Оптоволоконный кабель какая скорость передачи данных

Характеристики и протоколы передачи по оптическому волокну

Большинство технических специалистов, работающих с оптоволокном, знают об отличии многомодовых волокон от одномодовых. Но не все информированы о характеристиках оптических волокон и о протоколах передачи информации по ним. В статье приведены описания конкретных характеристик оптоволокон и протоколов передачи Ethernet, вызывающих, иногда, противоречивые толкования.

Характеристики оптических волокон

Пожалуй, не найдется специалиста-кабельщика, работающего с оптическим волокном, который не знал бы отличие многомодовых волокон от одномодовых. Мы не собираемся повторять прописные истины в данной статье. Остановимся на конкретных характеристиках оптоволокон, вызывающих, подчас, противоречивое толкование.

Оптические волокна допускают распространение сигналов передачи данных вдоль них при условии, что световой сигнал вводится в волокно под углом, обеспечивающим полное внутреннее отражение на границе раздела двух сред из двух типов стекла, имеющего различные показатели преломления. В центре сердцевины находится особо чистое стекло с показателем преломления 1.5. Диаметр сердцевины находится в пределах от 8 до 62,5 мкм. Окружающее ядро стекло, называемое оптической оболочкой, немного менее свободное от примесей, имеет показатель преломления 1.45. Общий диаметр сердцевины и оболочки находится в пределах от 125 до 440 мкм. Поверх оптической оболочки наносят полимерные покрытия, укрепляющие волокно, защитные нити и внешнюю оболочку.

При вводе оптического излучения в волокно, луч света, падающий на его торец под углом больше критического, будет распространяться вдоль границы раздела двух сред в волокне. Каждый раз, когда излучение попадает на границу между ядром и оболочкой, оно отражается обратно в волокно. Угол ввода оптического излучения в волокно определяется максимально допустимым углом ввода, называемым числовой апертурой или апертурой волокна. Если вращать этот угол вдоль оси сердцевины, формируется конус. Любой луч оптического излучения, падающий на торец волокна в пределах этого конуса, будет передан дальше по волокну.

Читайте также:  Кабель для сети profinet

Находясь внутри сердцевины, оптическое излучение многократно отражаетсяот границы раздела двух прозрачных сред, имеющих различные показатели преломления. Если физические размеры сердцевины оптического волокна существенные, отдельные лучи света будут введены в волокно и, в последующем, претерпевают отражение под разными углами. Поскольку ввод лучей оптической энергии в волокно был осуществлен под разными углами, то и расстояния, которые они проходят, будут также различными. В результате, они достигают приемного участка волокна в разное время. Импульсный оптический сигнал, прошедший по волокну будет расширен, по сравнению с тем, который был отправлен, следовательно, ухудшается и качество переданного по оптоволокну сигнала. Это явление получило название модовой дисперсии (DMD).

Другой эффект, который тоже вызывает ухудшение передаваемого сигнала, получил название хроматической дисперсии. Хроматическая дисперсия обусловлена тем, что световые лучи разных длин волн распространяютсявдоль оптического волокна с различной скоростью. При передаче серии световых импульсов через оптоволокно, модовая и хроматическая дисперсии, в конечном итоге, могут вызвать слияние серии в один длинный импульс, возникновению интерференции бит сигнала и потере передаваемых данных.

Еще одной типичной характеристикой оптического волокна является затухание. Стекло, используемой для изготовления сердцевины оптического волокна (ОВ), является очень чистым, но, все же, не идеально. В результате, свет может поглощаться материалом стекла в оптоволокне. Другими потерями оптического сигнала в волокне могут быть рассеяние и потери, а также затухание от плохих оптических соединений. Потери при соединении оптоволокон могут быть вызваны смещением сердцевин волокна или его торцевых поверхностей, которые не были отполированы и очищеныдолжным образом.

Сетевые протоколы для оптической передачи Ethernet

Перечислим основные протоколы передачи Ethernet по многомодовым и одномодовым оптическим волокнам.

10BASE-FL — 10 Мбит/с передача Ethernet по многомодовому оптоволокну.

100BASE-SX — 100 Мбит/с передача Ethernet по многомодовому ОВ на длине волны850-nm. Максимальное расстояние передачи до 300 м. Большие расстояния передачи возможны при использовании одномодового ОВ. Обратно совместимый с 10BASE-FL.

100BASE-FX — 100 Мбит/с передача Ethernet (Fast Ethernet) по многомодовому ОВ на длине волны 1300-nm. Максимальное расстояние передачи составляет до 400 м для полудуплексных соединений (с обнаружением коллизий) или до 2 км для полнодуплексной связи. Большие расстояния возможны с применением одномодового ОВ. Не обратно совместим с протоколом 10BASE-FL.

100BASE-BX — 100 Мбит/с передача Ethernet по одномодовому ОВ. В отличие от протокола 100BASE-FX, в котором используются два оптоволокна, 100BASE-BX работает по одному волокну с технологией WDM (Wavelength-Division Multiplexing), которая позволяет разделить длины волн сигнала на приеме и передаче. Для передачи и приема используются две длины волны из возможных: 1310 и 1550 nm или 1310 и 1490 nm. Расстояние передачи до 10, 20, или 40 км.

1000BASE-SX — 1 Гбит/с передача Ethernet (Gigabit Ethernet) по многомодовому ОВ на длине волны 850-nm и на максимальное расстояние до 550 м, в зависимости от используемого класса ОВ.

1000BASE-LX — 1 Гбит/с передача Ethernet (GigabitEthernet) по многомодовому ОВ на длине волны 1300-nm на максимальное расстояние до 550 м. Протокол оптимизирован для передачи на большие расстояния (до 10 км) по одномодовому ОВ.

1000BASE-LH— — 1 Гбит/с передача Ethernet по одномодовому ОВ на максимальное расстояние до 100 км.

10GBASE-SR — 10 Гбит/с передача Ethernet (10 GigabitEthernet) по многомодовому ОВ на длине волны over 850-nm. Расстояние передачи может быть 26 м или 82 м, в зависимости от типа применяемого ОВ с сердцевиной 50- или 62.5 мкм. Поддержка передачи на расстояние 300 м по многомодовому ОВ класса ОМ3 и выше, с коэффициентом широкополосности не менее 2000 MГц/км.

10GBASE-LX4 — 10 Гбит/с передача Ethernetпо многомодовому ОВ на длине волны 1300-nm. Использует технологию WDM для передачи на расстояния до 300 м по многомодовым волокнам. Поддержка передачи по одномодовому ОВ на расстояния до 10 км.

В заключение статьи, приведем некоторые данные по используемым типам многомодовых оптических волокон и стандартам передачи. Данные сведены в табл.1 (выдержки из Стандартов).

Международный Стандарт: ISO/IEC 11801 “GenericCablingforCustomerPremises”

МеждународныйСтандарт: IEC 60793-2-10 “Product Specifications — Sectional Specification for Category A1 Multimode Fibers”

Стандарт ANSI/TIA/EIA-492-AAAx “Detail Specification for Class 1a Graded-Index Multimode Optical Fibers”

(1) класс OM1 многомодовое ОВ с сердцевиной 62.5-мкм или 50-мкм.

(2) класс OM2 многомодовое ОВ с сердцевиной 50-мкм или 62.5-мкм.

(3) класс OM4 ратифицирован IEEE в июне 2010 и является Стандартом 802.ba для 40G/100G Ethernet. Работает на расстояниях до 1000 м по 1 Гбит/с Ethernet, 550 м по 10 Гбит/с Ethernet и 150 м по 40 ГБит/с и 100 ГБит/с сетевым протоколам Ethernet.

(4) Международный Стандарт ISO/IEC 11801 определяет максимальное значение затухания ОВ. Стандарты IEC и TIA описывают(минимальное) или среднее затухание «голого» ОВ.

Источник: Евгений Запорощенко, к.т.н., доцент, главный технический специалист ООО «Сонет Инвест»

Источник

Оптоволоконный кабель

На сегодняшний день широкое распространение при создании телекоммуникационных сетей получил оптический кабель. В его характерные особенности включены такие показатели, как:

  • высокая скорость передачи данных;
  • отсутствие восприимчивости к различным помехам;
  • по сравнению с медными кабелями, малый вес и габаритные размеры;
  • высокая продолжительность срока эксплуатации;
  • возможность увеличения расстояния между передающими устройствами до 800 км.

Пожалуй, единственными недостатками, которые можно выделить при создании сети из оптоволокна — высокая стоимость материалов и оборудования, трудоемкий процесс монтажа кабеля, связанный с необходимостью проведения сварочных работ при прокладке основных магистралей.

Конструкция оптического кабеля

  • 1 — центральный силовой элемент
  • 2 — оптические волокна
  • 3 — пластиковые трубочки-модули
  • 4 — плёнка
  • 5 — тонкая внутренняя оболочка из полиэтилена
  • 6 — кевларовые нити или броня
  • 7 — внешняя толстая оболочка из полиэтилена

Пропускная способность оптоволокна

За последние несколько десятков лет пропускная способность волоконно-оптического кабеля значительно увеличилась. При этом разработки по усовершенствованию одной из передовых технологий передачи данных не прекращается даже на минуту. В сущности, скорость передачи сигнала во многом зависит от расстояния между оборудованием, типа волоконного носителя и количества соединительных стыков в магистралях.

К примеру, использованный при построении внутренней сети (между серверами данных) многомодовый оптический кабель на расстоянии приблизительно в 200 метров способен обеспечить скорость до 10 Гбит/с.

Для прокладки внешних коммуникаций, где расстояние между передатчиками может достигать нескольких десятков километров применяется одномодовое оптоволокно. Структура такого кабеля позволяет развивать скорость потока более 10 Гбит/с. Правда, это далеко не предел возможности оптики. С увеличением потребительского спроса возникнет необходимость наращивать мощность оборудования и даже замена техники, позволяющая добиться скорости передачи данных на уровне 160 Гбит/с не способна использовать потенциал носителя в полной мере.

Виды оптоволоконного кабеля

По своей структуре оптоволоконный кабель делится на две категории:

Многомодовый оптический кабель хорошо зарекомендовал себя как проводник, передающий сигнал на малые расстояния. В первую очередь, это обусловлено структурой самого волокна, в названии которого слово «много» означает далеко не то, что принято считать хорошим показателем. Рекомендованное расстояние, при прокладке многомодового кабеля, от передающего устройства и до пользователя должно составлять не более одного километра. На этой дистанции проводник показывает великолепные способности по передаче светового потока практически без потерь и способен обеспечивать скорость до 10 Гбит/с. Таким образом, его можно использовать при построении сети в маленьком районе или же как оптический кабель для внутренней прокладки.

Одномодовый оптический кабель в первую очередь предназначен для передачи данных на большие расстояния, которые могут исчисляться в десятках, а то и сотнях километров. По своей структуре такой тип волокна обладает более лучшими качествами и способен поддерживать постоянную высокую скорость потока информации практически без затухания в оптическом кабеле. Таким образом, пропускная способность одномодового оптического носителя лимитируется непосредственно передающими устройствами и, при установленном мощном оборудовании, может достигать нескольких Тбит/с.

Необходимое оборудование для передачи информации по оптоволоконному кабелю

На сегодняшний день оптоволоконные сети получили широкое распространение среди компаний, предоставляющих своим абонентам доступ к интернету. При этом, для осуществления передачи данных, если не считать промежуточных муфт и прочего сопутствующего оборудования, используется следующая техника:

со стороны провайдера:
— специальное оборудование DLC, известное также под названием мультиплексор. Оно позволяет производить передачу данных по волоконно-оптическому кабелю на значительные расстояния с постоянно поддерживаемой высокой скоростью.

со стороны абонента:
— роутер ONT, который является оконечным клиентским оборудованием и позволяет обеспечить доступ к интернету через оптоволоконную сеть. Позволяет осуществлять доступ на скорости до 2.5 Гбит/с.

Источник

500 Гбит/с — рекорд скорости в оптоволоконных сетях

Инженерам из Германии удалось добиться рекордной скорости передачи данных по оптоволокну в реальных, не лабораторных, условиях — 500 Гбит/с в одном канале.

Кто установил рекорд

По данным ОЭСР, через три года количество устройств интернета вещей может достигнуть 50 млрд. С ростом числа гаджетов вырастет и объем трафика в мобильных сетях — по некоторым оценкам, примерно в четыре раза. В Deloitte говорят, что существующая оптоволоконная инфраструктура, которая станет основой для 5G-сетей, не справится с подобной нагрузкой.

По этой причине все больше компаний и исследовательских организаций работают над технологиями, повышающими пропускную способность «оптики». Одной из таких организаций является Мюнхенский технологический университет (TUM). Его сотрудники еще пять лет назад разработали алгоритм вероятностного формирования сигнального созвездия — Probabilistic Constellation Shaping, или PCS (подробнее о нем расскажем далее). В 2016 году с её помощью удалось впервые достичь терабитной скорости передачи данных в лаборатории.

В феврале этого года та же группа ученых поставила другой рекорд — они осуществили передачу данных на скорости 500 Гбит/с, но сделали это в «полевых» условиях. Для тестов использовали сигнальный процессор Nokia PSE-3, который внедрили в сеть немецкого оператора M-Net.

Как работает алгоритм

PCS — это метод, который дополняет квадратурную амплитудную модуляцию (QAM) в оптоволоконных сетях. В классическом случае QAM все точки (значения амплитуды сигнала) имеют равные веса и используются с одинаковой частотой.

Алгоритм PCS, разработанный инженерами из TUM, каждый раз выбирает оптимальную группу точек, которая лучше всего подходит для текущего состояния канала. Для каждой из точек созвездия высчитывается вероятность искажения данных и значение требуемой на отправку сигнала энергии. Чем меньше искажение сообщения и энергозатраты, тем чаще используется конкретная амплитуда. То, насколько часто использовать точку созвездия, определяют функции распределения вероятности. Они выводятся опытным путём для каждой конкретной сети на основе данных о среднем уровне шумов в оптическом канале.

/ Wikimedia / Splash / CC BY-SA / Сигнальное созвездие для 16-QAM

Обычно PSC реже задействует сигнальные точки с большой амплитудой. По словам разработчиков, это позволяет повысить устойчивость сигнала к шумам и увеличить скорость передачи. Например, для 16-QAM «прирост» составляет от 15 до 43%.

Применение и потенциал технологии

По словам президента Nokia Bell Lab Маркуса Велдона (Marcus Weldon), в будущем PCS позволит оптоволоконным сетям передавать большие объемы данных и динамически адаптироваться под текущие потребности в трафике (например, в 5G-сетях).

Технологию уже поддерживает провайдер сетевого оборудования Infinera. Компания использует вероятностную модуляцию в цифровых сигнальных процессорах серии ICE. В Infinera заявляют, что устройства смогут увеличить пропускную способность сетей до 800 Гбит/с, но пока их возможности еще не были протестированы. Представители компании говорят, что технология поможет мобильным операторам и интернет-провайдерам сократить расходы на развитие инфраструктуры и строительство новых линий.

Но на популярность вероятностной модуляции может повлиять один недостаток: она плохо оптимизирована для работы с существующими методами прямой коррекции ошибок (FEC) при передаче данных. FEC-методы рассчитаны на то, что все комбинации в канале используются одинаково часто. В случае с PCS некоторые точки созвездия выбираются чаще других, что может сказаться на производительности сети. Для решения этой проблемы разрабатывают более совершенные FEC-методы, например «распараллеливают» схемы коррекции и проводят несколько проверок одновременно.

О чем мы пишем в нашем корпоративном блоге:


/ Flickr / Groman123 / CC BY-SA

Аналог вероятностной модуляции

Есть ещё один вид модуляции сигнального созвездия — геометрический. Он отличается от вероятностного тем, что меняет не частоту использования конкретной точки, а форму созвездия. Для этого к амплитудной модуляции сигнала добавляют фазовую, что позволяет «сдвинуть» точки относительно друг друга. Как и вероятностная модуляция, геометрическая помогает добиться более эффективного использования оптического канала: расположение точек в созвездии выбирается так, чтобы в каждой из них отношение сигнал/шум (SNR) было максимальным.

Преимущество геометрического вида перед вероятностным — меньшее количество возможных значений амплитуды. Эта особенность снижает шанс искажения сигнала. Однако у геометрической модуляции есть недостаток: на практике она оказывается менее эффективной в уменьшении искажений сигнала, чем вероятностная.

Специалисты надеются улучшить геометрическую модуляцию с помощью методов машинного обучения, используя их для определения оптимальной формы сигнального созвездия. Результаты пока не очень впечатляют: в исследовании 2018 года простая однослойная нейросеть помогла повысить значение SNR на один процент. Однако инженеры планируют продолжать работу и поэкспериментировать с рекуррентными нейронными сетями.

Пока что геометрическая модуляция сигнального созвездия проигрывает вероятностной при работе в реальных сетях, и поэтому последнюю считают наиболее перспективным методом увеличения пропускной способности интернет-каналов. Ожидается, что в ближайшем будущем вероятностная модуляция принесёт пользу интернет-провайдерам в создании высокоскоростных линий fiber to the home, а также облачным провайдерам, например при переносе данных между разными дата-центрами.

Дополнительное чтение в нашем блоге на Хабре:

Источник