Оптические кабели HDMI: что это такое и для чего это нужно
Технологии HDMI развиваются, и чтобы идти в ногу со временем, нужно модернизировать и кабель. Что же такое оптические кабели HDMI и в чём их преимущества над аналогами?
Оптические кабели HDMI.
Передача сигнала через классические HDMI кабели достаточно ограничена пропускной способностью. Если для домашних условий замечательным образом подойдет, например, HDMI кабель с Ethernet, то для большого конференц-зала в офисе его пропускной способности будет уже недостаточно.
И вот здесь то и появляется оптический кабель HDMI. У него особая структура, которая позволяет передать данные на более дальние расстояния, нежели у его «предшественников». Попробуем разобраться, друзья, почему же так происходит?
Оптический кабель и кабель HDMI
Самое главное отличие — оптический кабель HDMI состоит из оптоволокна. А оптоволокно – это материал, который обеспечивает максимальную скорость передачи данных из всех видов существующих на сегодняшний день проводов.
Несущая среда кабеля содержит в себе кварцевое стекло — уникальный материал, который обладает ещё и высокой устойчивостью к электромагнитным полям и мизерными потерями. Благодаря устройству этой технологии, оптические кабели очень часто применяют для соединения между собой даже не нескольких комнат, а отдельных зданий.
Сами волокна отличаются друг от друга по составу и структуре света. Различают следующие модели волокон:
1.Стеклянные волокна (обладающие стеклянными сердцевинами и аналогичной оптикой в оболочке).
2.Пластиковые волокна (аналогичные предыдущему пункту моменты, но взамен стеклу — пластик).
3.Смешанные модели (со стеклянной сердцевиной и с пластиковой оболочкой).
Второй и третий варианты волокон используют в тех случаях, когда работа с кабелями во внешней среде не так критична. А вот самая лучшая пропускная способность среди всех вариантов принадлежит стеклянным волокнам. Они предназначены для работы в затрудненной среде передачи данных.
Оптоволокно уже «добралось» и до технологии HDMI. Так, скорость передачи данных заметно выше, чем у даже самого передового медного проводника HDMI, а в качестве этот вариант ничем не уступает.
В устройстве оптического HDMI кабеля есть такой нюанс: в его основе лежит сразу два материала — медь и оптоволокно. Таким образом, смешение двух материалов ни коим образом не «убивает» качество передаваемых данных, а даже наоборот — улучшает его даже при большом расстоянии.
Кабель оптоволоконный HDMI обладает более низким энергопотреблением, чем его аналоги, а значит подразумевает определённую финансовую экономию. В особенности, если речь идёт о каком-то глобальном мероприятии (как и упоминалось раньше – например, для бизнес-конференции).
А вот теперь добавим немного дегтя. В работе с оптическими HDMI кабелями очень важно понимать, что значительное опережение в скорости передачи данных является явной причиной повышенной стоимости самого кабеля. Так, средняя цена такого устройства составляет около 15000 рублей. Есть и дешевле, однако в их качестве появляются однозначные сомнения.
Как выбрать кабель оптоволоконный HDMI
Если вы решились купить себе оптоволоконный HDMI-кабель, то стоит сделать правильный выбор в плане качества продукта. На что обратить внимание при покупке:
- Процентное соотношение оптоволокна HDMI и медной составляющей.
- Толщина и упругость кабеля. В этом случае всё просто — чем толще и плотнее, тем лучше.
- Активность кабеля.
Активные оптические HDMI кабели обеспечивают бесперебойную передачу данных на расстояние до 100 метров и при любых условиях.
Такой кабель зачастую используется в медицинских центрах, где качество HDMI и расстояние транслируемого изображения по оптоволокну играет ключевую роль. На Западе HDMI to fiber optica (это все тот же кабель, только без перевода на русский язык)) пользуется невероятной популярностью не только в сфере медицины, но и в уличной торговле.
Исходя из всего вышесказанного, вывод напрашивается сам собой: будущее HDMI — определённо за оптоволокном. Ведь даже если обеспечить равноценную передачу данных у медного образца и оптического, последний будет в 4 раза тоньше и легче своего предшественника.
А при равнозначных габаритах — выбор определенно идёт в пользу новейшей оптоволоконной технологии.
Источник
Оптический удлинитель HDMI. 300 метров
Доброго времени суток, Хабр!
Разработка волоконно-оптического удлинителя HDMI на 300 метров. Отказ от обратного канала (передача данных по одному волоконно-оптическому кабелю). Клонирование EDID с монитора.
Стандарт HDMI широко применяется во многих сферах, где требуется вывод изображения на экран. Лично мне удавалось передавать сигнал по HDMI кабелю на расстояние до 10 метров (больше просто не требовалось). Думаю, что без потери качества, можно передать картинку на расстояние до 30-40м. Основные минусы в случае протяжки такого кабеля – это его диаметр и размер, непосредственно, разъемов. Самый простой способ исключить кабель – это использовать беспроводной удлинитель, думаю получится достигнуть 100-150 метров, но точно не скажу. К сожалению, не все объекты, по тем или иным причинам, разрешают использование беспроводных сетей. А если нужно еще дальше?
Рис.1. Разъем HDMI кабеля и оптики (LC)
Конечно, оптика, наверное, не лучший вариант для передачи видео, но при использовании стационарных ПК и мониторов – очень даже ничего. Первый тезис – это диаметр оптического кабеля (в моем случае, это 2-3мм) и диаметр коннектора волоконно-оптического кабеля. Второе – это, безусловно, расстояние. Забегая вперед, скажу, что тесты проводились на кабеле 300м, диаметр (внешний) – 3мм.
Элементная база
При проработке элементной базы, выбор, неожиданно, пал на китайскую компанию SiFotonics, которая специализируется на такого рода оборудовании. Для начала, мы изучили их продукцию и получили две отладки, которые соединили трехсотметровым оптическим кабелем и убедились, что все работает без нареканий. В их ассортименте есть и SFP оптические приемники/передатчики (ROSA/TOSA), сериалайзеры/десериалайзеры, драйверы и т.д.
Принцип работы
Для соединения и работы устройств необходимо подключить два оптических кабеля и подать питания (кабель microUSB). Если приводить аналогию с обычным кабелем HDMI, в котором для обмена таблицей EDID есть I2C, то тут все тоже самое – один канал для передачи данных, второй – для передачи EDID от монитора к видеокарте. Данные передаются со скоростью 10Gbps. Отрывая кабель обратного канала, картинка неизменно пропадает. В этот момент закрались некоторые сомнения, а не передаются ли какие-нибудь служебные данные или метки синхронизации в обратном канале, или может устройства мониторят подключения друг к другу…
Рис.2. Состав модулей
Первая итерация платы, она же макет, получилась размерами 20Х45мм. С разъемом питания «вбок», чтобы было удобнее разводить шины питания в полигонах. Итого получилось 4 слоя. Чем плоха данная конфигурация печатной платы, я напишу позже. Хитрые разработчики на отладке использовали пассив размерами 0201, что мне делать категорически не хотелось, поэтому я использовал 0402 и под чипом каша из конденсаторов.
Рис.3. 3D модель макета платы модуля источника
Как я писал выше, моей задачей было не только сделать пару с рабочим расстоянием 300 метров, но еще и убрать обратный канал оптики. Еще на этапе проработки мы решили не ввязываться в доработку китайского софта (хотя, нам любезно были предоставлены все исходники), так как, во-первых, это куча строк непонятного кода в непонятном компиляторе, во-вторых, SiFotonics может поставлять прошитые чипы, что очень удобно, так как прошивать устройства в рамках производства весьма не просто. Чтобы читатель не подумал, что я преувеличиваю, говоря о сложностях, я приведу фото стенда для программирования.
Рис.4. Стенд для программирования и диагностики
Да-да, как вы уже, наверное, догадались, контакты JTAG для программирования выведены на контакты microUSB, и на некоторые контакты HDMI, которые раньше были GND. Сразу оговорюсь, что на качество работы это не повлияло. Итак, стенд. Чтобы запрограммировать чип, нужно сначала собрать одну схему стенда и перевести микросхему в режим программирования с помощью специализированного ПО. Далее необходимо собрать другую схему и с помощью другого ПО прошить плату. После этого она автоматически переходит в рабочий режим.
В общем, как мне кажется, это нецелесообразно даже на 1000 штуках.
Вернемся к обратному каналу. Для хранения EDID таблиц нам необходима EEPROM, и понадобится налету менять ее адрес. Взял N24C02UDTG в миниатюрном корпусе US-8. Для ее программирования использую микроконтроллер STM32F031G4U6, тоже в самом маленьком корпусе, который можно найти в свободном доступе — UFQFPN-28. Также я взял свитч питания TPS27081ADDCR. И вот что у меня получилось:
Рис.5. Схема реализации клонирования EDID
Идея в следующем. Эта схема реализуется на передающем модуле (тот, что подключается к ПК). Для клонирования EDID монитора устройство подключается к монитору. По умолчанию адрес EEPROM на нашем модуле не должен совпадать с адресом EEPROM в мониторе (во время чтения), то есть он может быть любым другим, я, например, сделал ножку A0 управляемой. В момент подключения к монитору питание на EEPROM подается, а нога А0 подтянута к логическому «0» резистором. На шине i2c висят два EEPROM с одинаковыми адресами, но это не критично, так как мы с ними еще не работаем. В моей схеме есть еще кнопка и светодиод индикации питания/прошивки EDID/ошибок. Кратковременное нажатие кнопки приводит к смене адреса и разрешению микроконтроллеру начинать чтение/запись EDID. Ресетим EEPROM питанием (на всякий случай) когда получили сигнал от кнопки, читаем EDID монитора и сразу пишем его в нашу микросхему. Мигаем 3 раза светодиодом и отключаем питание EEPROM. Чтение/запись происходит мгновенно, поэтому для мигания сделана принудительная задержка, чтобы пользователь понимал, что что-то происходит. То есть мигать начинаем тогда, когда уже можно отпускать. Если что-то не так, то не зажигаем светодиод.
Далее подключаем модуль к ПК и сразу видим новый монитор в настройках. Задача решена.
Для программирования микроконтроллера вывел SWD шину.
Рис.6. Обратная сторона платы модуля
Особенности
После всей проделанной работы с клонированием EDID я убрал обратный оптический канал, и все работало без нареканий. При данных опытах питание происходило от USB ПК. Во время загрузки компьютер (во всяком случае мой) на мгновение выключает питание USB и картинка с BIOS мигает на мониторе – это не критично. Затем я выпаял модули обратного канала с устройств и после этого мигания картинка перестала восстанавливаться. И происходило это именно из-за отсутствия модуля TOSA на мониторном устройстве. Я попытался эмулировать наличие лазера, но все безуспешно. Я почти уверен, что эту проблему можно решить прошивкой, но мы решили в нее не лезть. Чудо произошло, когда я подключил оба устройства (приемник и передатчик) к блокам питания (как, кстати, было указано в ТЗ). Картинка перестала моргать, а соответственно и пропадать. Если во время работы передергивать питания устройств, то картинка восстанавливается без проблем.
Рис.7. Схема включения передающего модуля (лазера)
Теперь вернемся к конфигурации печатной платы и разъему питания «вбок». Эта реализация была изначально неудобна и подходила только для макета. В релизном устройстве я уменьшил ширину платы до 16,3мм и вынес разъем питания на место оптического модуля обратного канала – это позволит включить несколько устройств в одну видеокарту. В противном случае мне мешал разъем питания и плата была очень широкой.
Рис.8. Узкие платы приемника и передатчика
Тут, конечно, было много переразводки и перестановок компонентов. Полигоны питания были переделаны полностью для оптимизации под эти размеры и переноса разъема microUSB. Как можно догадаться, корпуса для обоих устройств идентичны, поэтому конфигурация платы, разъемы и оптический модуль расположены одинаково. Корпус фрезеруется из алюминия и является теплоотводом, для процессора и драйвера. На внутренней стороне фрезеруются выступы под эти компоненты, поэтому они тоже располагаются одинаково.
Заключение
На данный момент спаяно четыре пары устройств, проводятся тесты на длинном кабеле на разных мониторах и ТВ. Нареканий по работе нет никаких. Проверяем только на fullHD и ниже.
Источник
HDMI eARC vs S/PDIF: почему рано хоронить оптический аудиокабель
Стандарт HDMI 2.1 принёс с собой обновленную функцию HDMI ARC, которая теперь называется eARC (Enhanced Audio Return Channel). Пропускная способность расширенного реверсивного звукового канала возросла в 37 раз (с 1 Мбит/с до 37 Мбит/с), что сделало возможным передачу без сжатия звука в формате 5.1 и 7.1.
Также появилась полноценная поддержка таких стандартов многоканального звука, как Dolby Atmos и DTS:X. И если во времена HDMI 2.0 передача звука по оптическому кабелю ещё не казалась чем-то сильно устаревшим, то теперь для многих пользователей S/PDIF — это артефакт из далёкого прошлого.
В этой статье я не хочу вдаваться в подробности работы той или иной технологии передачи звука. Вместо этого я предлагаю сконцентрироваться на практическом применении HDMI eARC и оптического S/PDIF (Toslink). Рассмотрим те факторы, которые даже в 2021 году могут склонить пользователя в сторону выбора старого-доброго оптического аудиокабеля.
Задержка звука
Для тех, кто использует домашнюю аудиоситему только для прослушивания музыки и просмотра фильмов — это фактор не столь значимый. А вот если планируется подключать к акустике игровую приставку или ПК, то показатель задержки звука следует принимать во внимание. Одним из известных изданий, которое регулярно проводит замеры задержки звука для различных аудиосистем, является Rtings.com. Ниже пара скриншотов с этого сайта.
Задержка звука саундбара Samsung HW-A550
Задержка звука саундбара Samsung HW-Q950A
Нельзя сказать, что задержка звука во всех случаях будет ниже при подключении по Toslink. Однако во многих современных моделях саундбаров (независимо от ценового сегмента) наблюдается именно такая тенденция.
Помехи и наводки
Оптическое волокно представляет собой диэлектрический материал, поэтому кабелю Toslink не страшны электромагнитные помехи. В то же время подавляющее большинство проводов HDMI — медные. Для защиты от помех в них используется экранирование, да только качество экранирования с 2012 года существенно снизилось. Согласно данным европейских исследователей, даже покупка «премиального» кабеля HDMI вовсе не гарантирует, что он будет защищен от помех на должном уровне.
Помехи при подключении через HDMI выражаются обычно в виде произвольного моргания дисплея и «заикания» звука. В некоторых случаях сам HDMI-кабель может служить источником помех для других устройств. Чаще всего провода HDMI конфликтуют с ТВ-антеннами и WiFi-роутерами.
Конечно, существуют и оптические HDMI-кабели, которые лишены этого недостатка. Однако их массовому распространению препятствует в большей степени их высокая цена, а в меньшей — их односторонняя природа (передача сигнала возможна только в одном направлении). К вопросу цены этих проводов мы вернемся чуть позже.
Сложность монтажа
Провода Toslink традиционно тоньше, чем провода HDMI. Диаметр наиболее доступных Toslink-кабелей — от 2.2 до 3 мм. Диаметр типичного медного HDMI 2.1 — около 7 мм, оптического — 5 мм. Как правило, медный кабель HDMI тем толще, чем он длиннее.
Скрытый монтаж аудиокабеля Toslink всегда будет проще. Штробить стену для его укладки не обязательно. Благодаря малой толщине провода в большинстве случаев хватит и канавки в гипсовой штукатурке, а из инструментов понадобится только канцелярский нож. Сделать это не так сложно даже после завершения ремонта, главное — в нужном месте аккуратно отклеить обои 😉
Кабели Toslink существенно дешевле кабелей HDMI 2.1, особенно когда речь идет о большой длине. Максимальная дистанция передачи звука через интерфейс S/PDIF — 10 метров. По крайней мере, так говорится во многих источниках, включая и англоязычную Википедию. Когда-то это было правдой, но сейчас встречаются оптические аудиокабели длиной и 15, и 20, и даже 30 метров.
Кабели HDMI 2.1 длиной до 5 метров — почти всегда медные. А те, что длиннее — почти всегда оптические. Максимальная длина ограничена лишь толщиной кошелька, и найти HDMI 2.1 длиной 100 (сто) метров сейчас не является проблемой. Оптический HDMI в пересчете на 1 погонный метр стоит намного дороже медного. Таким образом, когда необходимо проложить аудиокабель на расстояние более 5 метров, выгода от выбора Toslink становится наиболее очевидной.
К примеру, самый доступный 10-метровый кабель Toslink на AliExpress продаётся за
300 рублей (см. здесь). В то же время самый дешевый 10-метровый HDMI 2.1 стоит уже
5200 рублей (см. здесь). А если вдруг есть необходимость передавать иногда звук и в противоположном направлении, то понадобится ещё и второй такой же кабель (не забываем про эту досадную особенность оптических HDMI).
Выводы
В том, что будущее многоканального звука — за HDMI, сомнений нет. Так же, как и будущее мониторов — за 4K. Однако до тех пор, пока 1080p и 1440p мониторы остаются намного более доступными, они будут иметь свою долю рынка. Тоже самое и с интерфейсом S/PDIF — он обходится в разы дешевле HDMI eARC, и к тому же имеет некоторые преимущества. Конечно, сжатый звук формата Dolby Digital 5.1 и DTS 6.1 — это его верхний предел. Однако эффект от этого сжатия можно ощутить только на дорогой акустике, а для саундбаров и простеньких домашних кинотеатров возможностей интерфейса S/PDIF большинству пользователей по-прежнему будет достаточно.
Источник