Оптоволоконный кабель максимальное расстояние передачи

Максимальная дальность приёмопередатчиков в оптических линиях связи

Одной из основных характеристик, которая интересна потребителям приёмопередатчиков MlaxLink, является, конечно, дальность. Но парадокс заключается в том, что, как раз, дальность, в волоконно-оптических системах связи – параметр очень условный… Что это значит? Давайте разберёмся:

Ни для кого не секрет, что связь может быть только тогда, когда мощность передатчика такова, чтобы, преодолев сопротивление среды, сигнал достиг приёмника, имея достаточную мощность, чтобы приёмник смог его расшифровать. В нашем случае – сигнал несет луч лазера, концентрированный, когерентный пучок света, на сегодня, самый быстрый способ передачи сигнала, известный человечеству. Свет от далеких звёзд, в космосе, проходит фантастические расстояния — миллиарды световых лет и все равно достигает Земли, потому что распространяется в космическом вакууме. На Земле, такие условия, к сожалению, воссоздать невозможно. Даже самые совершенные материалы, используемые для производства оптических кабелей, не позволяют достичь параметров, сопоставимых с вакуумом.

Лазерный луч в оптическом волокне подвергается различным физическим воздействиям – ослабляется, рассеивается. Гораздо слабее, чем, например, в атмосфере, но он ограничен объективными физическими законами. Каковы же эти ограничения?

В статье «Технология CWDM простыми словами: О модулях и мультиплексорах» мы уже касались того, что даже оптическое волокно, среда неоднородная, и пропускает через себя свет разных длин волн не одинаково – какие то «цвета» лучше, какие-то хуже. На бытовом примере, это напоминает ситуацию с противотуманными фарами – желтый свет в атмосферном воздухе с водяной взвесью распространяется дальше, чем другие цвета света. Так и в случае с технологиями ВОЛС, когда мы говорим о диапазоне длин волн вне пределов восприятия человеческого глаза (850-1610 нанометров), также разные «цвета» распространяются по-разному.

Читайте также:  Как соединить греющий кабель при обрыве

Еще одним фактором, вносящим неопределённость, являются различные дефекты оптического волокна и особенности трассы: изгибы, повреждения, сварки, коннекторы и т.п. нюансы, предсказать которые просто невозможно – каждая оптическая трасса имеет свой набор этих дефектов.

Также, для понимания «неопределённости» характеристики «дальность модуля», следует рассмотреть и сам модуль. Главной характеристикой, влияющей на его дальность действия, является «Оптический бюджет» модуля. Это разница между мощностью передатчика и чувствительностью приёмника. Традиционно эти параметры измеряются в децибелах – не будем в этой статье подробно разбирать понятие «Децибел», и почему передатчик может иметь отрицательное значение в децибелах – лучше Википедии, мы это не сделаем.

Итак, берем из технической спецификации модуля параметр «Мощность передатчика» (нижнюю его границу), а также «Чувствительность приёмника». Вычитаем из второго первое, и получаем «Оптический бюджет модуля». Затем берем документацию на оптический кабель, используемый в конкретной линии – и видим там значение «Затухание на километр» для определённых длин волн. Умножаем значение для нужных длин волн, на длину трассы, и получаем идеальное расчетное затухание на ней. Почему идеальное? Потому что есть еще особенности и дефекты трассы, предсказать которые достаточно сложно. В реальности затухание на конкретной трассе, можно объективно оценить, только с помощью рефлектометра.

Как же производители, и MlaxLink в том числе, могут маркировать модули километражем? Все просто – берется идеальное расчётное затухание, добавляется некий, выбираемый каждым производителем по своему запас на дефекты трассы и, исходя из этого, модули маркируются как 3 км, 20 км, и так далее.

В большинстве случаев – на расстояниях до 80 км, на среднестатистических трассах, этого вполне достаточно. 97% потребителей могут смело ориентироваться на маркировку более-менее известных производителей, и проблем не возникнет. 3% это владельцы либо очень протяженных трасс – более 100 километров — либо трасс-инвалидов, много раз переваренных, поврежденных, и т.п. С короткими, но «плохими» трассами, разбираться, в принципе, нет смысла – это все очень индивидуально, и, как правило, их владельцы, осведомлены, об этом. А, вот, протяженные трассы, стоит рассмотреть подробно.

Даже на хорошо проложенной трассе, из качественного волокна, протяжённостью в 100-150 километров, количество сварок, поворотов и прочих особенностей, возрастает многократно. А, следовательно, и доля их прибавки к расчетному затуханию возрастает значительно. Что это значит? Это значит, что длинные трассы, необходимо замерять, полагаться на маркировку производителей, на дальностях более 100 километров – опрометчиво, необходимо смотреть на оптический бюджет приёмопередатчика.

Почему? Потому что многие производители, в погоне за красивым маркетингом, «забывают» учесть в километраже своего модуля запас «на особенности трассы». Формально – придраться тут нельзя. В идеальных условиях – прямая как полет стрелы трасса, ни одной сварки, ни одного повреждения, идеально приваренные коннекторы на концах. В идеале достичь дальности, например для модулей 1G в 160 километров, при оптическом бюджете в 35-36 децибел возможно. Но на практике – нет.

MlaxLink не идёт таким путем – мы не пренебрегаем запасом на особенности трассы, поэтому, вы не найдете в нашем ассортименте тех самых модулей SFP 1G 160km. Модули с таким же оптическим бюджетом, мы маркируем как 140 километров. Это не значит что наша продукция хуже – сравните технические спецификации наших модулей, и вы в этом убедитесь. Это значит что мы проявляем заботу о своих клиентах.

Подборка наиболее дальнобойных приёмопередатчиков из нашего ассортимента:

ML-18GT Модуль MlaxLink оптический двухволоконный SFP, 1.25Гб/с, 140км, 1550нм, 2xLC, DDM – не менее 35dB на длине волны 1550нм

ML-30140T Модуль MlaxLink оптический одноволоконный SFP WDM, 1.25Гб/с, 140км, 1490/1550нм, LC, DDM – не менее 35dB на длине волны 1490нм

ML-30140R Модуль MlaxLink оптический одноволоконный SFP WDM, 1.25Гб/с, 140км, 1550/1490нм, LC, DDM – не менее 35dB на длине волны 1490нм

ML-P100 Модуль MlaxLink оптический двухволоконный SFP+, 10Гб/с, 100км, 1550нм, 2xLC, DDM – не менее 25dB на длине волны 1550нм

ML-P80T Модуль MlaxLink оптический одноволоконный SFP+ WDM, 10Гбит/с, 70км, 1270/1330нм, LC, DDM – не менее 28dB на длине волны 1270нм

ML-P80R Модуль MlaxLink оптический одноволоконный SFP+ WDM, 10Гбит/с, 70км, 1330/1270нм, LC, DDM – не менее 28dB на длине волны 1270нм

ML-100XT Модуль MlaxLink оптический двухволоконный XFP, 10Гб/с, 100км, 1550нм, 2xLC, DDM – не менее 25dB на длине волны 1550нм

ML-18XTT Модуль MlaxLink оптический одноволоконный XFP WDM, 10Гб/с, 70км, 1270/1330нм, LC, DDM – не менее 28dB на длине волны 1270нм

ML-18XTR Модуль MlaxLink оптический одноволоконный XFP WDM, 10Гб/с, 70км, 1330/1270нм, LC, DDM – не менее 28dB на длине волны 1270нм

Серия модулей CWDM ML-V2-CWDM-1xx0-36 Модуль MlaxLink оптический двухволоконный SFP CWDM, 1.25Гбит/c, 1xx0нм, 36dB, 2xLC, DDM – не менее 36dB на соответствующей длине волны

Серия модулей CWDM ML-V2-PCWDM-1xx0-26 Модуль MlaxLink оптический двухволоконный SFP+ CWDM, 10Гбит/c, 1xx0 нм, 26dB, 2xLC, DDM – не менее 26dB на соответствующей длине волны

Источник

Характеристики и протоколы передачи по оптическому волокну

Большинство технических специалистов, работающих с оптоволокном, знают об отличии многомодовых волокон от одномодовых. Но не все информированы о характеристиках оптических волокон и о протоколах передачи информации по ним. В статье приведены описания конкретных характеристик оптоволокон и протоколов передачи Ethernet, вызывающих, иногда, противоречивые толкования.

Характеристики оптических волокон

Пожалуй, не найдется специалиста-кабельщика, работающего с оптическим волокном, который не знал бы отличие многомодовых волокон от одномодовых. Мы не собираемся повторять прописные истины в данной статье. Остановимся на конкретных характеристиках оптоволокон, вызывающих, подчас, противоречивое толкование.

Оптические волокна допускают распространение сигналов передачи данных вдоль них при условии, что световой сигнал вводится в волокно под углом, обеспечивающим полное внутреннее отражение на границе раздела двух сред из двух типов стекла, имеющего различные показатели преломления. В центре сердцевины находится особо чистое стекло с показателем преломления 1.5. Диаметр сердцевины находится в пределах от 8 до 62,5 мкм. Окружающее ядро стекло, называемое оптической оболочкой, немного менее свободное от примесей, имеет показатель преломления 1.45. Общий диаметр сердцевины и оболочки находится в пределах от 125 до 440 мкм. Поверх оптической оболочки наносят полимерные покрытия, укрепляющие волокно, защитные нити и внешнюю оболочку.

При вводе оптического излучения в волокно, луч света, падающий на его торец под углом больше критического, будет распространяться вдоль границы раздела двух сред в волокне. Каждый раз, когда излучение попадает на границу между ядром и оболочкой, оно отражается обратно в волокно. Угол ввода оптического излучения в волокно определяется максимально допустимым углом ввода, называемым числовой апертурой или апертурой волокна. Если вращать этот угол вдоль оси сердцевины, формируется конус. Любой луч оптического излучения, падающий на торец волокна в пределах этого конуса, будет передан дальше по волокну.

Находясь внутри сердцевины, оптическое излучение многократно отражаетсяот границы раздела двух прозрачных сред, имеющих различные показатели преломления. Если физические размеры сердцевины оптического волокна существенные, отдельные лучи света будут введены в волокно и, в последующем, претерпевают отражение под разными углами. Поскольку ввод лучей оптической энергии в волокно был осуществлен под разными углами, то и расстояния, которые они проходят, будут также различными. В результате, они достигают приемного участка волокна в разное время. Импульсный оптический сигнал, прошедший по волокну будет расширен, по сравнению с тем, который был отправлен, следовательно, ухудшается и качество переданного по оптоволокну сигнала. Это явление получило название модовой дисперсии (DMD).

Другой эффект, который тоже вызывает ухудшение передаваемого сигнала, получил название хроматической дисперсии. Хроматическая дисперсия обусловлена тем, что световые лучи разных длин волн распространяютсявдоль оптического волокна с различной скоростью. При передаче серии световых импульсов через оптоволокно, модовая и хроматическая дисперсии, в конечном итоге, могут вызвать слияние серии в один длинный импульс, возникновению интерференции бит сигнала и потере передаваемых данных.

Еще одной типичной характеристикой оптического волокна является затухание. Стекло, используемой для изготовления сердцевины оптического волокна (ОВ), является очень чистым, но, все же, не идеально. В результате, свет может поглощаться материалом стекла в оптоволокне. Другими потерями оптического сигнала в волокне могут быть рассеяние и потери, а также затухание от плохих оптических соединений. Потери при соединении оптоволокон могут быть вызваны смещением сердцевин волокна или его торцевых поверхностей, которые не были отполированы и очищеныдолжным образом.

Сетевые протоколы для оптической передачи Ethernet

Перечислим основные протоколы передачи Ethernet по многомодовым и одномодовым оптическим волокнам.

10BASE-FL — 10 Мбит/с передача Ethernet по многомодовому оптоволокну.

100BASE-SX — 100 Мбит/с передача Ethernet по многомодовому ОВ на длине волны850-nm. Максимальное расстояние передачи до 300 м. Большие расстояния передачи возможны при использовании одномодового ОВ. Обратно совместимый с 10BASE-FL.

100BASE-FX — 100 Мбит/с передача Ethernet (Fast Ethernet) по многомодовому ОВ на длине волны 1300-nm. Максимальное расстояние передачи составляет до 400 м для полудуплексных соединений (с обнаружением коллизий) или до 2 км для полнодуплексной связи. Большие расстояния возможны с применением одномодового ОВ. Не обратно совместим с протоколом 10BASE-FL.

100BASE-BX — 100 Мбит/с передача Ethernet по одномодовому ОВ. В отличие от протокола 100BASE-FX, в котором используются два оптоволокна, 100BASE-BX работает по одному волокну с технологией WDM (Wavelength-Division Multiplexing), которая позволяет разделить длины волн сигнала на приеме и передаче. Для передачи и приема используются две длины волны из возможных: 1310 и 1550 nm или 1310 и 1490 nm. Расстояние передачи до 10, 20, или 40 км.

1000BASE-SX — 1 Гбит/с передача Ethernet (Gigabit Ethernet) по многомодовому ОВ на длине волны 850-nm и на максимальное расстояние до 550 м, в зависимости от используемого класса ОВ.

1000BASE-LX — 1 Гбит/с передача Ethernet (GigabitEthernet) по многомодовому ОВ на длине волны 1300-nm на максимальное расстояние до 550 м. Протокол оптимизирован для передачи на большие расстояния (до 10 км) по одномодовому ОВ.

1000BASE-LH— — 1 Гбит/с передача Ethernet по одномодовому ОВ на максимальное расстояние до 100 км.

10GBASE-SR — 10 Гбит/с передача Ethernet (10 GigabitEthernet) по многомодовому ОВ на длине волны over 850-nm. Расстояние передачи может быть 26 м или 82 м, в зависимости от типа применяемого ОВ с сердцевиной 50- или 62.5 мкм. Поддержка передачи на расстояние 300 м по многомодовому ОВ класса ОМ3 и выше, с коэффициентом широкополосности не менее 2000 MГц/км.

10GBASE-LX4 — 10 Гбит/с передача Ethernetпо многомодовому ОВ на длине волны 1300-nm. Использует технологию WDM для передачи на расстояния до 300 м по многомодовым волокнам. Поддержка передачи по одномодовому ОВ на расстояния до 10 км.

В заключение статьи, приведем некоторые данные по используемым типам многомодовых оптических волокон и стандартам передачи. Данные сведены в табл.1 (выдержки из Стандартов).

Международный Стандарт: ISO/IEC 11801 “GenericCablingforCustomerPremises”

МеждународныйСтандарт: IEC 60793-2-10 “Product Specifications — Sectional Specification for Category A1 Multimode Fibers”

Стандарт ANSI/TIA/EIA-492-AAAx “Detail Specification for Class 1a Graded-Index Multimode Optical Fibers”

(1) класс OM1 многомодовое ОВ с сердцевиной 62.5-мкм или 50-мкм.

(2) класс OM2 многомодовое ОВ с сердцевиной 50-мкм или 62.5-мкм.

(3) класс OM4 ратифицирован IEEE в июне 2010 и является Стандартом 802.ba для 40G/100G Ethernet. Работает на расстояниях до 1000 м по 1 Гбит/с Ethernet, 550 м по 10 Гбит/с Ethernet и 150 м по 40 ГБит/с и 100 ГБит/с сетевым протоколам Ethernet.

(4) Международный Стандарт ISO/IEC 11801 определяет максимальное значение затухания ОВ. Стандарты IEC и TIA описывают(минимальное) или среднее затухание «голого» ОВ.

Источник: Евгений Запорощенко, к.т.н., доцент, главный технический специалист ООО «Сонет Инвест»

Источник