- 9 Тестирование волоконно-оптических систем
- Введение
- 9.1. Фундаментальные понятия оптических измерений
- 9.1.1. Оптическая мощность
- 9.1.2. Измерение мощности
- 9.1.3. Оптическая и электрическая полоса пропускания
- Оптический бюджет
- Оптический бюджет (энергетический потенциал)
- Оптический кабель уровень сигнала
- Спецификация зависящего от среды физического подуровня PMD
- Структура физического соединения
- Требования к мощности оптических сигналов
- Кабели и разъемы
- Функция определения сигнала уровня PMD
9
Тестирование волоконно-оптических систем
Введение
После установки волоконно-оптической системы крайне важно тщательно ее протестировать, чтобы убедиться в соответствии техническим требованиям проекта. Тестирование волоконно-оптической системы как во время установки, так и при вводе системы в эксплуатацию является обязательной частью проекта. Проводимые приемочные испытания определят, является ли окончательно установленный кабель цельным и стабильным, были ли причинены какие-нибудь повреждения при установке кабеля, правильны ли вычисленные на этапе проектирования значения потерь соединений, коннекторов, длины волокна и т. д. и работает ли окончательно установленная система с должной производительностью..
Если система была тщательно спроектирована, а затем правильно установлена, результаты приемочного теста обычно показывают лучшие значения производительности, чем проектные параметры (в предположении, что придерживались консервативного подхода к проектированию). В редких случаях связь будет хуже, чем проектировалась. Это может быть из-за неожиданных потерь вследствие избыточных изгибов. В течение срока службы показатели линии связи также будут ухудшаться, что должно быть принято в расчет при проектировании. Во время приемочных испытаний будет также подтвержден учитываемый для этих непредвиденных потерь запас надежности.
Данная глава рассматривает требования к тестированию волоконно-оптических кабелей и передающего и приемного оптического оборудования. В первой части главы изучаются фундаментальные понятия, характерные для оптических измерений. Во второй части подробно исследуются основные волоконно-оптические тесты и оборудование. В заключение обсуждается ряд других, менее распространенных тестов, связанных с характеристиками окончательно установленных систем.
9.1. Фундаментальные понятия оптических измерений
9.1.1. Оптическая мощность
Основной единицей измерения, используемой в волоконной оптике, является мощность света. Как и электрическая мощность, оптическая мощность измеряется в ваттах.
Свойства света похожи на электрические. Световая энергия, как и электрическая энергия, теоретически принимает форму синусоидальных волн. Поэтому основные компоненты математических формул, использующихся для вычисления связанных с мощностью электрических измерений, могут также использоваться для вычисления связанных с мощностью оптических измерений.
К оптическим измерениям применяются следующие аналогии.
• Мощность является мерой скорости передачи энергии (где энергия Q измеряется в Джоулях). То есть:
• Мощность является функцией напряжения (U) и тока (I). У световой волны есть электрический компонент и магнитный компонент, что аналогично компонентам напряжения и тока в электрической энергии. Поэтому для электрической энергии:
для световой энергии:
где D- электрическое смещение; В — магнитная индукция; Е — напряженность электрического поля; Н — напряженность магнитного поля; ε — диэлектрическая проницаемость среды; μ -магнитная проницаемость среды; S — плотность энергии (ватт/квадратный метр).
• Световая энергия прямо пропорциональна квадрату амплитуды электромагнитной волны. Мощность электрической энергии прямо пропорциональна квадрату амплитуды напряжения или тока.
В случае световой энергии сопротивление фактически является проницаемостью стекла. Для света общая энергия Q вычисляется по формуле
где Qp — энергия одного фотона; N- число фотонов.
Мощность света обычно измеряется и указывается в децибелах. Обсуждение в разделе 2.3, касающееся измерения в децибелах, относится также к оптическим измерениям.
Оптический передатчик передает сигнал в форме импульсов. Уровень мощности передаваемого сигнала постоянно меняется. Можно измерить мгновенное пиковое значение или среднее значение этой мощности. Это показано на рис. 9.1.
Рис.9.1. Мощность полученного сигнала
Мощность также прямо пропорциональна частоте и обратно пропорциональна длине электромагнитной волны (С = λ х f). Теоретически свет представляется в форме крошечных частиц, называемых фотонами, которые излучаются атомами при переходах электронов между энергетическими уровнями, окружающими атомы. С возрастанием частоты (то есть снижением длины волны) пропорционально увеличивается энергия фотона. o Фактически это означает, что для возбуждения электрона для излучения фотона с высокой частотой необходимо больше энергии, чем для излучения фотона с низкой частотой. Следовательно, поскольку измерение оптической энергии есть мера потока фотонов в единицу времени, оптическая мощность прямо пропорциональна частоте и обратно тропорциональна длине волны. Эта зависимость описывается законом Планка:
Где Q — энергия фотона, a h — постоянная Планка.
9.1.2. Измерение мощности
Различные материалы, использующиеся при производстве детекторов света, чувствительны к различным длинам волн. Например, кремниевые детекторы интенсивно отвечают на сигналы 850 нм, тогда как детекторы из арсенида индия и галлия (InGaAs) дают сильные ответы на сигналы 1300 и 1550 нм. Поэтому детекторы света, используемые для целей измерений, должны быть откалиброваны для той частоты, которую они измеряют.
Детекторы обеспечивают линейный ответ лишь в ограниченном динамическом диапазоне уровня входного сигнала. Поэтому они должны быть откалиброваны для определенного применения и ожидающегося на входе в детектор из волоконно-оптического кабеля диапазона мощностей.
Время ответа детектора в экспонометре очень большое по сравнению со скоростью входных импульсов. Поэтому большинство экспонометров калибруется для измерения средней мощности.
9.1.3. Оптическая и электрическая полоса пропускания
Полоса пропускания определяется в двух разновидностях, оптической и электрической. Оптической полосой пропускания называют наивысшую частоту модуляции, при которой мощность оптической системы снижается на 3 дБ по сравнению с оптической мощностью на более низкой частоте. Из-за процесса преобразования в оптическом детекторе световой энергии в электрическую снижение оптической мощности на 3 дБ дает снижение электрической мощности на 6 дБ. При измерении электрической полосы пропускания используются те же правила, что и для оптической; электрическая полоса пропускания определяется снижением мощности на 3 дБ. Поэтому при необходимости измерения оптической полосы пропускания нужно помнить, что детектор покажет снижение электрической мощности на-6 дБ. Оборудование измерения мощности компенсирует это и покажет правильное значение оптической мощности. Процесс измерения оптической полосы пропускания обсуждается в разделе 9.3.3.
Источник
Оптический бюджет
Оптический бюджет (энергетический потенциал)
В настоящее время во всем мире средства телекоммуникации переживают период широчайшего внедрения оптических систем в практику.
Оптическая система (optical system) — совокупность оптических элементов, созданная для определённого формирования пучков световых лучей.
Элементы оптических систем можно классифицировать следующим образом:
1. элементы, которые создают сигнал в линии;
2. элементы, которые вносят дополнительное затухание.
К первой категории относятся оптические трансиверы (GBIC, SFP, SFP+, XENPAK, XFP, X2 и др.) и усилители сигнала. Важными параметрами трансиверов (приемопередатчиков) являются: выходная мощность передатчика (transmitter output power) и чувствительность приемника (receiver sensitivity), это паспортные величины.
Чувствительность приемника – величина, характеризующая минимальный уровень сигнала на его входе, который приемник еще может принимать.
Выходная мощность передатчика – величина, характеризующая уровень выходного сигнала передатчика.
Уровень сигнала, передаваемого передатчиком по оптической линии, затухает с расстоянием, поэтому, когда он достигает приемника, его уровень становится меньше (на величину затуханий в линии). Если этот уровень не меньше чувствительности приемника, то приемник сможет принять такой сигнал, иначе система работать не будет.
Разность этих показателей дает нам оптический бюджет (optical budget), обеспечиваемый трансивером: оптический бюджет (энергетический потенциал) – разность между оптической мощностью передатчика и чувствительностью приемника, выраженная в dB. Это паспортная информация, которую производитель (по идее) должен прикладывать ко всем приемопередатчикам (трансиверам). Если производитель этого не сделал, то ее можно легко посчитать.
Pout = 1dBm – выходная мощность передатчика;
S = -18dBm – чувствительность приемника;
OB (optical budget) – ?
OB = Pout – S = (1-(-18))dBm = 19dBm
Оптический бюджет трансивера характеризует максимально-возможное затухание в линии, в которой он может использоваться. Т.е. показывает, что он может использоваться в линии с затуханием, которое не превышает величину бюджета.
Ко второй категории относятся остальные элементы (коннекторы, разветвители, аттенюаторы и др.), которые вносят в линию дополнительные потери. Стоит также не забывать о том, что затухание в оптическом кабеле зависит не только от его длины, но также и от несущей (длины волны):
Зависимость затухания от длины волны в одномодовом оптическом кабеле
чем больше длина волны, тем меньше затуханий в линию вносит оптический кабель.
При расчетах оптической системы необходимо учитывать следующие источники затухания:
затухание в оптическом кабеле:
- в мультимодовом кабеле (850нм) – 2.7 dB/км;
- в мультимодовом кабеле (1310нм) – 0.75 dB/км;
- в одномодовом кабеле (1310-1450нм) – 0.35 dB/км;
- в одномодовом кабеле (1470-1610нм) – 0.25 dB/км;
точки соединения:
- коннекторы, MM – 0.5dB;
- коннекторы, SM – 0.3dB;
- на сварке – 0.1dB.
Рассмотрим пример расчета затуханий в линии:
L=60км – длина одномодового оптического кабеля;
λ=1310нм – рабочая длина волны => коэффициент затухания для одномодового оптического кабеля 0.35dB/км;
известно, что на линии есть 2 коннектора и 1 место сварки, которые вносят дополнительные затухания (0.3dB и 0.1dB соответственно);
Z (затухания в линии) – ?
Z=L*0.35+2*0.3+1*0.1 = (60*0.35+0.6+0.1)dB = (21+0,7)dB = 21.7dB
Чтобы передать сигнал по линии с таким затуханием необходимо подобрать трансивер с оптическим бюджетом больше 21.7dB.
Для обеспечения надежной работы оптической системы учитывают возможность увеличения оптических потерь при изменении внешних факторов и ухудшении характеристик компонентов ВОЛС и мощности лазера, связанных с их старением. Для компенсации данных потерь обычно выбирают оптический бюджет трансиверов с запасом на 3-6dB.
Зачастую расчет потерь в линии не производят, а проводят реальные измерения с помощью рефлектометров. Рефлектометр передает оптический импульс по смонтированным оптическим линиям и измеряет отраженные световые частицы, отображая рассеянные и отраженные оптические сигналы как функцию длины. Сравнивая количество света, отраженного в разные моменты времени, определяются потери в линии и отражательная способность оптического кабеля. Полученные данные могут быть представлены графически в виде рефлектограмм.
Рефлектограмма — исчерпывающая информация о соединителях, сращиваниях и разрывах по всей длине оптической линии. Фактически это графическое изображение результатов измерения оптических потерь в линии:
Рефлектограмма импульсного рефлектометра
Вертикальная шкала определяет уровень потерь в dB, горизонтальная ось соответствует расстоянию от рефлектометра до тестируемого участка.
Знание оптического бюджета и затухания в линии позволяет произвести оценку работоспособности системы: если суммарное затухание линии больше оптического бюджета, то работать ничего не будет.
Источник
Оптический кабель уровень сигнала
Представленная ниже страница, лишь часть огромного сайта посвященного различной компьютерной документации, на сайте собрано более 800 мб информации. Если Вы не нашли в этой статье, то что Вы ищите попробуте посмотреть здесь, cпросить на форуме или поискать необходимую Вам информацию в нашем каталоге ссылок сайтов компьтерной тематики.
Если же Вы хотите приобрести бумажную копию представленных здесь
материалов, обращайтесь в наш книжный магазин.
С уважением,
команда разработчиков eManual.ru
Спецификация зависящего от среды физического подуровня PMD |
Спецификация зависящего от среды физического подуровня PMD
Структура физического соединения
Рассмотрим физический подуровень PMD (Physical Media Dependent layer), определенный в стандарте FDDI для оптоволокна — Fiber PMD.
Эта спецификация определяет аппаратные компоненты для создания физических соединений между станциями: оптические передатчики, оптические приемники, параметры кабеля, оптические разъемы. Для каждого из этих элементов указываются конструктивные и оптические параметры, позволяющие станциям устойчиво взаимодействовать на определенных расстояниях.
Физическое соединение — основной строительный блок сети FDDI. Типичная структура физического соединения представлена на рисунке 2.10.
Рис. 2.10. Физическое соединение сети FDDI
Каждое физическое соединение состоит из двух физических связей — первичной и вторичной. Эти связи являются односторонними — данные передаются от передатчика одного устройства PHY к приемнику другого устройства PHY.
Требования к мощности оптических сигналов
В стандарте Fiber PMD в явном виде не определены предельные расстояния между парой взаимодействующих устройств по одному физическому соединению.
Вместо этого в стандарте определен максимальный уровень потерь мощности оптического сигнала между двумя станциями, взаимодействующими по одной физической связи. Этот уровень равен -11 dB, где
причем P1 — это мощность сигнала на станции-передатчике, а P2 — мощность сигнала на входе станции-приемника. Так как мощность по мере передачи сигнала по кабелю уменьшается, то затухание получается отрицательным.
В соответствии с принятыми в стандарте Fiber PMD параметрами затухания кабеля и выпускаемыми промышленностью соединителями, считается, что для обеспечения затухания -11 dB длина оптического кабеля между соседними узлами не должна превышать 2 км.
Более точно можно рассчитать корректность физического соединения между узлами, если принять во внимание точные характеристики затухания, вносимые кабелем, разъемами, спайками кабеля, а также мощность передатчика и чувствительность приемника.
Стандарт Fiber PMD определяет следующие предельные значения параметров элементов физического соединения (называемые FDDI Power Budget):
Категория элемента | Значение | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Максимальная мощность передатчика | — 14 dBm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Минимальная мощность передатчика | — 20 dBm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Максимальная принимаемая мощность | — 14 dBm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Минимальная принимаемая мощность | — 31 dBm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Максимальные потери между станциями | — 11dB | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Максимальные потери на км кабеля | — 2.5 dB |
Абсолютные значения мощности оптических сигналов (для выхода передатчика и для входа приемника) измеряются в децибелах по отношению к стандартной мощности в 1 милливатт (mW) и обозначаются как dBm:
где мощность Р также измерена в милливаттах.
Из значений таблицы видно, что максимальные потери между станциями в -11 dB соответствуют наихудшему сочетанию предельных значений мощности передатчика (- 20 dBm) и приемника (- 31 dBm).
Кабели и разъемы
Основной вид кабеля для стандарта Fiber PMD — многомодовый кабель с диаметром сердечника 62.5 мкм и диаметром отражающей оболочки 125 мкм. Спецификация Fiber PMD не определяет требования к затуханию кабеля в dB на км, а только требует соблюдения требования по общему затуханию в -11 dB между станциями, соединенными кабелем и разъемами. Полоса пропускания кабеля должна быть не хуже чем 500 МГц на км.
Кроме основного вида кабеля, спецификация Fiber PMD допускает использование многомодовых кабелей с диаметром сердечника в 50 мкм, 85 мкм и 100 мкм.
В качестве разъемов стандарт Fiber PMD определяет оптические разъемы MIC (Media Interface Connector). Разъем MIC обеспечивает подключение 2-х волокон кабеля, соединенных с вилкой MIC, к 2-м волокнам порта станции, соединенными с розеткой MIC. Стандартизованы только конструктивные параметры розетки MIC, а любые вилки MIC, подходящие к стандартным розеткам MIC, считаются пригодными к использованию.
Спецификация Fiber PMD не определяет уровень потерь в разъеме MIC. Этот уровень — дело производителя, главное, чтобы выдерживался допустимый уровень потерь -11 dB во всем физическом соединении.
Разъемы MIC должны иметь ключ, обозначающий тип порта, что должно предотвратить неверное соединение разъемов. Определено четыре различных типа ключа:
Виды ключа для этих типов разъемов приведены на рисунке 2.11.
Рис. 2.11. Ключи разъемов MIC
Кроме разъемов MIC, допускается использовать разъемы ST и SC, выпускаемые промышленностью.
В качестве источника света допускается использование светодиодов (LED) или лазерных диодов с длиной волны 1.3 мкм.
Кроме многомодового кабеля, допускается использование более качественного одномодового кабеля (Single Mode Fiber, SMF) и разъемов SMF-MIC для этого кабеля. В этом случае дальность физического соединения между соседними узлами может увеличиться до 40 км — 60 км, в зависимости от качества кабеля, разъемов и соединений. Требования, определенные в спецификации SMF-PMD, для мощности на выходе передатчика и входе приемника, те же, что и для одномодового кабеля.
Функция определения сигнала уровня PMD
Спецификация на Fiber PMD требует от этого уровня выполнения функции Signal_Detect по определению факта наличия оптических сигналов на входе физического соединения станции. Этот сигнал передается на уровень PHY, где используется функцией определения статуса линии Line State Detect (рисунок 2.12).
Уровень PMD генерирует для PHY признак присутствия оптического сигнала Signal_Detect, если мощность входного сигнала превышает -43.5 dBm, а снимает его при уменьшении этой мощности до -45 dBm и ниже. Таким образом, имеется гистерезис в 1.5 dBm для предотвращения частых изменений статуса линии при колебании входной мощности сигнала около -45 dBm.
Рис. 2.12. Функция определения сигнала на входе PMD
Источник