Определить пробивное напряжение изоляции одножильного кабеля

Электрическая прочность изоляции кабелей

Наиболее важной характеристикой любого электрического силового кабеля является его электрическая прочность, так как нарушение ее выводит из строя кабельную линию.

Неоднородность структуры изолирующего слоя кабеля

Всякий диэлектрик, применяемый на практике, всегда обладает какой-то неоднородностью структуры и свойств. Так, например, изоляция кабелей высокого напряжения имеет слоистый характер, резиновая изоляция неоднородна, так как она получается путем смешения каучука с мелкоизмельченными порошками минеральных наполнителей и смягчителями.

Даже такие материалы, как синтетические диэлектрики (полиэтилен, стирофлекс и др.), обладают большей или меньшей неоднородностью строения или неоднородностью, обусловленной методом получения этих материалов, например из-за наличия остаточных ионов, внесенных в материал катализаторами процесса полимеризации, и недостаточной отмывки материала после его изготовления.

Наличие неоднородности в практическом диэлектрике всегда приводит к ослаблению его электрической прочности и ускоряет процесс старения диэлектрика под влиянием нагревания и длительного воздействия приложенного к диэлектрику напряжения.

Неоднородность физического строения вызывает местное увеличение напряженности поля в диэлектрике и ведет к преждевременному пробою изоляции.

Пробой диэлектрика и виды пробоя

Из всех электрических характеристик изолирующих материалов, применяющихся в кабелях высокого напряжения, наибольшее значение имеет электрическая прочность, так как от нее зависит надежность работы кабеля.

Пробивное напряжение изолирующего материала является сложной функцией физических свойств материала, его размеров, условий окружающей среды и характера приложенного напряжения.

Величина напряженности электрического поля, при которой преодолевается сопротивление диэлектрика действию на него электрического поля, определяет величину электрической прочности материала, которая выражается в в/см или кв/мм.

На практике принято говорить об электрической прочности при постоянном и переменном напряжении, а по длительности действия напряжения различают электрическую прочность: импульсную, кратковременную и длительную.

Пробой является следствием непосредственного действия электрического поля на изолирующий материал, когда энергия электрического поля в диэлектрике превращается в работу образования свободных носителей электрических зарядов.

Наличие в диэлектрике свободных зарядов на определенной ступени количественного накопления и скорости перемещения переводит диэлектрик в новое состояние, когда он теряет электрическую прочность и перестает быть диэлектриком.

Из всех весьма разнообразных видов действия электрического поля на диэлектрик, которые могли бы привести к электрическому пробою, можно указать на следующие:

  • разрушение молекулы или кристаллической решетки;
  • ионизация диэлектрика;
  • передвижение ионов в электрическом поле.

Под влиянием тепла, выделяющегося в жилах кабеля и в изолирующем слое (диэлектрические потери), появляется тепловое поле, зависящее также от условий охлаждения кабеля.

Для современных кабелей высокого напряжения тепловые расчеты тесно связаны с электрическими, так как энергия электрического поля переходит в тепло, рассеиваясь в диэлектрике, что вызывает нагревание кабеля. В свою очередь, нагревание кабеля снижает электрическую прочность изоляции.

Пробой кабеля чаще всего происходит под влиянием обоих факторов — электрического поля и нагревания. В этом смысле говорят о теплоэлектрическом или тепловом пробое кабеля.

В том случае, когда количество тепла, выделяющегося в кабеле, больше или меньше количества тепла, отводимого от кабеля в окружающую среду, электрический кабель будет нагреваться (в первом случае) или охлаждаться (во втором). Температура кабеля или провода будет изменяться во времени по закону, близкому к экспоненциальному.

Большое значение имеет определение максимального допустимого перегрева жил кабеля над окружающей средой, равного разности максимальной допустимой температуры жил кабеля и окружающей среды.

Максимальная допустимая температура жил кабеля во всех стандартах и нагрузочных таблицах определяется в зависимости от рабочего напряжения кабеля и его конструкции.

Если в результате воздействия электрического поля на диэлектрик происходит нагревание диэлектрика с ослаблением его электрической прочности, то происходит тепловая форма пробоя.

Электрический пробой характеризуется тем, что величина электрической прочности не зависит от температуры, длительности действия напряжения и почти не изменяется с толщиной диэлектрика.

Место пробоя представляет собой маленькое отверстие без следов обгорания. Такой пробой иногда называется «прокалывающим» пробоем. Чаще всего электрический характер разрушения диэлектрика получается при импульсном пробое твердых диэлектриков.

Наиболее близко к реальным условиям стоит тепловая теория пробоя в случае вычисления пробивного напряжения кабельной изоляции при нагревании ее потерями, в жиле и диэлектрике.

В этом случае говорят о тепловой неустойчивости изоляции кабеля, возникающей из-за плохого отвода тепла в окружающую среду при значительном выделении тепла в кабеле и большом температурном коэффициенте потерь.

Кроме электрического и теплового пробоя твердых диэлектриков в литературе и на практике часто встречается название «ионизационный» пробой.

В настоящее время под ионизационным пробоем твердого диэлектрика понимают пробой, который является следствием ионизации газовых включений, содержащихся в твердом изолирующем материале. Этот вид пробоя часто встречается в слоистой изоляции кабелей, конденсаторов, бакелитовых втулок и тому подобных изделий.

Развивающаяся в газовых включениях ионизация как бы подготавливает диэлектрик к пробою, ослабляя его в этом месте. Ионизация газовых включений и вторичные процессы, связанные с ионизацией, протекают во времени, разрушая материал с течением времени все более и более, как бы по частям.

В соответствии с результатами испытаний изолирующих материалов на электрическую прочность можно предпололожить, что в действительности электрическая прочность применяемых на практике изолирующих материалов определяется не столько механизмом пробоя, сколько местной неоднородностью поля, создающей резкое местное повышение напряженности электрического поля, а также характером и интенсивностью подготовительных процессов в диэлектрике, как, например, процессов ионизации газовых включений, химического изменения вещества и других.

Вероятно, что подготовительные процессы развиваются наиболее интенсивно именно в тех местах, в которых наблюдается местное повышение напряженности электрического поля. Можно сказать, что местное повышение напряженности поля, вызывая развитие подготовительных процессов, приводит к образованию слабого места в изоляции, которое и пробивается затем чаще всего по закону теплового пробоя.

Влияние неоднородности электрического поля и неоднородности материала на электрическую прочность

Известно, что электрическая прочность подавляющего большинства диэлектриков с увеличением толщины снижается. Это снижение прочности приписывается влиянию неоднородности поля, а именно, усилению напряженности поля у краев электродов. Отсюда появилось название «краевой» эффект.

Таким образом, максимальное значение электрической прочности любого твердого изолирующего материала может быть получено только при условии устранения краевого эффекта. Это значение электрической прочности можно назвать внутренней прочностью материала, так как оно не зависит от толщины образца и характеризует испытываемый материал.

Электрическая прочность диэлектрика в резко неоднородном поле имеет минимальное значение. Результаты экспериментов показывают, что при устранении краевого эффекта получается прямолинейная зависимость пробивного напряжения от толщины материала.

Неоднородность электрического поля (краевой эффект) и неоднородность самого испытываемого материала, например, включения газов, пленки масла в кабельной изоляции, ведут к снижению электрической прочности и к разбросу отдельных значений, которые все же группируются по законам математической статистики около некоторого среднего значения.

Отношение минимально возможного значения электрической прочности к рабочей напряженности в изолирующем слое кабеля определяет надежность работы его в эксплуатации.

Надежность работы уменьшается с увеличением поверхности соприкосновения изолирующего слоя с жилой кабеля, так как число слабых мест пропорционально поверхности и, следовательно, вероятность появления слабого места возрастает с увеличением поверхности по законам математической статистики.

Зависимость электрической прочности от вида приложенного напряжения и длительности его действия

Электрическая прочность кабельной изоляции зависит от рода приложенного напряжения и снижается с увеличением длительности действия напряжения.

Наибольшая электрическая прочность получается при постоянном напряжении, а наименьшая — при переменном напряжении. В последнем случае электрическая прочность изоляции сильно зависит от длительности приложения напряжения, так как подготовительные процессы в изоляции при переменном напряжении развиваются во времени.

Причиной резкого снижения электрической прочности при длительном приложении переменного напряжения является процесс старения, протекающий в диэлектрике под влиянием электрического и теплового полей (ионизация газовых включений и нагревание), который сводится по существу к медленному изменению физико-химических свойств диэлектрика, связанному с местным ослаблением электрической прочности.

Такие изменения характерны для неоднородных диэлектриков, содержащих различные поры или включения, малоустойчивых по отношению к термическим и химическим воздействиям веществ.

Повышение электрической прочности при длительном приложении напряжения, например, в маслонаполненных кабелях не может быть использовано при конструировании кабелей, так как импульсная (кратковременная) прочность будет ограничивать предел применения кабеля. Поэтому для современных кабелей высокого напряжения большое значение получает импульсная прочность, характеризующая стойкость кабеля по отношению к кратковременным воздействиям различных перенапряжений.

Источник

ПРОБОЙ ИЗОЛЯЦИИ

Электрической прочностью изоляции кабеля или провода назы­вают напряжение, при достижении которого происходит пробой изо­ляции. По характеру пробоя изоляции различают электрический и тепловой.

Под электрическим (прокалывающим) пробоем понимается про­бой в наиболее ослабленном месте изоляции, происходящий в короткие промежутки времени и обычно связанный с местным разруше­нием изоляции кабелей и сопровождающийся иногда ветвистыми обугленными побегами. Электрический — ионизационный пробой про­исходит в воздушных включениях изоляции при достаточно высо­ких напряжениях в результате возникновения таких разрядов, переходящих в электрические скользя­щие разряды, заканчивающиеся про­боем изоляции.

Тепловой пробой изоляции кабе­лей имеет место в тех случаях, когда нагрев изоляции больше отводимого тепла (например, в кабелях высоко­го напряжения с большой толщиной изоляции). Этот вид пробоя развивается постепенно и происходит

обычно в тех местах, где повышение температуры из-за роста ди­электрических потерь происходит особенно интенсивно. Развитию теплового пробоя может способствовать повышенная температура окружающей среды. Место теплового пробоя изоляции представ­ляет радиальное отверстие с опаленной или оплавленной поверхно­стью без наличия в зоне пробоя ветвистых побегов.

Обычно пробой носит комбинированный характер. Нагрев, вы­званный скользящими разрядами, приводит к местному перегреву изоляции и развитию в этом месте теплового пробоя. Повышение напряженности поля в газовом включении снижает электрическую прочность изоляции, зависящую от его природы, толщины слоя и давления. Начальная напряженность ионизации маслонаполненного и газонаполненного кабелей при длительном приложении перемен­ного тока (50 гц) возрастает с увеличением давления (рис. 2-15), но электрическая прочность их снижается с увеличением длитель­ности приложения напряжения. Электрическая прочность пропитан­ной кабельной бумаги при кратковременном испытании на пробой переменным током уменьшается с увеличением толщины бумаги (рис. 2-16).

Пробивное напряжение кабеля при известной электрической прочности изоляции равно:

Пробивное напряжение кабеля при промышленной частоте мо­жет быть определено по эмпирической формуле:

где UH — номинальное линейное напряжение системы; k1=l, 15 — коэффициент, учитывающий возможность повышения рабочего на­пряжения; k2=l, 25/1,50 — коэффициент, учитывающий неоднород­ность изоляции (совпадение, зазоров лент, наличие вмятин, морщин и других дефектов технологии); k3 = 2,25/2,50 — коэффициент, учи­тывающий уровень внутренних перенапряжений в кабельных сетях; k4 = 1,10/1,20 — коэффициент, учитывающий уменьшение пробивного напряжения при снижении давления масла от расчетной величины до минимально допустимого значения. Запас электрической прочности

При расчете электрической прочности изоляции высоковольтных кабелей и проводов принимают 4—10-кратный запас допустимой на­пряженности электрического поля по сравнению с пробивной напря­женностью. Такой запас электрической прочности необходим из-за возможности ухудшения качества изоляции в процессе эксплуата­ции, а также за счет неоднородности изоляции по качеству, наличия острых углов и выступов токопроводящих жил кабеля и др. Элек­трическая прочность кабеля уменьшается с увеличением длины ка­беля, так как число слабых мест пропорционально поверхности токопроводящей жилы.

Электрическая прочность изоляции зависит от рода приложен­ного напряжения и снижается с увеличением длительности действия напряжения. Наибольшую электрическую прочность изоляция имеет при постоянном токе, а наименьшую — при переменном токе. Под влиянием электрического и теплового полей происходит ускорение процесса старения изоляции с медленным изменением ее физико-химических свойств, приводящих к местным ослаблениям электри­ческой прочности.

‘Кривую зависимости электрической прочности от времени при­ложения напряжения называют кривой жизни кабеля. Эта зависи­мость выражается уравнением

где т — коэффициент, зависящий от типа кабелей (для силовых ка­белей с вязкой пропиткой m = 7, для высоковольтных одножильных кабелей m≈ 6, для полиэтилена m≈ 4; τ —время до пробоя, мин; Eдл — прочность при бесконечно длительном приложении напряже­ния, кв/мм; Eпер — переменная часть электрической прочности,

кв/мм. Если откладывать по оси ординат Eпр, а по оси абсцисс ве­личину

(при правильно подобранном значении т), зависи­мость электрической прочности кабеля от времени имеет вид прямой линии. Пересечение ее с осью ординат дает предельное значение электрической прочности при бесконечно длительном приложении напряжения, равное для маслонаполненного кабеля низкого давле­ния 40 кв/мм, для газонаполненного кабеля высокого давления 20 кв/мм и для кабеля с вязкой пропиткой 12 кв/мм.

На рис. 2–17 приведена экспериментальная зависимость напря­женности поля при пробое кабеля с полиэтиленовой изоляцией (Δ = 10 мм), подвергавшегося циклическому нагреву. При частоте 80 Мгц электрическая прочность полиэтиленовой изоляции снижает­ся до 3—4 кв/мм. На рис. 2–18 приведена зависимость электриче­ской прочности кабеля с изоляцией из поливинилхлоридного пла­стиката от времени. Кратковременная электрическая прочность по­лиэтиленовой и поливинилхлоридной изоляции снижается с увели­чением радиуса провода:

Зависимость пробивного напряжения на постоянном токе при ступенчатом повышении напряжения (по 2 (кв/мм)/ч) от толщины полиэтиленовой изоляции и радиуса токопроводящих жил приве­дена на рис. 2–19. Средняя напряженность поля при пробое состав­ляет 45 кв/мм независимо от толщины изоляции, радиуса токопроводяшей жилы и полярности приложенного напряжения. Импульсная прочность изоляции кабелей на напряжение 100 кв и выше яв­ляется основной характеристикой при выборе толщины изоляции. Под импульсной прочностью понимают 10 положительных и 10 от­рицательных импульсов нормальной волны (1/50 мксек), не вызвав­ших пробоя изоляции.

Импульсное перенапряжение (Uмакс), возникающее в кабеле, зависит от емкости кабельной линии (С, мкф/км), ее длины (l, м) и величины перенапряжения в воздушной линии (U, кв):

Зависимость Uмакс /U1 от l/lо (где lо = 38 О м — строительная длина кабеля) приведена на рис. 2–20.

Величина импульсного напряжения кабеля по нормам МЭК принята не ниже

где U0 — напряжение между жилой и экраном кабеля, кв.

Импульсная прочность пропитанной бумажной изоляции высоко­вольтных кабелей возрастает с уменьшением толщины бумажных лент, применяемых для изоляции, увеличивается с повышением плот­ности бумаги и вязкости пропитывающего состава, но не зависит от давления. Значения напряженности поля при пробое импульсным напряжением для кабелей с вязкой пропиткой и маслонаполненного в зависимости от толщины бумаги приведены на рис. 2–21.

На рис. 2–22 приведены кривые средней и максимальной напря­женности электрического поля при пробое в зависимости от толщи­ны изоляции и радиуса токопроводящих жил при испытании на пе­ременном и постоянном токе и импульсным напряжением.

После несложной процедуры регистрации Вы сможете пользоваться всеми сервисами и создать свой веб-сайт.

Источник

Читайте также:  Преимущества саморегулирующийся нагревательный кабель