замыканий возлагают на слой органической или пластиковой изоляции, покрывающей поверхности металлических проволок.
Ее диэлектрические свойства рассчитаны на то, чтобы надежно выдерживать только определенный уровень напряжения, которое создается между жилами под нагрузкой кабеля. Если его допустимая величина будет превышена, то вполне возможен электрический пробой слоя изоляции и протекание тока утечки через место образовавшегося дефекта.
Эта особенность конструкций кабелей и проводов диктует необходимость их применения в строгом соответствии с границами напряжений, на которое рассчитана изоляция. Другими словами, телефонный кабель с медными жилами, например, 1 мм кв нельзя использовать для слаботочных цепей управления 380 или 220 вольт даже в том случае, когда создан большой запас по токам нагрузки. Иначе повышенное для него напряжение просто пробьет слой изоляции.
При монтаже и эксплуатации кабели подвергаются механическим и тепловым нагрузкам, действующим в разных направлениях. Для предохранения от их разрушительного воздействия создается защита — внешняя оболочка или дополнительная броня различных конструкций.
Защитные оболочки создаются в герметичном исполнении. Они дополнительно предотвращают разрушительное действие грунтовых вод, кислот и щелочей, содержащихся в почве, куда чаще всего помещаются кабели.
Нарушение герметичности оболочки кабеля приводит к образованию внутри него влаги, которая уменьшает сопротивление диэлектрического слоя и может стать причиной пробоя изоляции.
Важной характеристикой изоляции и защитной оболочки кабеля является ее свойство противостоять возгоранию. В нормальных условиях эксплуатации диэлектрический слой подвергается только действию рабочей температуры, создаваемой нагрузкой. Она не является критической для его применения.
Однако, при аварийных ситуациях одни материалы, такие как бумага и масло, подвержены возгоранию и сами являются после этого источниками распространения огня.
Другие же — могут просто не поддерживать горение, но плавиться, разрушаться от воздействия повышенной температуры. Кабели с такой изоляцией называют «не поддерживающими горение» и в маркировке обозначаются индексами «нг».
Они подразделяются на две группы, которые не поддерживают процесс горения при:
1. одиночной прокладке:
2. групповом размещении.
Выбором кабельной продукции для промышленных целей занимаются инженеры проектных организаций. Рассмотрим, как самостоятельно выполнить этот вопрос для бытовых целей.
Как подобрать кабель и провод для домашней проводки
Сразу заметим, что старые правила, разрешающие использовать алюминий и его сплавы для проводов и кабелей жилых зданий, уже не действуют. Причина этого: низкие механические нагрузки и склонность к излому при деформациях и изгибах.
По этой причине старые алюминиевые провода, смонтированные в советское время, постепенно дорабатывают свой ресурс. В современной же электропроводке разрешено прокладывать только медь.
Чтобы постоянно не заниматься сложными электротехническими расчетами соответствия жил проводов допустимому температурному нагреву от протекающих нагрузок создана следующая таблица.
Соотношения площадей медных проводов по допустимым токам нагрузок и мощностям потребителей для бытовой проводки.
Ассортимент кабельной продукции очень обширен. Для бытовых целей пользуются популярностью:
провода марок: ПУНГП, ПВС; ПВ;
кабели марок: NYM; ВВГнг; ВВГнгls.
Смотрите также по этой теме: Виды кабелей и их различия
Источник
Силовые кабели. Виды и структура. Характеристики и маркировки
Силовые кабели предназначены для передачи переменного тока от энергетических и коммунальных предприятий к потребителю. Преимущественно рассчитаны на напряжение до 10-35 кВ, но есть марки, которые выдерживают напряжение до 220 и 330 кВ. К силовому кабелю могут подключаться стационарные объекты и передвижные установки.
Структура силового кабеля
Устройство силового кабеля зависит от сферы его применения, но есть четыре основных элемента, без которых не обходится ни одна марка. Современные силовые кабели состоят из следующих частей:
- Токопроводящих жил.
- Изоляции каждой жилы.
- Оболочки.
- Наружного защитного покрова.
Общая изоляция называется поясной. Количество токопроводящих жил варьируется от одной до пяти. Они могут быть круглыми, треугольными и секторными, состоящими из одиночной проволоки или нескольких переплетенных проволок. Их прокладывают параллельно в кабеле или скручивают.
Зачастую присутствует нулевая жила, которая выполняет функцию нулевого проводника, и провод заземления для защиты от утечек тока. Применяют также экран, который ослабляет влияние электромагнитных полей, и делает симметричным поле, возникающее вокруг проводника. В дополнение к этому экран повышает прочность изоляции и защищает от внешнего воздействия среды.
Там где возникает повышенный риск механического повреждения, применяют бронированные кабели.
Они покрыты стальными лентами или оплеткой, противостоящей зубам грызунов, случайному воздействию ручного инструмента, пережатию горными породами и прочее. Чтобы ленты не повредили внутреннюю оболочку, делают специальную подушку под броню.
Жилы силового кабеля бывают алюминиевыми или медными. Алюминиевые жилы площадью поперечного сечения до 35 мм кв. включительно делают из одиночной проволоки. Если площадь сечения составляет 300-800 мм кв., то используют несколько алюминиевых проволок. В промежуточном значении площади (до 300 мм кв.) применяют как одну, так и несколько проволок.
С медью ситуация обстоит немного иначе. Однопроволочные жилы делают до площади 16 мм кв., а многопроволочные – 120-800 мм кв. Если же площадь сечения составляет 25-95 мм кв., то используют как несколько, так и одну проволоку.
У нулевой жилы площадь поперечного сечения уменьшена. Ее размещают между другими жилами, маркируют синим цветом при трехфазном токе.
Почему медный кабель лучше
Основное преимущество алюминиевого кабеля или провода состоит в его невысокой цене. Алюминий – недорогой и доступный проводник, который используют для протяженных линий электропередач.
Но все же домашнюю проводку рекомендуется делать из медных проводов, и для этого есть несколько причин:
- Медь более пластична, поэтому не ломается при частых перегибах.
- Алюминиевые контакты часто ослабевают и плавятся из-за повышенного контактного сопротивления, медные контакты значительно надежнее в этом плане.
- Удельное сопротивление меди меньше, а значит электрическая проводимость больше, и медный провод может выдерживать большие нагрузки, чем алюминиевый при одинаковом сечении.
Все это является причиной замены алюминиевых проводов медными при сечении до 16 мм кв. Провода с большим сечением тоже можно менять, но цена такой замены будет высокой из-за высокой стоимости меди.
Основные характеристики
В зависимости от назначения и особенностей производства, силовые кабели отличаются по ряду параметров:
- Количеству жил (1-5).
- Материалу жилы (медь, алюминий).
- Площадью поперечного сечения.
- Типу изоляции.
В соответствии с этими характеристиками будет меняться рабочее напряжение, на которое рассчитан кабель, диапазон температур его применения и срок службы.
Так, кабель с изоляцией из сшитого полиэтилена можно использовать при температурах в диапазоне -50…+50 °C. Его срок службы достигает 30 лет. Рассчитан на работу под напряжением до 330 кВ.
Силовые кабели с бумажной изоляцией применяют для электросетей с номинальным напряжением до 35 кВ, с резиновой изоляцией – для сетей постоянного тока напряжением до 10 кВ, с ПВХ оболочкой – для сетей переменного тока с номинальным напряжением до 6 кВ.
Разновидности изоляции
На каждую жилу накладывается изоляция, чтобы не допустить электрического пробоя. Помимо этого существует поясная изоляция, наложенная поверх всех вместе применяемых в кабеле жил.
Устаревший способ изоляции – бумага с пропиткой. Современные силовые кабели снабжают преимущественно полимерной изоляцией и резиновой.
Пропитку бумажного кабеля делают из синтетических изоляционных смол или вязкого состава канифоли и масла с добавлением других составляющих. У таких кабелей есть ограничения по применению на участках трассы с большим перепадом высот, поскольку при нагревании смола стекает вниз. Для прокладки на вертикальных участках можно применять кабеля с бумажной изоляцией и пропиткой повышенной вязкости.
Для прокладки сетей переменного тока напряжением до 1кВ и постоянного, напряжением до 10 кВ, можно применяют силовые кабели с резиновой вулканизированной изоляцией. Резину накладывают сплошным полотном или в виде лент.
Полимерная изоляция представляет собой слой поливинилхлорида (ПВХ) или сшитого полиэтилена (СПЭ). В целях пожарной безопасности используют специальное покрытие, не поддерживающее горение.
Применение полиэтилена делает кабель более легким и гибким. Он устойчив к влиянию ультрафиолета, низких температур, выдерживает нагревание до +90°C. Силовые кабели с полиэтиленовой изоляцией можно прокладывать на сложных трассах. Благодаря простой прокладке себестоимость монтажных работ снижается.
Маркировка
Чтобы было удобно определять назначение каждой жилы кабеля, предусмотрена цветовая маркировка изоляции. Увидев провод определенного цвета, электрик сразу понимает, куда его можно подсоединить.
В разных странах маркировка может немного отличаться, но существуют Международные стандарты, и мировые производители стараются их придерживаться.
В однофазных сетях жила с нулевой фазой и заземляющая жила также обозначаются синим и желто-зеленым цветом. Фазную жилу обычно делают коричневого или черного цвета, но встречаются и другие варианты (красный, белый, серый и т.д.).
В соответствии с ГОСТом предусмотрена буквенная маркировка:
- В самом начале маркировки стоят 4 или 3 буквы. Если первая буква А – то применяется алюминиевая жила. Если буквы А нет, то жила медная.
- Следующая буква указывает на материал изоляции всего кабеля. В – винил (поливинилхлорид), Р – резина.
- Затем идет буква, указывающая на изоляцию каждой жилы. Расшифровка такая же, как для изоляции кабеля.
- Третья (или четвертая) буква указывает на особенности внешней оболочки. А – асфальтовая оболочка, Б – бронированные свойства, Г – голый, незащищенный кабель.
- После заглавных могут идти маленькие буквы «нг». Они означают, что кабель негорючий. Шв говорит о том, что наружный покров – ПВХ шланг, Шп – полиэтиленовый шланг.
Зная все обозначения, можно без проблем расшифровать загадочную маркировку ВВГ-нг, АВБ или что-то подобное.
Цифры обозначают следующее:
- Количество жил.
- Площадь сечения в мм кв.
- Напряжение в вольтах.
У изделий иностранного производства своя буквенная маркировка. Согласно немецкому стандарту буквой N обозначают силовой кабель, Y – изоляция из ПВХ, HX – изоляция из сшитого полиэтилена, С – медный экран, RG – броня.
Известные марки
Строение жил большинства кабелей одинаковое. Они могут состоять из нескольких тонких переплетенных проволок или из одной цельной проволоки большего диаметра. В случае переплетения конструкция получается более гибкой, при равном диаметре сечения и материале проводящие свойства не отличаются.
Важную роль играет изоляция, поскольку от ее свойств зависит, в каких условиях можно эксплуатировать кабели.
Наиболее известны силовые кабели АВВГ и ВВГ. Первый имеет алюминиевые жилы, изоляцию и внешнюю оболочку из ПВХ. Его можно использовать для сетей номинальным напряжением 0,6-1 кВт, частотой 50 Гц, прокладывать в помещениях и в земле, коллекторах, траншеях. Второй снабжен медными жилами, область применения такая же. Марка ВВГнг отличается устойчивостью к горению. ВВГп представляет собой плоскую модификацию, удобную для монтажа.
NYM – усовершенствованный аналог силового кабеля ВВГ с заполнением из мелованной резины, которая противостоит горению. Однако от прямого воздействия солнечного света кабели надо защищать, поскольку ПВХ неустойчиво к влиянию ультрафиолета.
Широко известна марка гибкого круглого кабеля КГ. Его делают с медными жилами, резиновой изоляцией каждой жилы и общей. Первый слой изоляции может быть из ПЭТ (полиэтилен). Применяют для подключения переносных электрических установок, сварочных аппаратов, садовой и снегоуборочной техники и других мобильных электрических устройств.
К бронированному виду кабелей относится марка ВБбШв. Жилы могут быть как медными, так и алюминиевыми (в этом случае добавляется буква А). Диапазон сечения жил 1,5…240 мм кв. Применяется для прокладки под землей к зданиям и сооружениям, монтируется внутри помещений, разрешена прокладка в местах повышенной взрывоопасности.
Источник