Можно ли наращивать кабель пожарной сигнализации

ПРОКЛАДКА КАБЕЛЯ ПОЖАРНОЙ СИГНАЛИЗАЦИИ

Вопрос прокладки кабелей пожарной сигнализации (ПС) казалось бы достаточно прост – читаем нормативные документы и выполняем монтаж проводки пожарной сигнализации в соответствии с определенными там нормами и правилами.

Однако, путаница, неопределенность и, в некоторых случаях, алогичность существующей документации реально напрягают человека, пытающегося грамотно выполнить монтаж шлейфа пожарной сигнализации.

Но разобратьcся можно, что мы сейчас и попытаемся сделать. За основу возьмем следующие документы:

  • СП 6.13130.2009 – Системы противопожарной защиты. Электрооборудование. Требования пожарной безопасности;
  • РД 78.145-93 – руководящий документ «Системы и комплексы охранной, пожарной и охранно-пожарной сигнализации. Правила производства и приемки работ»;
  • пособие к РД 78.145-93.

Что касается РД 78.145-93, то с ним ситуация не определенная, то ли оно отменено, то ли нет, но, в любом случае, разумной альтернативы этому документу на сегодня не существует.

Дело в том, что многие положения, касающиеся монтажа сигнализации «кочуют» из одного документа в другой, иногда с незначительными изменениями, иногда без таковых. В частности, в указанном РД можно встретить положение тогдашних ПУЭ, которые и сейчас не сильно изменились.

Так что воспользуемся тем что есть и поэтапно определим нужные действия.

СП 6.13130.2009 однозначно определяет тип проводов для систем:

Всевозможные ссылки на ГОСТы, определяющие методику испытаний и пр. нам не интересны – пусть голова на эту тему болит у производителя кабельной продукции. Нам важна маркировка и мы ее получили. Конечно, можно поинтересоваться сертификатом и документами на соответствие этим самым ГОСТам – лишним не будет.

Читайте также:  Перенос силового кабеля для электроплиты

Добавлю, что диаметр жилы должен быть не менее 0,5 мм.

2. Способы прокладки.

Что следует знать:

Идем далее и смотрим пособие к РД:

«12.11. Открытую прокладку незащищенных изолированных проводов и кабелей . следует выполнять . на высоте не менее 2 м от уровня пола или площадки обслуживания.»

В противном случае кабели и провода прокладываются в коробах, трубах или гофрошланге. Это требование, кстати, взято из ПУЭ и касается обеспечения механической защиты от повреждений и не более того.

Поскольку в системах пожарной сигнализации используется огнестойкий провод, то рассматривать варианты прокладки по сгораемым и не сгораемым конструкциям нет смысла – можем осуществлять монтаж непосредственно по несущим стенам и потолкам.

Еще насколько правил, касающихся расположения шлейфов пожарной сигнализации:

  • на расстоянии не менее 50 см от силовых линий при параллельной прокладке;
  • пересечение силовых проводов по углом 90 о .

Что касается пересечений с трубопроводами, то расстояние в свету между ними и проводами – не менее 50 мм, в противном случае на кабель надевается дополнительная изоляция.

Не буду перечислять все возможные варианты – они есть в п.12 пособия к РД, ссылка на скачивание дана выше.

Крепление проводов при открытой прокладке к стенам и потолку следует выполнять с шагом, исключающим их провисание. Как правило, эту величину принимают в пределах 30-50 см.

Что касается способа крепления, то это могут быть скобы, нейлоновые стяжки через монтажные пластины, дюбель- хомуты и пр. Предложений крепежа на сегодня достаточно.

Главное – соблюсти требование СП 6.13130.2009:

Таковы основные требования нормативных документов к прокладке кабеля пожарной сигнализации.

ЧАСТО ВСТРЕЧАЮЩИЕСЯ ВОПРОСЫ ПО ПРОКЛАДКЕ КАБЕЛЕЙ И ПРОВОДОВ ПОЖАРНОЙ СИГНАЛИЗАЦИИ

Допускается ли открытая прокладка кабеля пожарной сигнализации?

Да, главное взять нужный провод и соблюсти требования, изложенные ранее.

Бытует мнение, что монтаж пожарных шлейфов следует выполнять исключительно в гофрошланге и коробах. В нормативных документах по пожарной безопасности я такого требования не нашел.

Скорее всего, «ноги растут» из ПУЭ, но это касается, как уже писалось выше, механической защиты открытых проводок, а никак не противопожарных требований. Более того: лишняя гофра – лишняя пожарная нагрузка.

Таким образом, прокладка пожарной сигнализации в гофре не является обязательным требованием.

При групповой прокладке нескольких шлейфов использование гофрошланга или короба может быть оправдано с целью удобства (экономии сил и времени на креплении проводов).

Совместная прокладка кабеля пожарной сигнализации – нормы и правила.

В принципе, ответ должен быть ясен из материала изложенного выше. Совместно могут прокладываться только провода пожарной сигнализации, причем, слаботочные. В одном пучке с ними силовой кабель размещать нельзя.

Однако, если используются кабельные линии резервирующие друг друга, то их совместная прокладка запрещена ПУЭ.

Возможна ли параллельная прокладка кабелей пожарной сигнализации?

Сколько угодно, если это выполняется не совместно с силовыми цепями. Более того, однорядная параллельная прокладка как групповая ПУЭ не трактуется, соответственно и ограничения на нее как на групповую отсутствуют.

В заключении хочется сказать: помимо соблюдения норм и правил прокладки старайтесь все делать красиво.

Разводите кабельные трассы не по диагонали помещения, а параллельно стенам с поворотами под прямым углом и все у вас будет замечательно.

© 2014-2022 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер, могут выражать мнение автора и не подлежат использованию в качестве руководящих и нормативных документов.

Источник

Правильная прокладка кабелей пожарной сигнализации – выбор материала под внешние требования

Бесперебойная и информативная работа извещателей пожарной сигнализации обеспечивается специальными проводами, сведенными в шлейфы. Требования, которым должен соответствовать пожарный кабель, его разновидности, способы прокладки и монтажа регламентируются нормативными документами: СНиП 2.04.09-84 «Пожарная автоматика…», СНиП 3.05.06-85, ВСН 116-87 и ФЗ №123 от 10.07.2012 г. и некоторыми другими.

Требования, предъявляемые к кабелям пожарной сигнализации

Термоизоляционный слой кабеля должен выдерживать открытое [link_webnavoz]пламя[/link_webnavoz] и температуру заданное расчетное время, которое необходимо для эвакуации персонала и посетителей. Весь этот период параметры электроснабжения и передачи данных должны быть выше минимально необходимых для функционирования элементов пожарной сигнализации.

Прокладка кабелей пожарной сигнализации совместно с другими допускается при наличии дополнительной общей обмотки термостойкими материалами, или укладки в специальные термокороба.

При прокладке кабеля через стены должна учитываться огнеопасность материала несущих и облицовочных конструкций. Все проходки должны быть дополнительно защищены термостойкими герметиками. Преимущественно [link_webnavoz]практикуется монтаж[/link_webnavoz] в металлической гофре.

Соответствие следующим требованиям:

  • При воздействии огня выделяется минимальное количество дыма и токсичных продуктов распада;
  • Невысокая коррозионная активность;
  • Материал препятствует распространению огня. Обмотка плавиться, не разбрасывая искры.

Классы огнеопасности защищенного провода

Рекомендуется применять термокабель для пожарной [link_webnavoz]сигнализации[/link_webnavoz], паспорт которого имеет следующую маркировку:

  • НГ – (негорючий) в зависимости от марки может иметь огнестойкость от A до D;
  • LS – маркировка кембрика или прокладки, которую устанавливают поверх основной изоляции на участках, проходящих через взрывоопасную зону;
  • HF– изоляционный материал, не выделяющий дым, или другие испарения при воздействии открытого огня или высокой температуры. Дополнительно обладает высокими антикоррозионными показателями. Рекомендуется для монтажа совместно с другими силовыми или информационными кабелями.

Разновидности огнестойкого и огнеупорного кабеля

По изоляционному материалу негорючий кабель для пожарной сигнализации бывает следующих типов:

Стеклослюденит – наиболее эффективная изоляция. Обмотка кабеля лентами из этого материала позволяет выдерживать температуру до 700°С без потери основных свойств в течение 3 часов.

Металлизированная магнезиальная изоляция – сохраняет работоспособность кабеля под прямым пламенем на протяжении 2,5 3 часов.

Кремнийорганическая резина – до начала реакции ее характеристики идентичны обычной резиновой изоляции. Под воздействием температуры керамезируется без выделения дыма. Керамическое покрытие достаточно прочное и надежное, что позволяет функционировать кабелю длительное время.

Эксплуатационные характеристики кабеля в кремнийорганической изоляции несколько хуже чем в обычной резиновой. В частности, радиус изгиба значительно больше.

На данный момент на рынке наиболее популярна кабельно-проводниковая термостойкая продукция YnKY и N2XH. Одни из самых эффективных марок в безгалогенной оплетке:

  • FLAME-X950 (N)
  • FLAME-X 950 (N)HXH
  • HXH FE180/E30
  • FE180/E90.

Из продукции отечественных производителей можно отметить модели ВВГнг и ВВГнгд и некоторые другие.

Особенности монтажа кабеля в помещении

[link_webnavoz]Прокладка кабеля[/link_webnavoz] для систем пожарной сигнализации производится в соответствии с ВСН 116-87 и ПУЭ:

  • Наращивание кабелей, по которым передается информация в пределах одного шлейфа запрещена;
  • Разрешено использование исключительно медных проводов. Применение кабелей с броневой и термостойкой обмоткой целесообразно в помещениях с высокой вероятностью возгорания, в иных случаях рекомендуется применении обычных кабелей;
  • Учитывая значительный вес термостойких проводов, воздушная прокладка выполняется с использованием стального троса в качестве основания. При этом следует исключить провисание;
  • Необходимо предусмотреть припуск 10% на термическую усадку.

Минимальный диаметр медного многожильного кабеля составляет 0,5 мм, максимальное сечение определяется в соответствии с коэффициентом падения напряжения в сети.

Провода, которые используются для систем оповещения, контроля и управления приборами пожаротушения должны размещаться на расстоянии 0,5 м от силовых линий для предотвращения возникновения помех и паразитарных наводок. Допускается размещение в одном металлическом экранированном коробе при условии наличия в нем дополнительной внутренней перегородки.

Монтаж в пустотах стен за подвесным потолком или под подиумным полом допустим только в случае применения металлической гофры.

Прокладку провода вне здания рекомендуется осуществлять в земле, при невозможности этого необходимо постараться размещать линии под навесами для максимальной защиты от внешней среды.

Технический осмотр производится каждый квартал. Во время осмотра визуально определяется целостность изоляционного покрытия. При постоянном ложном срабатывании шлейф, который подключен к сработавшему прибору, дополнительно прозванивается , чтобы установить причину сбоев. Если есть подозрения, что сбоит силовая линия, ее основные параметры замеряются универсальным тестером.

Как нарастить кабель для пожарной сигнализации? Наращивание шлейфов, по которым идет информационный поток категорически не допускается. Можно соединять только силовые линии. Происходит это по следующее схеме:

  1. Длина концов проводника подгоняется со сдвигом 2-3 см на каждый проводник;
  2. Провода оголяются, с них снимается изоляция на 1-1,5 см в зависимости от мастерства электрика;
  3. Выполняется прямая взаимная перекрестная скрутка. Для одножильного провода достаточно 2 витка с каждой из сторон, для многожильного не меньше 5;
  4. В обязательном порядке наносится припой;
  5. Благодаря сдвигу жилы можно не изолировать по отдельности, все они обматываются изолентой совместно.

В качестве изолирующего материала необходимо брать [link_webnavoz]термостойкую[/link_webnavoz] изоленту. Стекловолоконную ленту, обработанную кремнийорганическим лаком марки К-44 или цапон-глифталевым клее-изолирующим составом.

Еще одним примером является термостойкая лента марки ЛЭТСАР из радиовулканизационной кремний органической резины. Представленные изделия применяются, когда необходимо выполнить наращивание кабеля в условиях, когда необходима высокая теплостойкость.

Как заземлить экран кабеля пожарной сигнализации? Во многих моделях безгалогенового термостойкого кабеля предусмотрены провода заземления и алюминиевая фольга в виде изоляции. Заземление может выполняться различными способами как указано в схеме:

Источник

ООО «Кварта»

ООО «Кварта» » Сигнализация » Cоединение проводов в системах ОПС

Cоединение проводов в системах ОПС

Автор: admin от 16-01-2012, 09:03, посмотрело: 11513

В системах пожарной и охранной сигнализаций используется большое количество электрических соединений, как разъемных, так и неразъемных, как постоянных, так и временных. Значительную часть расходов на установку проводной сигнализации составляют расходы на монтаж и соединение компонентов в систему с помощью электрических соединителей и электромеханических сочленений деталей и узлов.

А большинство повреждений в системе обусловлено, как правило, плохим качеством электрических соединений. Ведь, как утверждают все электрики и электронщики, в их деле могут быть только две неисправности: нет контакта там, где он должен быть, и есть контакт там, где быть его не должно.

Если в компонентах систем сигнализации значительную часть от всех соединений радиокомпонентов между собой составляют паяные соединения, то построение систем осуществляется, большей частью, с помощью соединений без нагрева – непаяных или, иными словами, холодных соединений. Такие соединения выполняются при комнатной температуре, без нагрева составляющих материалов.

При этом зачищенные провода, предназначенные для соединений, прижимают друг к другу с такой силой, чтобы обеспечить как можно большую площадь контакта соприкасающихся поверхностей, а сами проводники при этом подвергаются деформации. Как известно, основное требование для таких соединений заключается в том, чтобы они имели максимальную и постоянную во времени проводимость [1].

Для выполнения данных требований необходимо обеспечить ряд условий:

— применять для соединителей материалы с необходимой удельной проводимостью;

— обеспечивать максимальные размеры контактирующих поверхностей;

— обеспечивать чистоту и коррозионную стойкость этих поверхностей;

— обеспечивать соответствующие контактные усилия.

Как уже отмечалось, использование в системах сигнализации большого числа непаяных соединений приводит к снижению эксплуатационной надежности таких систем. Соединение проводников – это неотъемлемый, но очень уязвимый элемент проводных систем сигнализации.

Поэтому основной задачей в области конструирования и производства компонентов систем пожарной и охранной сигнализации и, в частности, элементов их внешних соединений является использование новых технических решений, приводящих к повышению надежности таких соединений.

Можно выделить, по крайней мере, три группы непаяных соединений, которые широко используются при построении шлейфов сигнализации:

— соединения проводников между собой, когда необходимо обеспечить соединение нескольких проводников в одну цепь, или кабелей с попарным подключением проводников, а также соединения токопроводящих шин и т.д.;

— соединения проводников с элементами, установленными на печатных платах, – именно так обеспечивается подключение шлейфов сигнализации к приемно-контрольным приборам и к некоторым извещателям;

— соединения, с помощью которых провод может быть механически и электрически прикреплен к соединительному элементу, например, к контакту базы съемного извещателя.

Традиционным и, можно сказать, неискоренимым способом обеспечения контакта между проводниками в шлейфе сигнализации является скручивание концов проводов со снятой изоляцией (рис. 1).

Поскольку на единицу поверхности контактирующих проводников приходится относительно малое усилие сжатия, а напряжение в шлейфах пожарной сигнализации не превышает 30 В, то такие соединения не обеспечивают качественного контактирования длительное время. Особенно подвержены коррозийному воздействию окисляющиеся поверхности луженых проводников.

Улучшить качество электрического контакта в скрутках можно с помощью соединительных изолирующих зажимов (СИЗ) – специальных металлических втулок с внутренней конусной резьбой и внешним изоляционным покрытием. Лучшие показатели имеет СИЗ, содержащий пластмассовый наконечник, вовнутрь которого впрессована конусная спираль из фосфористой бронзы. Такой СИЗ, представленный на рисунке 2, накручивается по часовой стрелке на скрутку из двух и более проводников, как одножильных, так и многожильных.

Он позволяет с одной стороны увеличить усилие сжатия проводников, а с другой стороны, конусная спираль, врезаясь в проводники, разрушает окисный слой, но из-за малого усилия сжатия качество такого соединения уступает соединениям, выполненным винтовыми клеммами. Для нормального использования СИЗ нужно правильно выбирать его типоразмер и зачищать проводники на такую длину, чтобы все оголенные части этих проводников оказались внутри изоляционного покрытия (рис. 3).

В распределительных коробках широко применяются не менее традиционные винтовые соединители. При таких соединениях усилие сжатия возникает при затяжке винта благодаря наличию резьбового усилия. Для обеспечения снижения переходного сопротивления необходимо, чтобы соприкасающиеся поверхности не были гладкими.

Необходимо также помнить, что при затягивании винта в проводе происходит пластическая деформация, и она не завершается непосредственно после завинчивания винта. Текучесть материала провода медленно продолжается и дальше (особенно при колебаниях температуры), что может привести к ослаблению соединения.

Известно также и то, что текучесть олова значительно больше, чем у меди. Именно поэтому не рекомендуется лудить проводники, особенно многожильные, перед их установкой в винтовые зажимы. При конструировании электрических зажимов необходимо неукоснительно соблюдать международные нормативные требования, в частности, МЭК 60999-1-99, NFPA 72 [2, 3].

Так, приведенные на рисунке 4 (Figure A.5.4.6(a) NFPA-72) примеры с правильными и неправильными винтовыми электрическими соединениями в шлейфах сигнализации наглядно показывают типичные ошибки монтажа электрических соединений.

Жаль, что нет таких примеров в российском своде правил по монтажу установок пожаротушения и сигнализации.

Как в электротехнике, так и в слаботочных цепях сигнализации хорошо зарекомендовали себя винтовые клеммные рейки. Они производятся под разные сечения проводников. Каждый контакт рейки представляет собой металлическую втулку, заключенную в твердую или в гибкую пластмассу, где с помощью двух винтов зажимаются концы проводников со снятой изоляцией. Клеммные рейки допускают как их расчленение, так и объединение в необходимое количество контактных групп.

Пример распределительной коробки с клеммными рейками для шлейфов сигнализации представлен на рисунке 5.

В центре этой коробки расположен тамперный контакт – при вскрытии корпуса коробки контакт размыкается. Недостатком указанных соединений является то, что проводник зажимается между неподвижной и вращающейся поверхностями, что может привести к рассеканию тонких многожильных проводников.

Улучшить качество электрических соединений могут терминальные блоки, у которых проводник зажимается двумя пластинами под действием нажимного усилия. Пример использования таких терминальных блоков в распределительной коробке представлен на рисунке 6

Вторая группа электрических соединений обеспечивает соединение проводников с элементами, установленными на печатных платах. Преобладают в этой группе терминальные блоки с винтовыми соединителями, которые впаиваются в печатные платы, а также комбинированные – винтовые и разъемные соединители. Последние имеют очевидное преимущество при большом количестве подключаемых проводников.

Если при конструировании печатной платы изделия такие блоки объединить попарно в группы из 6 контактов, то при проведении технического обслуживания или ремонта группу терминальных блоков с присоединенными к ним проводниками можно отключить от печатной платы как обычный разъем. Примеры винтовых и комбинированных соединителей, примененных в приборах приемно-контрольных пожарных, представлены на рисунках 7 и 8.

Очевидно, что комбинированные соединители, представленные на рисунке 8, имеют очевидные преимущества перед предыдущей моделью, которые проявляются при монтаже и демонтаже блоков.

Типичным винтовым электротехническим соединением является соединитель, в котором проводник прижимается к электропроводящей поверхности с помощью квадратной гайки. Такие соединители применяются как в коробках распределительных (рис. 9), так и в пожарных извещателях (рис. 10) [4].

В таких устройствах проводники шлейфа сигнализации зажимаются между проводником печатной платы и квадратной гайкой. Направление хода квадратных гаек обеспечивается нишами в пластмассовом корпусе устройства.

Особое разнообразие электрических контактных соединителей наблюдается в узлах подключения пожарных извещателей, как съемных, так и несъемных. Ни в одном из действующих стандартов, в которых приводятся основные определения и термины в пожарной сигнализации, ни в украинском ДСТУ 2273, ни в российском ГОСТ Р53325, ни в европейских EN 54-1, ISO 7240-1, ISO 8421-3, нет ни названий, ни определений частям съемного извещателя.

С другой стороны, в ДСТУ EN 54-7 используются понятия: “база” и “головка извещателя”, но без определений.

Считаю возможным предложить следующие определения:

— активная часть – составная съемная часть пожарного извещателя, которая может быть отделена от базы для контроля, технического обслуживания или замены;

— база – составная съемная часть пожарного извещателя, которая используется для механического крепления на месте установки активной части и служит для согласования и электрического подключения ее к шлейфу пожарной сигнализации. Пожарный извещатель может не содержать базы, если крепление, согласование и подключение к шлейфу осуществляется непосредственно на нем.

На базах съемных извещателей применяются разнообразные винтовые соединения для подключения проводников шлейфа к контактам базы, которые, в свою очередь, обеспечивают разъемное соединение с активной частью. Доказательства необходимости использования съемных пожарных извещателей и их баз, как в советских, так в российских и импортных извещателях, можно найти в статье Неплохова И. Г. [5].

Изначально к разным дымовым пожарным извещателям, которые делались съемными, предлагалась единая база.

Внешний вид универсальной базы (тогда ее называли розеткой) представлен на рисунке 1 статьи [5]. Именно с такой базой производились первые пожарные извещатели в Обнинске и в Саратове, в Виннице и в Черновцах.

Для подключения проводников шлейфа к контактам базы применялись либо простые шайбы, установленные под головку винта, либо квадратные шайбы с “хоботком”, отогнутым за край контакта. Этот “хоботок” должен был препятствовать повороту шайбы при подключении проводников и элементов шлейфа пожарной сигнализации. Нередко такую шайбу изготавливали из другого, более прочного материала, чем контакты базы.

Далеко не всегда эти материалы были электрохимически совместимы, что приводило к коррозии металлов. Как выглядит такая база после нескольких лет хранения в шкафу офисного помещения, можно увидеть на рисунке 11.

Проблеме качества электрического соединения активной части пожарного извещателя с базой посвящена статья Маслова И. А. [6].

Повысить качество электрического соединения проводника шлейфа пожарной сигнализации с контактом базы позволяет техническое решение по патентам на изобретение UA85211 и на полезную модель RU67783. На рисунке 12 представлен контакт базы съемного пожарного извещателя с одним ограничителем, который выполнен из материала контакта базы как одно из решений по приведенным патентам.

На рисунке 13 представлен разрез такого контакта по линии А-А. Проводник шлейфа зажимается винтовым соединителем между контактом базы и квадратной шайбой. Ограничитель, выполненный на контакте базы, обеспечивает ограничение пространства для проводника шлейфа, а также ограничивает квадратную шайбу от проворота.

Другое техническое решение винтовых соединителей по данным патентам было реализовано в конструкции уже следующей базы пожарного извещателя, представленной на рисунке 14. В этом изделии реализовано еще два изобретения по патентам UA83277 и UA87554, а также по патентам RU2317620 и RU23164941.

Первое из них позволяет существенно сократить расход цветного металла, применяемого в контактах базы за счет формы лепестка контакта. Второе изобретение позволяет не только сократить вес базы, но и создать новую базу для двухточечного пожарного извещателя (рис. 15), что становится возможным при использовании контактов базы в форме клюшки. В этом случае существенно расширяется отверстие в центре базы, и оно позволяет беспрепятственно пропускать через него верхний сенсор двухточечного извещателя.

Проблеме улучшения качества электрического соединения проводник-контакт базы посвящено также изобретение по патентам UA43096 и RU67784. Это техническое решение реализовано в новой конструкции базы пожарного извещателя, которая представлена на рисунке 16. В этой конструкции зажим проводника шлейфа осуществляется между контактом базы и квадратной гайкой. Сама база содержит дополнительные 5-ый, а при необходимости и 6-ой винтовые зажимы, которые позволяют исключить соединения проводников и элементов шлейфа скруткой.

В последние годы на рынках пожарных извещателей все больше проявляется тенденция использования баз пожарных извещателей с безвинтовым подключением проводников и элементов шлейфа сигнализации. Примером могут служить технические решения по патентам на изобретения RU2314612 и RU2314613, реализованные в базах, которые представлены на рисунках 17 и 18 соответственно.

Для того чтобы проводник шлейфа подключить к контакту первой базы, необходимо с помощью специального инструмента, рычага, отогнуть на базе пластиковую пружину и завести оголенный проводник в образовавшуюся щель между металлическим контактом и пластмассовой пружиной. Такое соединение нельзя назвать надежным, так как усилие зажима в процессе эксплуатации будет существенно уменьшаться при вдавливании проводника в пластмассу, особенно при повышенной температуре эксплуатации.

У базы, представленной на рисунке 18, также имеется несколько существенных недостатков:

— узкий диапазон значений площади сечения используемых проводников;

— перегиб проводников шлейфа, введенного в такой безвинтовой зажим, осуществляется между пластиковой и металлической пластинами;

— выводы элементов и проводники шлейфа сигнализации выходят в сторону поддона активной части, мешая качественному электрическому контакту между базой и активной частью пожарного извещателя.

Технические решения по приведенным выше патентам стали аналогом и прототипом нового изобретения, запатентованного в патентных ведомствах России и Украины.

Особенностью этого изобретения является то, что сам зажим, представленный на рисунке 19, состоит всего из трех деталей: 1 – плоского контакта; 2 – изоляционного основания; 3 – фигурного рычага.

На плоском контакте 1 (рис. 20) методом штамповки выполнены элементы 4 крепления контакта 1 в изоляционном основании 2, а также элемент 5 для электрического подключения контакта 1.

В изоляционном основании 2, которое представлено на рисунке 21, имеется паз 6 для ввода электрических проводников 16 с предварительно снятой изоляцией.

Паз 7 используется для размещения в нем оси 8 фигурного рычага 3 (рис. 22).

Элементы 9 предназначены для надежной фиксации контакта 1 на плоскости 11 основы 2. Дополнительный паз 10 необходим для вращения в нем П-образного изгиба 14 на оси 8 фигурного контакта 3. Г-образный канал 12 с защелкой 13 используется для размещения и фиксации рукоятки 15 фигурного рычага 3.

Работает зажим следующим образом.

В исходном состоянии, когда рукоятка 15 фигурного рычага 3 находится перпендикулярно к плоскости контакта 1, П-образный изгиб 14 на оси 8 открывает канал 6 для ввода проводников. После введения проводников до упора производится их фиксация. После поворота фигурного рычага 3 вокруг его оси 8 и фиксации рукоятки 15 в Г-образном канале с помощью защелки 13, П-образный изгиб прижимает проводники к плоскому контакту 1. Зажим в состоянии фиксации проводников 16 представлен на рисунке 23.

Как всякое новое решение, этот зажим подвергся испытаниям по тем техническим требованиям, которые предъявляются соответствующими нормативными документами, в частности, международным стандартом [7], к такому виду соединений. Были разработаны и изготовлены специальные испытательные установки (рис. 24 и рис. 25) для проверки реальных параметров зажима.

На первой испытательной установке, представленной на рисунке 24, осуществлялась проверка статических усилий зажима. Для выбранных сечений, используемых в пожарной сигнализации проводников, а конкретно до 1,5 мм2, усилие обеспечивается не менее 40 Н по указанному нормативному документу.

На второй установке проводились испытания на динамические воздействия с вращающимся проводником. При заданном натяжении проводника и угле “атаки” зажим обеспечивает не менее 150 оборотов со скоростью (10±2) мин-1.

Не всякий винтовой зажим выдерживает такое испытание, так как из-за резкого перепада усилий, прилагаемых в винтовом зажиме к проводнику, он может просто сломаться. Предлагаемая конструкция безвинтового зажима свободна от этого недостатка, что подтверждено соответствующими испытаниями.

Величина переходного сопротивления в электрическом соединении плоского контакта с цилиндрическим проводником, прижимаемым к плоскости контакта в одной точке, зависит от усилия сжатия, согласно [1]. Теория электрических соединений гласит, что сопротивление сужения обратно пропорционально кубическому корню усилия сжатия. Это означает, что для того, чтобы сопротивление переходного точечного контакта увеличилось в два раза, например, с 0,01 Ом до 0,02 Ом, необходимо, чтобы усилие сжатия уменьшилось в ВОСЕМЬ раз, т.е. с 40 Н до 5 Н.

Так как ход с усилием рукоятки рычага пропорционален этому усилию, то становится очевидным, что при статическом усилии сжатия переходное сопротивление контакта практически не будет заметно возрастать даже в процессе длительной эксплуатации зажима.

На сегодняшний день сконструирована база пожарного извещателя с применением заявленного безвинтового зажима.

Конструкция базы в разрезе представлена на рисунке 26, а ее фотография на рисунке 27.

1. Фролих Я. Непаяные соединения в электронике, пер. с венгер. М.: Энергия, 1978. – С. 11.

2. ГОСТ Р 51686.1-2000 (МЭК 60999-1-99) Соединительные устройства. Требования безопасности к контактным зажимам. Требования к винтовым и безвинтовым контактным зажимам для соединения медных проводников с номинальным сечением от 0,2 до 35 мм2.

3. NFPA 72 National Fire Alarm Code 2002 Edition.

4. Баканов В. Пути решения проблем в шлейфах пожарной сигнализации. // F+S: Технологии безопасности и противопожарной защиты. – 2009. – №4 (40). – С. 54.

5. Неплохов И. Базовый элемент // Скрытая камера. – 2004. – №2 (22). – C. 22.

6. Маслов И. Контакт? Есть контакт! Надолго ли… // БДИ. – 2005. – №1 (58). –С. 17.

7. ГОСТ Р 50043/3-2000 (МЭК 60998-2-2-91) Соединительные устройства для низковольтных цепей бытового и аналогичного назначения. Часть 2-2. Дополнительные требования к безвинтовым контактным зажимам для присоединения медных проводников.

Баканов В., главный конструктор ЧП “Артон”

Опубликовано в журнале ” Алгоритм безопасности” №4, 2011

Источник