- Волоконно-оптический кабель. Какие функции выполняет оптоволокно? Типы оптоволоконных кабелей
- Оптическое волокно — строительство
- Задачи
- Преимущества, виды и типы оптического волокна
- Типы проводов с оптическими волокнами в линиях электропередач
- Использование волоконно-оптических кабелей в линиях электропередач
- Кабельные аксессуары
- Специальное применение оптических волокон
- Оптоволоконные кабели — устройство, виды и характеристики
Волоконно-оптический кабель. Какие функции выполняет оптоволокно? Типы оптоволоконных кабелей
Волоконно-оптическая система работает путем передачи световых импульсов, генерируемых световым излучателем, расположенным на одном конце волокна. Эта система представляет собой структуру, состоящую из прозрачного, центрально расположенного сердечника из кварцевого стекла, окруженного оболочкой и специальным защитным покрытием.
Ниже вы узнаете какие функции выполняет волоконно-оптический кабель, детально рассмотрим преимущества оптоволокна, узнаем на какие виды он разделяется.
99% интернет-информации во всем мире проходит через оптоволокно, которое проложено по дну морей и океанов на глубине до 8 км? Для того, чтобы кабель не был раздавлен сильным давлением воды, его специально «бронируют». Посмотреть на бронированный оптический кабель можно в каталоге LAN-ART.»
Оптическое волокно — строительство
Использование подходящих материалов в качестве сердечника и оболочки оптоволоконного кабеля, имеющих различные коэффициенты преломления, приводит к тому, что луч света движется только в ядре. Материал сердцевины имеет более высокий показатель преломления, и, таким образом, происходит полное внутреннее отражение света от оболочки до сердечника. Защитное покрытие изготовлено из термопластичных материалов для защиты оболочки. Различаются одномодовые и многомодовые волокна: в линиях электропередачи используются только одномодовые волокна, благодаря значительному снижению затухания, что важно для длинных линий.
Задачи
Основной целью использования волоконно-оптических кабелей в электроэнергетике является обеспечение связи между силовыми подстанциями. Это связано с использованием современной автоматизации для защиты линий электропередач от воздействия короткого замыкания. Защитная автоматика расположена на каждой электростанции, и для обеспечения ее нормальной работы требуется быстрое соединение между станциями. Высоковольтные воздушные линии электропередачи (110 кВ) и сверхвысокого напряжения (220 и 400 кВ) имеют значительную протяженность. Использование большего количества оптоволокна в линиях электропередачи, дает возможность аренды оптоволоконных линий другим операторам. Это позволяет создать глобальную волоконно-оптическую сеть, предназначенную для коммерческого использования (Интернет, телекоммуникации, мультимедиа и т.д.).
На видео: Как работает оптоволокно?
Преимущества, виды и типы оптического волокна
Интенсивный рост использования волоконно-оптических кабелей в мире продолжается уже более 40 лет. Это связано со многими преимуществами волоконной оптики. Наиболее важными являются: очень высокая пропускная способность одного волокна, низкое затухание сигнала даже на очень больших расстояниях, малые размеры и небольшой вес, полная устойчивость к радиопомехам и электромагнитному полю. Из-за актуальных экологических проблем, важной особенностью волокон является отсутствие какого-либо воздействия на окружающую среду, что очень важно при проектировании оптоволоконных линий. Эти соединения в значительной степени надежны, просты в использовании, обеспечивают безопасность на рабочем месте и значительную эффективность, поэтому они становятся все более популярными.
Типы проводов с оптическими волокнами в линиях электропередач
Волоконно-оптические кабели производятся в виде пучков, содержащих от десятка до нескольких сотен волокон в одном пучке. Кабели с оптоволоконными кабелями могут использоваться в силовых линиях в качестве: фазные проводники (под напряжением) или молниеотводы (заземляющие потенциальные проводники) и самонесущие диэлектрические (дополнительные кабели в линии, содержащей только волоконно-оптические кабели). Существует несколько типов проводников, связанных с оптическими волокнами.
OPGW (Optical Ground Wire — оптический провод заземления) — молниеотводы, обычно используемые в воздушных линиях электропередачи напряжением 110 кВ.
С точки зрения конструкции, различают два типа проводов:
- провода, состоящие из одной центральной трубки (из алюминиевой или нержавеющей стали), содержащей оптические волокна, и наружный слой из алюминиевых сплавов ,
- шланги с раструбом из нержавеющей стали, они состоят из нескольких стальных проволок, образующих жилы и наружного слоя из алюминиевых сплавов. Оптические волокна помещаются в специальную трубку из нержавеющей стали и являются сердцевиной кабеля.
Наиболее важными преимуществами этих кабелей являются следующие:
- возможность применения в существующих линиях (в место обычных из стали и алюминиевых проводов типа AFL), в большинстве случаев без необходимости усиления конструкции колонны,
- простой монтаж, с использованием существующего кабеля,
- надежность и долговечность.
ADSS (All Dielectric Self Supporting) — оптоволоконные кабели без металлических элементов. Они сделаны из центрально расположенного сердечника FRP в форме стержня, окруженного несколькими трубками, содержащими оптические волокна.
Между внутренней и внешней оболочкой кабеля находятся очень прочные арамидные волокна, которые придают кабелям ADSS соответствующую механическую прочность.
Кабели ADSS характеризуются небольшим увеличением провисания. При выборе точки крепления кабелей ADSS, необходимо также учитывать распределение напряженности электрического поля между фазовыми проводами, так как в случае дождя или высокой влажности воздуха, наружная оболочка подвергается микроразрядам. Размещение проводов в зоне с слишком большим электрическим полем, приводит к быстрому разрушению их оболочки. Решением этой проблемы является использование полупроводниковых кабелей, которые из-за высокой напряженности электромагнитного поля обычно используются в линиях напряжением не более 110 кВ. При более высоком напряжении используются специальные кабели, изготовленные из материалов, устойчивых к воздействию электрического поля. При проектировании подвески кабелей ADSS на существующих линиях электропередач, необходимо учитывать дополнительное напряжение, воздействующее на несущие конструкции, и создать соответствующие усиления.
MASS (Metallic Aerial Self Supporting) — самонесущие кабели из алюминиевой стальной проволоки в сочетании с оптоволокном. Они очень похожи на кабели OPGW, но не являются молниеотводом или электрической функцией в линии. По этой причине кабели MASS обычно свисают чуть ниже, чем фазовые провода.
Данное решение является альтернативой стандартному способу крепления оптоволоконных кабелей в высоковольтных линиях и обычно используется, когда необходимо увеличить количество волокон в линии, а заменить существующие OPGW, OPPC или ADSS кабели либо невозможно, либо экономически нецелесообразно. Благодаря высокой механической прочности, небольшому весу и диаметру эти тросы немного увеличивают нагрузку на конструкцию столба.
Sky Wrap — диэлектрический оптоволоконный кабель, обмотанный вокруг традиционного молниеотвода или фазовой линии электропередачи. Он используется в ситуациях, когда существующий традиционный оптоволоконный кабель находится в хорошем состоянии и его замена на кабель OPGW экономически нецелесообразна или если существует необходимость увеличения количества волокон в установленном кабеле OPGW. Sky Wrap собирается с помощью специальных роботов с собственным приводом, перемещающихся по кабелю и дистанционно управляемых с земли. Преимуществом использования этих кабелей является: низкая дополнительная нагрузка на линии (значительно меньше, чем, например, у кабелей ADSS), низкая чувствительность к колебаниям (благодаря спиральной обмотке с контролируемым напряжением), возможность установки также на существующие кабели OPGW, простой и быстрый монтаж, низкая стоимость всей системы по сравнению с другими решениями. Кабели Sky Wrap также могут использоваться в линиях напряжением 15 кВ, после чего их монтаж выполняется с помощью робота.
На видео: Монтаж sky Wrap кабеля
ADL (All Dielectric Lashed Cables) — диэлектрические оптоволоконные кабели, прикрепляемые к молниеотводу с помощью кевларовой ленты. Они отличаются от Sky Wrap тем, что закреплены на несущем кабеле и фиксируется снизу. Установка осуществляется с помощью специального самоходного робота.
Использование волоконно-оптических кабелей в линиях электропередач
В линиях электропередач можно использовать различные типы кабелей, связанные с оптоволоконными кабелями. На выбор типа кабеля влияют многие факторы. Наиболее важными из них являются: напряжение в линии, наличие молниеотвода, тип, состояние и максимальное расстояние между опорными конструкциями линии, расположение линии в конкретной климатической зоны (посадка). Каждый тип трубы имеет определенный метод подвески на опорных конструкциях.
Кабельные аксессуары
Чтобы подвесить различные типы кабелей с оптическими волокнами в линиях электропередачи, необходимо использовать соответствующие аксессуары для проводника данного типа. Наиболее популярными кабелями, используемыми для подвески проводов, являются оплетка из стальной проволоки и дополнительные элементы оборудования, которые позволяют закрепить их на несущих конструкциях. Оптоволоконные кабели почти всегда требуют активной антивибрационной защиты, что исключает опасность, вызванную так называемыми ветровыми колебаниями. Чаще всего используются демпферы типа Stockbridge и специальные спиральные демпферы для кабелей ADSS. Соединение оптических изготавливаются путем их сварки, затем их помещают в специальные герметичные распределительные коробки (гильзы), закрепленные на несущих конструкциях линии.
Специальное применение оптических волокон
Контроль температуры в кабельных линиях
Одним из интересных применений волоконно-оптических волокон является система DTS (Distributed Temperature Sensing), используемая для контроля температуры высоковольтных кабельных линий. Этот метод основан на изменении затухания специальных волокон в зависимости от их температуры. В обратном проводнике силовых кабелей размещаются такие оптические волокна, которые подключены к специальному устройству, обеспечивающему оперативный мониторинг температуры жилы кабеля и нарушения структуры в его окружении, например, при выполнении работ вблизи кабельной линии (здесь используется явление демпфирования волокна в зависимости от деформации волокна). Данная система может быть использована сетевыми операторами в чрезвычайных ситуациях, когда возникает временная необходимость в нагрузке ЛЭП большим током. Эта информация позволяет оператору сети спланировать выключение линии и выполнить соответствующие ремонтные работы заранее. .
Оптоволокно — контроль температуры фазных проводников в воздушных линиях
Аналогичное решение может быть использовано в воздушных линиях электропередач. Специальное оптическое волокно, помещенное в проводник типа OPPC, позволяет определять фактическую температуру фазовых проводников при заданных погодных условиях. Мониторинг позволяет диспетчеру динамически загружать линию и в более широкой перспективе, так называемое, интеллектуальное управление сетью или «умные сети».
Источник
Оптоволоконные кабели — устройство, виды и характеристики
В оптоволоконных кабелях, в отличие от кабелей с медными или алюминиевыми жилами, в качестве среды для передачи сигнала используется прозрачный волоконный световод. Сигнал здесь передается не с помощью электрического тока, а с помощью света. Это значит, что движутся практически не электроны, а фотоны, соответственно и потери при передаче сигнала оказываются пренебрежимо малы.
Данные кабели идеальны в качестве средства передачи информации, ведь свет способен проходить по прозрачному стекловолокну практически беспрепятственно на десятки километров, при этом интенсивность света уменьшается незначительно.
Бывают GOF-кабели (англ. glass optic fiber cable) — со стеклянным волокном, а также POF-кабели (англ. plastic optic fiber cable) — с прозрачным пластиковым волокном. И те и другие традиционно называются оптоволоконными или волоконно-оптическими кабелями.
Устройство оптоволоконного кабеля
Оптоволоконный кабель имеет достаточно простое устройство. В центре кабеля расположен световод из стекловолокна (его диаметр не превышает 10 мкм) облаченный в защитную пластиковую или стеклянную оболочку, обеспечивающую полное внутреннее отражение света за счет разности коэффициентов преломления на границе двух сред.
Получается что свет, на всем своем пути от передатчика к приемнику, не может выйти из центральной жилы. К тому же свету не страшны электромагнитные помехи, поэтому такой кабель не нуждается в электромагнитном экранировании, а нуждается лишь в упрочнении.
Для придания оптоволоконному кабелю механической прочности, применяют особые меры — делают кабель бронированным, тем более когда речь заходит о многожильных оптических кабелях, несущих сразу несколько отдельных световодов. Кабели для подвесного монтажа требуют особого упрочнения металлом и кевларом.
Самая простая конструкция оптоволоконного кабеля — стеклянное волокно в пластиковой оболочке. Более сложная конструкция — многослойный кабель с упрочняющими элементами, например для прокладки под водой, под землей или для подвесного монтажа.
В многослойном броневом кабеле несущий упрочняющий трос изготовлен из заключенного в полиэтиленовую оболочку металла. Вокруг него располагаются светонесущие пластиковые или стеклянные волокна. Каждое отдельное волокно покрыто слоем цветного лака в качестве цветовой маркировки и для защиты от механических повреждений. Пучки волокон облачены в пластиковые трубки, заполненные гидрофобным гелем.
В одной пластиковой трубке может находиться от 4 до 12 таких волокон, в то время как общее количество волокон в одном таком кабеле может доходить до 288 штук. Трубки оплетены нитью, стягивающей пленку, смоченную гидрофобным гелем — для большего демпфирования механических воздействий. Трубки и центральный кабель заключены в полиэтилен. Далее идут кевларовые нити, практически и обеспечивающие многожильному кабелю броню. Потом снова полиэтилен для защиты от влаги, и наконец внешняя оболочка.
Два основных типа оптоволоконных кабелей
Оптоволоконные кабели есть двух типов: многомодовый и одномодовый. Многомодовый стоит дешевле, одномодовый — дороже.
Одномодовый кабель обеспечивает лучам, проходящим по световоду, практически один и тот же путь без существенных взаимных отклонений, в итоге на приемник все лучи приходят одновременно и без искажений формы сигнала. Диаметр световода в одномодовом кабеле составляет около 1,3 мкм, и свет именно с такой длиной волны следует по нему передавать.
По этой причине в качестве передатчика используется источник лазерного излучения с монохроматическим светом строго требуемой длины волны. Именно кабели данного типа (одномодовые) рассматриваются сегодня как наиболее перспективные для коммуникаций на значительные расстояния в будущем, но пока они дороги и недолговечны.
Многомодовый кабель менее «точен», чем одномодовый. Лучи от передатчика идут в нем с разбросом, и на стороне приемника имеется некоторое искажение формы передаваемого сигнала. Диаметр световодного волокна в многомодовом кабеле составляет 62,5 мкм, а диаметр внешней оболочки 125 мкм.
Здесь используется обычный (а не лазерный) светодиод на стороне передатчика (с длиной волны 0,85 мкм), и оборудование получается не таким дорогим как с лазерным источником света, да и срок службы у нынешних многомодовых кабелей дольше. Кабели данного типа не превышают по длине 5 км. Типовое время задержки сигнала при передаче составляет порядка 5 нс/м.
Достоинства оптоволоконных кабелей
Так или иначе, оптоволоконный кабель принципиально отличается от обычных электрических кабелей исключительной помехозащищенностью, что обеспечивает максимальную сохранность как целостности, так и конфиденциальности передаваемой по нему информации.
Электромагнитная помеха, направленная на оптоволоконный кабель, не способна исказить световой поток, да и сами фотоны не порождают внешнего электромагнитного излучения. Без нарушения целостности кабеля невозможно перехватить передаваемую по нему информацию.
Полоса пропускания оптоволоконного кабеля теоретически составляет 10^12 Гц, что не идет ни в какое сравнение с токонесущими кабелями любой сложности. Можно легко передавать информацию со скоростью до 10 Гбит/с на километры.
Сам по себе оптоволоконный кабель стоит не дорого, почти так же, как тонкий коаксиальный кабель. Но основная доля удорожания готовой сети все же приходится на передающее и приемное оборудование, задача которого — преобразовать электрический сигнал в свет и обратно.
Затухание светового сигнала при прохождении через оптоволоконный кабель локальной сети не превышает 5 дБ на 1 километр, то есть почти такое же как у электрического сигнала низкой частоты. При том чем выше частота — тем выраженнее оказывается преимущество оптической среды перед традиционными электрическими проводниками — затухание растет незначительно. А на частотах выше 0,2 ГГц оптоволоконный кабель однозначно оказывается вне конкуренции. Практически возможно довести расстояние передачи до 800 км.
Оптоволоконные кабели применимы в сетях с топологиями «кольцо» или «звезда», при этом полностью отсутствуют проблемы заземления и согласования с нагрузкой, вечно актуальные для электрических кабелей.
Идеальная гальваническая развязка, наряду с вышеперечисленными достоинствами, позволяет аналитикам прогнозировать, что в сетевых коммуникациях оптоволоконные кабеля вскоре полностью вытеснят электрические, тем более с учетом растущего дефицита меди на планете.
Недостатки оптоволоконных кабелей
Справедливости ради, нельзя не упомянуть и о недостатках волоконно-оптических систем передачи информации, главный из которых — сложность монтажа систем и высокие требования к точности установки разъемов. Микронное отклонения при монтаже разъема способно привести к увеличению затухания в нем. Здесь необходима высокоточная сварка или специальный клеевой гель, коэффициент преломления света в котором аналогичен оному в самом монтируемом стекловолокне.
По этой причине квалификация персонала не допускает снисхождения, необходимы специальные инструменты и высокое мастерство владения ими. Чаще всего прибегают к использованию готовых кусков кабеля, на концах которых уже установлены готовые разъемы требуемого типа. Для разветвления сигнала от оптоволокна, применяют специализированные разветвители на несколько каналов (от 2 до 8), но при разветвлении неизбежно происходит ослабление света.
Конечно, оптоволокно является менее прочным и менее гибким материалом нежели та же медь, и изгибать оптоволокно на радиус менее чем 10 см небезопасно для его сохранности. Ионизирующие излучения снижают прозрачность оптоволокна, усиливают затухание передаваемого светового сигнала.
Оптоволоконные кабели стойкие к радиации стоят дороже обычных оптоволоконных кабелей. Резкий перепад температуры может привести к образованию трещины в световоде. Безусловно, оптоволокно уязвимо и к механическим воздействиям, к ударам, к ультразвуку; для защиты от этих факторов применяются специальные мягкие звукопоглощающие материалы оболочек кабелей.
Источник