- Нормы электрического сопротивления изоляции кабелей связи
- Справочные данные о кабелях связи ТПП и КСПП. Нормы на смонтированные линии связи
- Характеристики кабелей марки ТПП
- Электрические характеристики кабелей на строительных длинах при температуре +20°C
- Частотные характеристики кабелей пучковой скрутки при температуре +20°C
- Параметры кабеля КСПП
- Нормы изоляции и измерения сопротивления кабелей
- Суть измерений
- Используемые приборы
- Методика испытания
- Допустимые значения
- Контроль над изоляцией
- Требования безопасности
Нормы электрического сопротивления изоляции кабелей связи
Формы протоколов измерения кабеля постоянным током и протоколы измерений оптоволокна можно скачать со страницы «Формы протоколов измерений кабеля». Там же самозаполняющийся протокол
Страница, описывающая импульсный метод измерения кабеля, а так же ней таблицы значений коэффициентов укорочения, а так же проблемы, связанные.
Справочные данные о кабелях связи ТПП и КСПП. Нормы на смонтированные линии связи
Буква «С» в марке КСПП обозначает «Сельский«. О конструктивных особенностях, базовых марках этого типа кабелей на странице → Кабели сельской связи.
Многие нормы и параметры можно найти в «Руководстве по строительству линейных сооружений местных сетей связи, М., 2005». Нормы электрических параметров из этой книжки есть на одноимённой странице. Остальные нормативы можно найти в других разделах «Руководства…» оглавление которого есть на страницах Руководство I и Руководство II.
Так же на сайте размещено Руководство по эксплуатации линейно-кабельных сооружений местных сетей связи. Основная масса справочных материалов размщена в приложениях этой книжки.
Взято из ОСТ 45.83-96, хотя почти тоже самое можно найти в общей инструкции по строительству ЛС ГТС за 1978 год и в ОСТах других стран СНГ:
5 Нормы электрические для абонентских линий городских телефонных сетей
5.1 Электрическое сопротивление 1 км цепей абонентских кабельных линий постоянному току при температуре окружающей среды 20°С, в зависимости от применяемого кабеля, приведено в таблице 1.
Марка кабеля для АЛ ГТС | Диаметр жилы, мм | Электрическое сопротивление 1 км цепи,Ом, не более |
ТПП, ТППэп, ТППЗ, ТППэпЗ,ТППБ, ТППэпБ, ТППЗБ, ТППБГ, ТППэпБГ, ТППБбШп, ТППэпБбШп, ТППЗБбШп, ТППЗэпБбШп, ТППт | 0,32 0,40 0,50 0,64 0,70 | 458,0 296,0 192,0 116,0 96,0 |
ТПВ, ТПЗБГ | 0,32 0,40 0,50 0,64 0,70 | 458,0 296,0 192,0 116,0 96,0 |
ТГ, ТБ, ТБГ,ТК | 0,40 0,50 0,64 0,70 | 296,0 192,0 116,0 96,0 |
ТСтШп, ТАШп | 0,50 0,70 | 192,0 96,0 |
ТСВ | 0,40 0,50 | 296,0 192,0 |
5.2 Значение асимметрии сопротивлений жил АЛ ГТС постоянному току должно быть не более 0,5 % от сопротивления цепи.
5.3 Электрическое сопротивление изоляции 1км жил АЛ ГТС при нормальныхклиматических условиях в зависимости от марки кабеля должно соответствовать требованиям, приведенным в таблице 2.
Марка кабеля для АЛ ГТС | Электрическое сопротивление изоляции 1км жил, МОм, не менее | |||
Срок эксплуатации линии | ||||
ввод в эксплуатацию* | до 5 лет | до 10 лет | св.15 лет | |
ТПП, ТППэп, ТППБ, ТППэпБ, ТППБГ, ТППэпБГ, ТППБбШп, ТППэпБбШп, ТППЗэпБбШп | 5000 | 1000 | 500 | 300 |
ТППЗ, ТППЗБ, ТППЗэпБ | 5000 | 1000 | 800 | 500 |
ТГ, ТБ, ТБГ, ТК для жил с изоляцией: трубчато-бумажной пористо-бумажной | 5000 4000 | 1000 1000 | 400 400 | 200 200 |
*- нормы установлены для линий без оконечных устройств |
5.4 Значение затухания цепей АЛ ГТС на частоте 1000 Гц должно быть не более: 6,0 дБ — для кабелей с диаметром жил 0,4 и 0,5 мм;
5,0 дБ — для кабелей с диаметром жил 0,32 мм.
5.5 Значение переходного затухания между цепями АЛ ГТС на ближнем конце на частоте 1000 Гц должно быть не менее 69,5 дБ.
.
Приложение А (справочное)
Нормы электрические на конструктивные элементы АЛ ГТС
Таблица А.1 Электрические характеристики АЛ ГТС с учетом срока эксплуатации
Марка кабеля для АТС | Сопротивление изоляции жил, МОм | Рабочая емкость, нф/км | ||||
5 лет | 10 лет | 15 лет | 5 лет | 10 лет | 15 лет | |
ТПП ТГ ТППЗ | 1000 1000 1000 | 500 500 800 | 200 200 500 | 50 52 50 | 55 55 50 | 60 60 55 |
Изоляция с оконечными устройствами, то есть с плинтами, должна быть не менее 1000 МОм, причём независимо от длины кабеля. Эта норма есть на странице «Нормы электрические на постоянном токе на неуплотненные находящиеся в эксплуатации кабельные, воздушные и смешанные линии местных сетей связи» в таблице П.4.2 Электрическое сопротивление изоляции токопроводящих жил кабельной линии при температуре плюс 20 °С (чит. примечание) из «Правил технического обслуживания и ремонта линий кабельных, воздушных и смешанных местных сетей связи. 1996г».
В новых инструкциях её не всегда пропечатывают, но кто постаянно с этим работает, знают, если кабель не повреждён наибольшее падение изоляции на плинтах (обычно отсыревших).
• Тема измерения изоляции КЛС неформально, но с учётом опыта раскрыта на странице → Норма изоляции на кабельную линию связи
• Про причины отсыревания плинтов → Отчего отсыревают плинты в ШР, чем сушить, как повысить изоляцию
• Об оконечных устройствах использующихся в проводной на сайте есть раздел «Оконечные устройства для медных кабелей связи«, начало: → Громполоса. Оконечные устройства кросса
Взято из ОСТ 45.83-965.7 :
Нормы электрические на АЛ СТС из дночетверочных кабелей связи типа КСПЗП
5.7.1 Электрическое сопротивление 1км цепи АЛ СТС постоянному току при температуре окружающей среды 20 °С в ависимости от марки применяемого кабеля приведено в таблице 4.
Таблица 4
Марка кабеля для АЛ СТС | Диаметр жилы, мм | Электрическое опротивление 1км цепи.Ом |
КСПЗП | 0,64 | 116,0 |
КСПП, КСПЗП, КСППБ, КСПЗПБ, КСППт, КСПЗПт, КСПЗПК | 0,90 | 56,8 |
5.7.2 Значение асимметрии сопротивлений жил постоянному току цепи кабельной АЛ СТС должна быть не более 0,5% сопротивления цепи.
5.7.3 Рабочая электрическая емкость 1 км цепи должна быть не более: 35нФ — для КСПЗП 1х4х0,64; 38 нФ — для КСПЗП (КСПП) 1х4х0,9.
5.7.4 Электрическое сопротивление изоляции 1 км жил кабельной АЛ СТО в зависимости от марки кабеля и срока эксплуатации приведены в таблице 5.
Марка кабеля для АЛ СТС | Электрическое сопротивление изоляции 1км цепи, МОм,не менее | ||||
Срок эксплуатации линии | |||||
ввод в эксплу- атацию * | до 5 лет | до 10 лет | до 15 лет | свыше 15лет | |
КСПП, КСППБ, КСППЗ | 10000 | 10000 | 8000 | 5000 | 3000 |
КСПЗП, КСПЗПБ, КСПЗПт, КТПЗБбШп | 10000 | 10000 | 10000 | 10000 | 8000 |
* — нормы установлены для линий без оконечных устройств |
5.7.5 Электрическое сопротивление изоляции (оболочки, шланга) 1 км экрана пластмассового кабеля относительно земли в течение всего срока эксплуатации должно быть не менее 1,0 МОм.
Сопротивление изоляции защитного полиэтиленового шланга (для кабелей в стальной или алюминиевой оболочке) — 5 МОм/км. [Общая инструкция по строительству ЛС ГТС 1978год]. Это значение сейчас распространяется и на изоляцию экрана ТПП и даже на броню оптоволоконного кабеля, правда появилась оговорка, что если отыскать повреждение изоляции затруднительно, то допускается значение 1 МОм/км.
Электрические характеристики кабелей связи ТПП, КСПП
Характеристики кабелей марки ТПП
Электрические характеристики кабелей на строительных длинах при температуре +20°C
Наименование характеристики | Длина,м | Частота, кГц | ТПП с диаметром жил,мм | |||
0.32 | 0.4 | 0.5 | 0.7 | |||
Сопротивление 2 токопроводящих жил (шлейфа), Ом, не более | 1000 | постоянный ток | 432±36 | 278±12 | 180±12 | 90±6 |
Сопротивление изоляции жил по отношению к экрану, МОм, не менее | 1000 | постоянный ток | 5000 | 5000 | 5000 | 5000 |
Рабочая емкость пары, нФ, не более | 1000 | 0.8 | 45±8 | 45±8 | 45±8 | 45±8 |
Испытательное напряжение для проверки прочности изоляции в течение 2 мин. между пучком всех жил и экраном, В | 1000 | 0.05 | 1000 | 1000 | 1000 | 1000 |
Испытательное напряжение для проверки прочности мизоляции в течение 2 мин. между жилами рабочих пар,В | 1000 | 0.05 | 1000 | 500 | 500 | 500 |
Коэффициент затухания пары, дБ, не более | 1000 | 0.8 | 1.74 | 1.566 | 1.262 | 0.86 |
250 | — | 11.12 | 9.22 | 6.35 | ||
Модуль волнового сопротивления, Ом | — | 0.8 | 1350 | 980 | 895 | 670 |
550 | — | 132 | 112 | 112 |
Частотные характеристики кабелей пучковой скрутки при температуре +20°C
Частота, кГц | Изоляция сплошная полиэтиленовая, диаметр жил 0.4, четверочнаяскрутка | Изоляция сплошная полиэтиленовая, диаметр жил 0.5, парная скрутка | Изоляция сплошная полиэтиленовая, диаметр жил 0.5, четверочная скрутка | Изоляция сплошная полиэтиленовая, диаметр жил 0.7, четверочная скрутка | ||||
Коэф. затухания, дБ/км | Модуль волнового сопрот.,Ом | Коэф. затухания, дБ/км | Модуль волнового сопрот., Ом | Коэф. затухания, дБ/км | Модуль волнового сопрот., Ом | Коэф. затухания, дБ/км | Модуль волнового сопрот., Ом | |
0.8 | 1.44 | 1164 | 1.23 | 893 | 1.16 | 947 | 0.82 | 676 |
3.0 | 2.73 | 602 | 2.38 | 461 | 2.18 | 488 | 1.51 | 351 |
5 | 3.51 | 467.0 | 2.95 | 356.5 | 2.74 | 375.0 | 1.87 | 275.0 |
10 | 4.72 | 331.4 | 3.96 | 255.5 | 3.65 | 272.1 | 2.38 | 201.0 |
20 | 6.17 | 238.5 | 5.09 | 185.5 | 4.65 | 200.5 | 2.78 | 158.2 |
50 | 8.02 | 168.6 | 6.37 | 135.3 | 5.71 | 152.8 | 3.45 | 138.1 |
100 | 9.07 | 145.3 | 7.15 | 121.8 | 6.48 | 139.8 | 4.21 | 132.9 |
150 | 9.74 | 139.4 | 7.64 | 117.4 | 7.00 | 137.0 | 4.88 | 131.5 |
200 | 10.49 | 137.1 | 8.37 | 116.0 | 7.87 | 135.2 | 5.67 | 130.4 |
250 | 11.12 | 135.7 | 9.22 | 115.1 | 8.70 | 134.5 | 6.35 | 129.0 |
300 | 12.08 | 135.0 | 10.01 | 114.3 | 9.48 | 133.8 | 6.96 | 128.0 |
350 | 12.70 | 134.0 | 10.70 | 113.6 | 10.08 | 133.0 | 7.48 | 127.0 |
400 | 13.57 | 133.7 | 11.31 | 113.0 | 10.79 | 132.5 | 8.11 | 125.0 |
500 | 15.05 | 132.9 | 12.62 | 112.4 | 11.75 | 131.8 | 8.96 | 125.0 |
600 | 16.31 | 131.5 | 13.75 | 111.8 | 12.81 | 131.2 | 9.79 | 125.0 |
700 | 17.40 | 131.6 | 14.70 | 111.1 | 13.92 | 130.8 | 10.61 | 125.0 |
800 | 18.53 | 131.3 | 15.66 | 110.5 | 14.79 | 130.0 | 11.31 | 124.8 |
1000 | 20.71 | 130.5 | 17.40 | 109.9 | 16.18 | 129.7 | 12.62 | 124.0 |
1500 | 23.93 | 129.9 | 21.06 | 108.5 | 20.01 | 128.9 | 15.68 | 123.1 |
2000 | 28.58 | 129.5 | 23.88 | 107.2 | 22.62 | 127.0 | 18.28 | 121.5 |
2500 | 32.07 | 128.3 | 26.36 | 106.5 | 24.88 | 126.5 | 20.53 | 121.0 |
Примечание. Разброс значений коэффициента затухания во всем спектре частот ±5%, а модуля волнового сопротивления ±6%.
Параметры кабеля КСПП
Буква «С» в марке КСПП обозначает «Сельский«.
В приложениях к Руководству по эксплуатации линейно-кабельных сооружений местных сетей связи есть так же конструкционные данные на на саые распространённые кабеля связи
Источник
Нормы изоляции и измерения сопротивления кабелей
Во многом безопасность электрической сети определяется качеством изоляции. Периодическое ее испытание позволяет предотвратить возникновение различных аварий и даже поражение током живого организма. Суть тестирования заключается в замере сопротивления изоляции с помощью специальных приборов. Любое отклонение от требуемых норм является причиной замены или ремонта электрооборудования.
Суть измерений
Под сопротивлением изоляции понимается способность материала не пропускать через себя электрический ток. Для каждого диэлектрика, в зависимости от места использования, установлены свои нормативные требования. Периодичность проверки и необходимые значения указываются в «Правилах устройства электроустановок» (ПУЭ) и в «Правилах технической эксплуатации электроустановок потребителями» (ПТЭЭП).
Все виды испытаний можно условно разделить на три группы:
- проводимые производителем на заводе;
- выполняемые непосредственно на объекте после модернизации или проведения ремонта;
- запланированные согласно требованиям правил безопасности и нормам.
Возможные повреждения, кроме заводских дефектов, чаще всего возникают из-за условий эксплуатации. Это воздействие сверхтоков, вызывающих перегрев защитной оболочки, влияние химических реагентов, механические разрывы, вызванные как ошибками монтажа, так и грызунами. Цель измерений заключается в предотвращении поражения человека электрическим током и обеспечения пожарной безопасности.
Повреждение изоляции вызывает пробой. Это ситуация, при которой между двумя изолированными друг от друга проводниками появляется электрический контакт. Например, между рядом лежащими проводами в кабеле или при прикосновении человека к частям электроустановки. Обычно при пробое наблюдается прожженное отверстие и изменение цвета изоляционного материала. В основе механизма пробоя твердого диэлектрика лежит электронный лавинообразный процесс. Наступает он из-за образования в материале так называемого плазменного газоразрядного канала.
К измерению изоляции допускается только специалист, имеющий удостоверение о проверке знаний и группу допуска не ниже третьей, если замеры проводятся в сети с напряжением до 1 кВ, и не ниже четвертой — при измерении выше 1 кВ.
После завершения измерения электрического сопротивления изоляции, полученные результаты обрабатываются и делается вывод о возможности дальнейшей эксплуатации сети. Так, большое значение для достоверности результата имеет температура окружающей среды. Нормирование измерений в ПУЭ указано для 20 °C, поэтому если работы выполняют при другой температуре, то полученные данные пересчитывают по формуле: R=K*Rиз, где K — коэффициент приведения указанный в дополнениях к ПУЭ.
Используемые приборы
Приборы, с помощью которых проводят измерения, условно разделяются на две группы: щитовые измерители и мегомметры. Первые применяются с подвижными или стационарными электроустановками с отдельной нейтралью. В типовую конструкцию приборов контроля изоляции щитовой входит индикаторная и релейная часть. Эти измерители могут работать в непрерывном режиме и использоваться в сетях переменного напряжения 220 В или 380 В разной частоты.
В большинстве же случаев проведение измерений осуществляется мегомметром. Его отличие от обыкновенного омметра в том, что он работает с довольно высокими значениями напряжения, которые прибор сам и генерирует. Существует два типа мегомметров:
- Аналоговые. В них для получения необходимой величины напряжения используется механический генератор, представляющий собой динамо-машину. Этот тип часто называют «стрелочным» из-за наличия градуированной шкалы и динамической головки со стрелкой. В принципе измерения лежит магнитоэлектрический эффект. Чем больше значение тока протекает через катушку, тем, в соответствии с законом электромагнитной индукции, на больший угол отклоняется и стрелка. Приборы относятся к простому типу устройств с хорошей надежностью. На сегодня уже морально устарели, так как обладают значительной массой и габаритами.
- Цифровые. В схеме современного устройства используется мощный генератор сигнала, собранный на интегральной микросхеме (ШИМ контроллер) и полевых транзисторах. Дискретные мегомметры, в зависимости от своей конструкции, могут работать от сетевого адаптера или независимого источника питания, например, аккумуляторной батареи. Результаты выводятся на жидкокристаллический дисплей. Работа построена на сравнении измеренного сигнала с эталонным и обработкой данных в специальном блоке — анализаторе. Прибор обладает небольшим весом и размерами, но для работы с ним необходима определенная квалификация.
Главным параметром, характеризующим работу измерителя, является погрешность выдаваемого результата. Кроме того, к его основным техническим параметрам относят: пределы сопротивления, величину генерируемого напряжения, температурный диапазон.
Методика испытания
Для того чтобы правильно измерить сопротивление изоляции, необходимо подготовить как предмет испытаний, так и сам прибор. Температура в помещении должна находиться в пределах 25±10 °C с относительной влажностью не более 80%. Перед началом работ следует отключить измеряемый объект от питающей сети. Убедиться в том, что на отключенной линии не выполняются работы и никто не прикасается к токоведущим частям. Все предохранители, лампы и тому подобные электрические приборы должны быть сняты.
Перед испытанием с отключенных токоведущих частей снимается остаточный заряд. Делается это путем их соединения с шиной заземления. Контактная перемычка убирается только после подключения измерителя. По окончании испытания остаточный заряд снова снимается кратковременным восстановлением заземления.
В стандартную комплектацию мегомметра входит три щупа. К ним подключается: защитное заземление, тестируемая линия, экран. Последний используется для исключения токов утечки.
Методику измерения можно представить следующим образом:
- В соответствии с требованиями ПУЭ, предъявляемыми к линии, выбирается тестовое напряжение. Например, для домашней проводки устанавливается значение от 100 В до 500 В. При работе с цифровым прибором для этого необходимо нажать кнопку «Тест», а на аналоговом покрутить ручку до того момента, пока индикатор не сообщит о появлении нужной величины напряжения.
- Линейный вывод тестера подключается к проверяемой жиле кабеля, а земляной — к остальным проводам, объединенным в жгут. То есть каждая жила проверяется относительно остальных проводов, электрически связанных между собой.
- Каждая жила испытывается относительно земли, при этом остальные провода к заземлению не подключаются.
- Если полученные данные оказываются неудовлетворительными, то измерения проводят отдельно для каждой жилы по отношению ко всем взятым проводникам в кабеле.
- Все полученные значения записывают, а затем их сравнивают с нормами ПУЭ и ПТЭЭП.
Следует отметить, что если по каким-либо причинам в низковольтной сети перед испытанием отключить нагрузку не представляется возможным, то замер фазного и нулевого проводников проводится только относительно РЕ (земли). При этом рабочие нули следует отключить от нейтральной шины. Если же это не выполнить, то полученные данные для любого провода будут одинаковы и равны сопротивлению проводника с наихудшими параметрами.
Допустимые значения
Минимальное показание измеренных напряжений должно быть выше нормированных значений. Необходимая величина сопротивления закладывается заводом изготовителем кабельной или электротехнической продукции, согласно действующим техническим условиям.
Выпускаемая электротехническая продукция различается на несколько типов и бывает: общего применения, силовой, контрольной и распределительной. Между собой изделия разделяют не только по физическим характеристикам, но и конструктивным. Их разнообразие обусловлено средой окружения, в которой они используются. Например, кабель, предназначенный для прокладки в земле, усиливается металлической лентой и состоит из нескольких слоев изоляции.
Измеряется сопротивление изоляции в Омах. Но из-за больших величин с показателем всегда используется приставка мега. Указываемое число обычно рассчитано для определенной длины, чаще всего это километр. Если же длина меньше, то просто выполняется перерасчет.
Для кабелей, использующихся в связи и передающих низкочастотный сигнал, сопротивление изоляции, должно быть не менее 5 тыс. МОм/км. А вот для магистральных линий — выше 10 тыс. МОм/км. Но при этом всегда минимальное необходимое значение указывается в паспорте на изделие.
В общем же случае приняты следующие нормы сопротивления изоляции:
- кабель, проложенный в помещении с нормальными условиями окружающей среды, — 0,50 МОм;
- электроплиты, не предназначенные для переноса, — 1 МОм;
- электрощитовые, содержащие распределительные части и магистральные провода, — 1 МОм;
- изделия, на которые подается напряжение до 50 В, — 0,3 МОм;
- электромоторы и другие приборы, работающие при напряжении 100−380 вольт, — 0,5 МОм;
- устройства, подключаемые к электрической линии, предназначенной для передачи сигнала с амплитудой до 1 кВ, — 1 МОм.
Для кабелей, подключенных к силовым линиям, действует немного другая норма. Так, провода, используемые в электрической сети с напряжением более 1 кВ, должны иметь значение сопротивления не менее 10 МОм. Для остальных же, кроме контрольных, минимальный порог снижен вдвое. Для контрольных проводов норматив требует значение сопротивления не менее 1 МОм.
Контроль над изоляцией
Сопротивление изоляции относится к важному параметру электротехнической продукции. Именно от нахождения параметра в установленных нормах зависит безопасность работы. Поэтому важно периодически замерять величину, вовремя выявляя отклонения. Кроме того, для промышленных объектов предусмотрена обязательная периодичность проведения измерений.
В соответствии с установленными нормами и правилами, измерения изоляции должны осуществляться:
- для передвижных или переносных установок не реже одного раза в полугодии;
- для внешних приборов и кабелей наружной прокладки, а также в помещениях с повышенной опасностью — не менее одного раза в год;
- для всех остальных случаев не реже одного раза в три года.
То есть в помещениях, например, таких как офис, магазин, школа, измерение на сопротивление должно выполняться не реже одного раза в 36 месяцев. После окончания испытаний в обязательном порядке составляется акт, в котором указываются измеренные данные. Если замеры неудовлетворительные, то электрический участок выводится в ремонт до момента его приведения к требуемым нормам.
Требования безопасности
Одно из основополагающих правил при исследовании изоляции заключается в том, что приступать к работе, не удостоверившись в отсутствии напряжения на измеряемом участке, нельзя. Прибор, используемый для испытаний, должен быть поверенным или хотя бы быть сертифицированным.
Использовать необходимо лишь только тот мегомметр, выдаваемое напряжение которого соответствует установленным нормам. Так, для сетей или оборудования с напряжением до 50 В, используется тестер, выдающий 100 В. Применение прибора с меньшим значением не даст правдивости информации о состоянии участка, а большего — может привести к повреждениям.
Измерение сопротивления мегомметром необходимо выполнять только на отключенных токоведущих частях, с обязательным снятием остаточного заряда. При этом заземление с токопроводящих частей снимается лишь после подключения тестера. Соединительные провода подсоединяются с помощью изолирующих штанг. При работе прикасаться к токоведущим частям, даже в диэлектрических перчатках, запрещено.
Источник