- Оптоволоконный кабель по сравнению с коаксиальным кабелей
- 1.2.1. Полоса пропускания
- 1.2.2. Помехи
- 1.2.5. Электроизоляция
- 1.2.4. Расстояния передачи
- 1.2.5. Размер и вес
- Коаксиальный кабель и Оптоволокно
- Оптоволоконные кабели
- Коаксиальный, оптический и HDMI: какой тип подключений предпочесть?
- Коаксиальное цифровое подключение
- Оптическое цифровое подключение
- Как насчет HDMI?
- Итак, какой же тип подключения выбрать?
Оптоволоконный кабель по сравнению с коаксиальным кабелей
Без сомнения, оптоволоконная технология станет в будущем главным средством передачи информации. Она является одной из причин массового роста международных телекоммуникаций и эффекта «сжатия планеты». На основе этой технологии Интернет смог стать тем неоценимым информационным средством, каким он сегодня является. Однако вопреки распространенному мнению, это не панацея. У оптоволоконных систем все еще есть множество ограничений и препятствий, которые надо преодолеть. Перед тем как начать обсуждать теорию оптоволоконной передачи, сравним традиционные и оптоволоконные кабели и оценим их достоинства и недостатки.
1.2.1. Полоса пропускания
Сегодня у оптоволоконных кабелей огромная полоса пропускания со скоростями передачи до 40 Гбит/с, действующими уже сегодня, и свыше 100 Гбит/с, ожидающимися в ближайшем будущем. Факторами, ограничивающими рост скоростей передачи, в настоящее время являются: во-первых, большое по сравнению с периодами импульсов время ответа источников и детекторов для высоких скоростей передачи данных; во-вторых, близость длины волны света к периоду импульса, вызывающая проблемы дифференцирования в детекторах. Методы мультиплексирования нескольких длин волн в одном волокне (называемые спектральным уплотнением (WDM, wave division multiplexing) увеличивают общую скорость передачи по одному волокну до нескольких Тбит/с.
Следующее сравнение позволит почувствовать, что это означает в терминах передачи информации: при оптоволоконной связи на скорости примерно 1 Гбит/с можно одновременно передавать свыше 30 ООО сжатых телефонных разговоров. При связи на скорости 30 Гбит/с можно одновременно передавать до 1 миллиона телефонных разговоров по единственному стеклянному волокну!
Коаксиальные кабели диаметром до 8 см могут обеспечить скорости передачи до 1 Гбит/с на расстояниях до 10 км. Ограничивающим фактором является очень высокая стоимость меди.
В настоящее время продолжается важное исследование по увеличению скорости передачи через кабели с витыми парами. Сегодня во многих локальных сетях скорости 100 Мбит/с являются вполне обычными. Доступны также коммерческие системы, действующие на скоростях до 1 Гбит/с. После успешных лабораторных испытаний на скоростях 10 Гбит/с соответствующая продукция готовится к коммерческому выпуску. Причина такой активной деятельности в этой области кроется в избытке инфраструктуры с уже , установленными кабелями с витой парой, что позволяет значительно сэкономить на рытье траншей, прокладке каналов и укладке новых оптоволоконных кабелей. По этой причине технология кабелей с витой парой в настоящее время успешно конкурирует с оптоволоконной технологией, поскольку обе они имеют множество общих приложений.
1.2.2. Помехи
На оптоволоконные кабели совершенно не воздействуют электромагнитные помехи (EMI), радиочастотные помехи (RFI), молнии и скачки высокого напряжения. Они не страдают от проблем емкостных или индуктивных сопряжений. При правильном проектировании на оптоволоконные кабели не должны воздействовать электромагнитные импульсы от ядерных взрывов и фоновой радиации. (Это известие утешит большую часть населения после ядерной войны!)
В дополнение к этому факту оптоволоконные кабели не создают никаких электромагнитных или радиочастотных помех. Это свойство очень ценно для производства вычислений, обработки видео- и аудиоинформации, где все более важным для возросшего качества воспроизведения и записи становится окружение с низким шумом.
На обычные кабели влияют внешние помехи. В зависимости от типов кабелей и степеней их экранирования, они в разной степени подвержены электромагнитным и радиопомехам через индуктивные, емкостные и резистивные связи. Системы связи на основе традиционных кабелей полностью выходят из строя под действием электромагнитных импульсов ядерных взрывов.
Обычные кабели также излучают электромагнитные волны, что может вызвать помехи в других кабельных системах связи. Объем излучения зависит от величины передаваемого сигнала и качества экрана.
1.2.5. Электроизоляция
Оптоволоконные кабели обеспечивают полную гальваническую развязку между обоими концами кабеля. Непроводимость волокон делает кабели нечувствительными к скачкам напряжения. Это устраняет электромагнитные и эфирные помехи, которые могут быть вызваны контурами заземления, синфазными напряжениями, а также смещениями и короткими замыканиями потенциала земли. Оптоволоконный кабель действует как длинный изолятор. Поскольку оптические волокна не излучают волны и не подвержены помехам, еще одним их преимуществом является отсутствие взаимного влияния кабелей (то есть воздействия излучения одного кабеля связи на другой, проложенный рядом с ним).
Традиционные кабели, просто работая по своему предназначению, предоставляют электрическое соединение между своими концами. Следовательно, они восприимчивы к электромагнитным и эфирным помехам от контуров заземления, синфазных напряжений и смещений потенциала земли. Они также подвержены проблемам взаимного влияния.
1.2.4. Расстояния передачи
Для простых дешевых оптоволоконных систем возможны расстояния между повторителями до 5 км. Для высококачественных коммерческих систем теперь без труда доступны расстояния между ‘повторителями до 300 км. Были разработаны системы (без использования повторителей) на расстояния до 400 км. В лабораторных условиях достигнуты расстояния, близкие к 1000 км, но на рынке они пока недоступны. Одна европейская компания заявила, что в настоящее время разрабатывает оптоволоконный кабель, который можно проложить вдоль земного экватора и без всяких повторителей по нему можно будет передавать4сигнал с одного его конца на другой! Как такое возможно? При использовании слегка радиоактивной оболочки входящие фотоны с низкой энергией возбуждают в этой оболочке электроны, которые, в свою очередь, излучают фотоны с большей энергией. Таким образом возникает некоторая форма автоусиления. В следующих главах читателю будут разъяснены использованные термины.
На рынке кабелей с витой парой на скорости передачи 4 Мбит/с доступны расстояния между повторителями до 2,4 км. В случае коаксиальных кабелей на скоростях менее 1 Мбит/с между повторителями возможны расстояния до 25 км.
1.2.5. Размер и вес
По сравнению со всеми другими кабелями для передачи жданных, оптоволоконные кабели очень малы в диаметре и чрезвычайно легки. Четырехжильный оптоволоконный кабель весит примерно 240 кг/км, а 36-основный оптоволоконный кабель весит примерно лишь на 3 кг больше. Из-за своих небольших по сравнению с традиционными кабелями с такой же пропускной способностью размеров их обычно проще устанавливать в существующих условиях, а время установки и стоимость в общем ниже, поскольку они легки и с ними проще работать.
Традиционный кабель может весить от 800 кг/км для кабеля с 36 витыми парами до 5 т/км для высококачественного коаксиального кабеля большого диаметра.
Источник
Коаксиальный кабель и Оптоволокно
Как и витая пара, коаксиальный кабель передает данные в виде электрических сигналов.
Экранирование у коаксиального кабеля лучше, чем у UTP, отношение сигнала к шуму ниже и данных передается больше. Такими кабелями часто подключают телевизоры к источнику сигнала (телевизионный выход, спутниковое телевидение или обычная антенна). Кроме того, они используются в NOC, для подключения оконечной системы линии кабельного модема (CMTS) и некоторых высокоскоростных интерфейсов.
Хотя коаксиальный кабель и улучшает характеристики передачи данных, в локальных сетях вместо него используется витая пара. Отчасти дело в том, что по сравнению с UTP этот кабель сложнее в установке, дороже и хуже поддается ремонту.
Оптоволоконные кабели
В отличие от ВП и коаксиального кабеля, оптоволоконный передает данные в виде импульсов света. Оптоволоконные кабели обычно не используются в домах и на малых предприятиях, но широко распространены в крупных организациях и информационных центрах.
Оптоволоконный кабель изготавливается из стекла или пластика, не проводящего электричество. Соответственно, он устойчив к ЭМП и подходит для мест, где помехи представляют собой серьезную проблему.
Помимо устойчивости к ЭМП, оптоволоконные кабели отличаются большой пропускной способностью и идеально подходят для высокоскоростных магистралей передачи данных. Оптоволоконные магистрали есть во многих корпорациях. Они используются для подключения поставщиков услуг Интернета к Интернету.
В любой оптоволоконной сети фактически присутствует два кабеля. Один из них передает данные, другой — получает.
Источник
Коаксиальный, оптический и HDMI: какой тип подключений предпочесть?
Сохранить и прочитать потом —
Вы уже изучили разъемы и купили все нужные кабели. Осталось решить, какой из цифровых аудиоканалов использовать. Какой вариант обеспечит оптимальное воспроизведение аудио и видео? Наш краткий обзор поможет вам разобраться.
Если у вас когда-то был телевизор, DVD-проигрыватель, телеприставка или саундбар, вы уже наверняка имели дело с коаксиальным или оптическим разъемами, а в последние годы – и с HDMI-портами.
Все три вида подключений являются цифровыми. По коаксиальному и оптическому кабелям можно передавать только аудиосигнал, HDMI поддерживает одновременно и аудио, и видео. Если вы не вполне четко представляете себе, какой разъем выбрать, прочтите наш материал.
Коаксиальное цифровое подключение
Вероятно, самый редкий тип подключения у современных аудио- и видеокомпонентов – коаксиальное – предполагает использование электричества для передачи аудиосигнала.
Соответствующий разъем представляет собой всем знакомый круглый RCA-штекер, которым с обеих сторон оканчивается пара аналоговых межблочных кабелей.
Но не поддавайтесь искушению использовать стандартный аналоговый RCA-кабель вместо специального цифрового коаксиального! Он выглядит похоже и даже вполне работоспособен, однако его волновое сопротивление меньше, чем у цифрового (50 и 75 Ом, соответственно), поэтому хороших результатов вы не получите. Для большинства систем вполне подойдет кабель начального уровня – например, QED Performance Coaxial.
Сегодня коаксиальные подключения распространены меньше, чем оптические, но их все еще можно встретить на задних панелях некоторых AV-ресиверов, усилителей и телевизоров.
По нашему опыту, по сравнению с оптическим коаксиальное подключение обычно обеспечивает лучшее звучание. У него более высокая пропускная способность, благодаря чему поддерживаются более качественные форматы файлов с дискретизацией до 24 бит/192 кГц. Оптический канал обычно ограничен 96 кГц.
Главный недостаток коаксиального соединения заключается в потенциальной возможности переноса электрического шума между устройствами системы. Он всегда снижает качество звука и в той или иной степени присутствует во всех компонентах. К сожалению, при использовании коаксиального подключения помехи могут передаваться от источника к усилителю.
Кроме того, пропускной способности коаксиального кабеля недостаточно для передачи высококачественных форматов окружающего звучания – таких как Dolby TrueHD, DTS-HD Master Audio, Dolby Atmos и DTS:X. Поэтому в системе современного домашнего кинотеатра возможности его применения невелики.
Оптическое цифровое подключение
При оптическом цифровом подключении данные передаются по оптоволоконному кабелю (волокна которого могут быть изготовлены из пластмассы, стекла или кварца) посредством света. В таком случае шум из источника на контур ЦАП не переносится, как это может произойти с коаксиальным, поэтому его разумно использовать при подключении устройства напрямую к ЦАП саундбара или AV-ресивера.
Традиционно в системах ДК оптические кабели используются для передачи сжатого многоканального звука в форматах Dolby Digital и DTS. Те, что с разъемом Toslink (Toshiba Link), подключаются к соответствующим портам источника и AV-ресивера. Неплохим начальным вариантом будет кабель QED Performance Graphite Optical.
Многие производители перешли на HDMI в качестве основного типа разъемов, однако оптические выходы все еще регулярно встречаются у таких устройств, как игровые консоли, Blu-ray-проигрыватели, ТВ-приставки и телевизоры. Соответствующие входы можно обнаружить на стороне усилителя или ЦАП – например, в саундбарах или AV-ресиверах.
Как и в случае с коаксиальным подключением, одной из проблем оптического оказывается недостаток пропускной способности для передачи аудиоформатов без потерь – например, Dolby TrueHD или DTS-HD Master Audio, в которых записаны большинство саундтреков на Blu-ray-дисках. Кроме того, оптическое подключение не способно передавать сигналы более двух каналов несжатого потока в PCM. И, наконец, оптический кабель можно повредить, если слишком сильно согнуть его.
Как насчет HDMI?
Главным преимуществом представленного в 2002 году стандарта HDMI является возможность одновременной передачи видео- и аудиосигнала. У него значительно более высокая пропускная способность по сравнению с оптическим подключением, что позволяет передавать аудиофайлы в форматах без потерь – таких как Dolby TrueHD и DTS-HD Master Audio. Если оптическое и коаксиальное подключения можно назвать конкурентами, то у HDMI соперников нет.
HDMI-входы и выходы давно завоевали прочное положение в телевизорах, Blu-ray-проигрывателях и AV-ресиверах, а также все чаще встречаются в саундбарах. Кабель начального уровня – например, AudioQuest Pearl HDMI – подойдет широкому спектру систем.
Стандарт HDMI постоянно развивается, его новые версии обеспечивают все более широкую полосу пропускания и повышенную пропускную способность, позволяя передавать саундтреки с большим числом аудиоканалов – например, в форматах Dolby Atmos и DTS:X. Он также поддерживает имеющиеся и новые видеоформаты – в том числе с разрешением Ultra HD 4K и различные версии HDR – а также такие дополнительные функции, как высокая частота кадров (HFR) и eARC (обеспечивающий передачу до 32 каналов аудио).
На данный момент общепринятым считается стандарт 2.0, однако HDMI 2.1 (поддерживающий контент с разрешением 8K) постепенно прокладывает себе путь на рынок.
Итак, какой же тип подключения выбрать?
Ответ зависит от имеющейся у вас системы. Если необходимо сделать выбор строго между коаксиальным и оптическим подключениями, выбирайте первый вариант. По нашему опыту, коаксиальное подключение за счет большей детальности и повышенной динамики обычно обеспечивает более высокое качество звучания, чем оптическое.
Однако мы живем в эпоху, ориентированную на максимальное удобство. HDMI сегодня стал стандартом для любых аудио- и видеоустройств, и кажется разумным использовать именно его, если все компоненты системы им располагают.
Функциональность HDMI, пригодность к обновлению и возможность одновременной передачи аудио- и видеосигналов дают счастливую возможность забыть о нагромождениях кабелей вокруг устройств. А главное – при этом не придется жертвовать качеством.
Вся техника была протестирована в специальных комнатах «What Hi-Fi?»
https://www.whathifi.com/news/about-us
Подготовлено по материалам портала «What Hi-Fi?», март 2020 г.
Источник