- Строй-справка.ру
- Отопление, водоснабжение, канализация
- Монтаж зданий при стальном и смешанном каркасах
- Wiki ЖБК
- Инструменты пользователя
- Инструменты сайта
- Боковая панель
- Содержание
- Конструктивная схема здания
- Рамный каркас
- Связевый каркас
- Диафрагмы
- Смешанный каркас
- Рамно-связевый каркас
- Компоновка каркаса здания
- Размещение диафрагм
- Низкие каркасные здания – высота до 30…40 м
- Средние каркасные здания – высота 35…75 м
- Высокие каркасные здания – высота более 70-80 м (высотные здания)
- Правила компоновки системы диафрагм
Строй-справка.ру
Отопление, водоснабжение, канализация
Навигация:
Главная → Все категории → Возведения зданий и сооружений
Высота каркаса может достигать 200 м и более, а общая масса — десятков тысяч тонн. Стальной каркас высотного здания состоит из колонн и ригелей, соединенных в двух направлениях жесткими сварными узлами в рамные системы, воспринимающие вертикальные и горизонтальные (ветровые) нагрузки. Колонны изготавливают сварными с использованием, по возможности, стандартных прокатных профилей. Наиболее часто встречаемые сечения — двутавровое, квадратное и крестовое. Торцы у колонн обычно фрезеруют. Стыки стальных колонн выполняют с фрезерованными торцами. Во избежание возможного неточного совпадения торцов в плане в верхнем торце предусмотрена строганая плита. Стыки колонн после закрепления болтами и выверки проваривают по контуру.
Стыки колонн каркаса располагают через каждые два, три или четыре этажа на одном уровне и для удобства производства монтажных соединений находятся на высоте 80. 120 см от Уровня перекрытий. Для обеспечения долговечности и огнестойкости стальной каркас армируют и обетонируют, что с учетом включения в работу на сжатие бетона приводит в целом к снижению расхода металла.
Стальные ригели каркаса обычно бывают двутаврового сечения, сварные, с уширенной нижней полкой, на которую укладывают плиты междуэтажных перекрытий.
Междуэтажные перекрытия каркаса могут компоноваться:
— из главных и второстепенных балок (при стальном каркасе здания) с укладкой по ним сборных плит или бетонированием монолитного перекрытия;
— только из главных балок (ригелей) с уширенной полкой, на которую укладывают сборные железобетонные плиты перекрытий;
— из распорных железобетонных плит, укладываемых только по оси колонн, с закладными деталями для сопряжения сварными накладками плит смежных пролетов и ригелей;
— из унифицированных, облегченных или многопустотных плит перекрытий, свободно укладываемых в пазы стальных или железобетонных ригелей, но не привариваемых к ним из-за отсутствия закладных деталей.
В несущих каркасах ряда зданий предусматривается на всю высоту устройство замкнутой шахты из четырех взаимно перпендикулярных вертикальных жестких плоскостей из стальных или железобетонных конструкций. Эта шахта воспринимает все горизонтальные нагрузки на здание и обеспечивает его общую устойчивость. Такая шахта называется шахтой жесткости, или ядром жесткости. Все остальные элементы каркаса должны крепиться к этому ядру жесткости, а каждое перекрытие представлять единую жесткую и неизменяемую горизонтальную плоскость или жесткий плоский диск. Все примыкающие к ядру жесткости элементы несущего каркаса здания работают в этом случае только на вертикальную нагрузку.
Возведение зданий со стальным каркасом можно осуществлять раздельным и комплексным методами. При раздельном методе сначала на всю высоту монтируют стальной каркас, затем начинают общестроительные работы. Достоинство такого решения — более широким фронтом, большим количеством кранов можно вести монтажные работы одновременно на нескольких захватках, затем также по всему зданию и общестроительные работы. Но при таком решении требуется обеспечение повышенной жесткости каркаса в процессе монтажа, что приводит к дополнительному расходу металла. По этой причине при комплексном методе на 30. 40% сокращается расход металла на каркас здания.
При комплексном методе возведения здания одновременно выполняют монтажные, строительные, специальные и отделочные работы. Монтаж металлоконструкций осуществляют на верхнем ярусе (верхних двух-четырех этажах): на самом верху — монтаж, несколько ниже — выверку и в нижней части яруса — окончательную сварку и клепку монтажных соединений.
Одновременно, с отставанием на 2. 3 этажа (на следующем ярусе), ведут монтаж сборных железобетонных перекрытий. При большем разрыве по высоте укладка плит будет затруднена вышерасположенным металлическим каркасом. С отставанием еще на 4. 5 этажей осуществляют обетонирование каркаса, устройство монолитных участков перекрытий. Еще ниже по вертикали выполняют установку оконных переплетов с остеклением, ниже оштукатуривание, еще ниже — другие отделочные и специальные работы. Таким образом, работы по возведению здания ведут одновременно на 8. 10 этажах.
В сборно-монолитном конструктивном решении в одном цикле совмещают монолитные и сборные процессы, последовательность их выполнения определяется конструктивными особенностями здания.
Навигация:
Главная → Все категории → Возведения зданий и сооружений
Источник
Монтаж зданий при стальном и смешанном каркасах
Высота каркаса может достигать 200 м и более, а общая масса — десятков тысяч тонн. Стальной каркас высотного здания состоит из колонн и ригелей, соединенных в двух направлениях жесткими сварными узлами в рамные системы, воспринимающие вертикальные и горизонтальные (ветровые) нагрузки. Колонны изготавливают сварными с использованием, по возможности, стандартных прокатных профилей. Наиболее часто встречаемые сечения — двутавровое, квадратное и крестовое. Торцы у колонн обычно фрезеруют. Стыки стальных колонн выполняют с фрезерованными торцами. Во избежание возможного неточного совпадения торцов в плане в верхнем торце предусмотрена строганая плита. Стыки колонн после закрепления болтами и выверки проваривают по контуру.
Стыки колонн каркаса располагают через каждые два, три или четыре этажа на одном уровне и для удобства производства монтажных соединений находятся на высоте 80. 120 см от уровня перекрытий. Для обеспечения долговечности и огнестойкости стальной каркас армируют и обетонируют, что с учетом включения в работу на сжатие бетона приводит в целом к снижению расхода металла.
Стальные ригели каркаса обычно бывают двутаврового сечения, сварные, с уширенной нижней полкой, на которую укладывают плиты междуэтажных перекрытий.
Междуэтажные перекрытия каркаса могут компоноваться:
• из главных и второстепенных балок (при стальном каркасе здания) с укладкой по ним сборных плит или бетонированием монолитного перекрытия;
• только из главных балок (ригелей) с уширенной полкой, на которую укладывают сборные железобетонные плиты перекрытий;
• из распорных железобетонных плит, укладываемых только по оси колонн, с закладными деталями для сопряжения сварными накладками плит смежных пролетов и ригелей;
• из унифицированных, облегченных или многопустотных плит перекрытий, свободно укладываемых в пазы стальных или железобетонных ригелей, но не привариваемых к ним из-за отсутствия закладных деталей.
В несущих каркасах ряда зданий предусматривается на всю высоту устройство замкнутой шахты из четырех взаимно перпендикулярных вертикальных жестких плоскостей из стальных или железобетонных конструкций. Эта шахта воспринимает все горизонтальные нагрузки на здание и обеспечивает его общую устойчивость. Такая шахта называется шахтой жесткости, или ядром жесткости. Все остальные элементы каркаса должны крепиться к этому ядру жесткости, а каждое перекрытие представлять единую жесткую и неизменяемую горизонтальную плоскость или жесткий плоский диск. Все примыкающие к ядру жесткости элементы несущего каркаса здания работают в этом случае только на вертикальную нагрузку.
Возведение зданий со стальным каркасом можно осуществлять раздельным и комплексным методами. При раздельном методе сначала на всю высоту монтируют стальной каркас, затем начинают общестроительные работы. Достоинство такого решения — более широким фронтом, большим количеством кранов можно вести монтажные работы одновременно на нескольких захватках, затем также по всему зданию и общестроительные работы. Но при таком решении требуется обеспечение повышенной жесткости каркаса в процессе монтажа, что приводит к дополнительному расходу металла. По этой причине при комплексном методе на 30. 40% сокращается расход металла на каркас здания.
При комплексном методе возведения здания одновременно выполняют монтажные, строительные, специальные и отделочные работы. Монтаж металлоконструкций осуществляют на верхнем ярусе (верхних двух-четырех этажах): на самом верху — монтаж, несколько ниже — выверку и в нижней части яруса — окончательную сварку и клепку монтажных соединений.
Одновременно, с отставанием на 2. 3 этажа (на следующем ярусе), ведут монтаж сборных железобетонных перекрытий. При большем разрыве по высоте укладка плит будет затруднена вышерасположенным металлическим каркасом. С отставанием еще на 4. 5 этажей осуществляют обетонирование каркаса, устройство монолитных участков перекрытий. Еще ниже по вертикали выполняют установку оконных переплетов с остеклением, ниже оштукатуривание, еще ниже — другие отделочные и специальные работы. Таким образом, работы по возведению здания ведут одновременно на 8. 10 этажах.
В сборно-монолитном конструктивном решении в одном цикле совмещают монолитные и сборные процессы, последовательность их выполнения определяется конструктивными особенностями здания.
Источник
Wiki ЖБК
Материалы для проектирования железобетонных конструкций
Инструменты пользователя
Инструменты сайта
Боковая панель
Проектное бюро Фордевинд:
Сайты схожей тематики:
Содержание
Конструктивная схема здания
Ханджи В.В. Расчет многоэтажных зданий со связевым каркасом. 1977 г. Глава 4 «Общая устойчивость зданий и влияние деформаций на усилия в пилонах»
Рамный каркас
В рамном каркасе основные несущие функции выполняет система колонн и ригелей, расположенных в двух направлениях. Ригели жестко соединены с колоннами и образуют пространственную систему, состоящую из плоских рам.
Рамы 1) воспринимают всю совокупность действующих на здание вертикальных и горизонтальных нагрузок и передают их фундаментам.
Усилия в плоскости дисков перекрытий возникают только при необходимости перераспределения горизонтальных нагрузок между разножесткими рамами. В нормально закомпонованных зданиях усилия невелики и свободно воспринимаются дисками перекрытий.
В монолитных 2) железобетонных конструкциях жесткое соединение ригелей с колоннами дает некую экономию материалов.
Связевый каркас
В связевом каркасе основные несущие конструкции образуются системой колонн, горизонтальных дисков – перекрытий и вертикальных элементов – диафрагм (пилонов).
Роль перекрытий в системе несущих конструкций значительно возрастает. Помимо основной работы на вертикальные нагрузки перекрытия воспринимают действующие на здание горизонтальные силы и передают их диафрагмам, перераспределяют усилия между диафрагмами в зонах изменения их схемы и соотношения жесткостей, участвуют в совместной работе надземной части здания с фундаментами. При больших расстояниях между диафрагмами или между крайними диафрагмами и торцами здания усилия в плоскости перекрытий могут быть довольно большими.
Характерная особенность связевого каркаса – узлы соединения ригелей с колоннами. С точки зрения статической схемы эти узлы могли бы быть шарнирными.
Диафрагмы
Диафрагмы воспринимают часть вертикальных и все горизонтальные нагрузки, действующие на здание, и передают их фундаментам. Обеспечивают общую устойчивость здания, а их жесткость определяет значение перемещений несущих конструкций и здания в целом.
По статической схеме диафрагмы представляются в виде консольных элементов, защемленных в фундаментах. Иногда 3) , чтобы увеличить жесткость и общую устойчивость здания, пилоны объединяют связями в одном или нескольких уровнях по высоте здания. Эти связи выполняют в виде монолитных железобетонных балок или стальных ферм высотой в один этаж. При таком объединении совокупность диафрагм образует пространственную рамную систему.
Смешанный каркас
Смешанной называют схему, основанную на использовании рамных конструкций в одном направлении (обычно поперечном) и передаче горизонтальных нагрузок другого направления на связи. Эта схема распространена в промышленном строительстве (к монолиту не применима).
Рамно-связевый каркас
Рамно-связевая система каркаса основана на сочетании рамных конструкций с диафрагмами.
Опыт проектирования зданий такой системы показывает, что системы диафрагм воспринимают 85-95% горизонтальных нагрузок и при небольшом усилении могут принять на себя все горизонтальные силы.
Применение рамно-связанных систем наиболее целесообразно при использования в несущих конструкциях стали и монолитного железобетона, и как следствие образования жестких узлов без дополнительных затрат труда.
Примечание: Предлагаемый в книге Ханджи метод расчета ориентирован на многоэтажные здания со связевым каркасом. Несмотря на это он может быть использован и при расчете рамно-связевых систем. для этого следует либо в запас прочности не учитывать работу рам и все горизонтальные нагрузки воспринимать пилонами, либо имитировать рамы пилонами эквивалентной жесткости.
Компоновка каркаса здания
Размещение диафрагм
Выбор решения возникающих при этом противоречий (с архитектурными решениями) обусловлен высотой проектируемого здания.
Низкие каркасные здания – высота до 30…40 м
Положение диафрагм может быть подчинено оптимальному архитектурно-планировочному решению. Совокупность диафрагм должна обеспечить прочность, жесткость и общую устойчивость здания, однако схема их размещения может быть произвольной.
Допустимо перемещение диафрагм по высоте с одних осей на другие при обеспечении конструктивных мероприятий по передаче возникающих при этом усилий.
Усложнение конструкции и увеличение расхода материалов, вызванное произвольным размещением диафрагм, в невысоких зданиях полностью окупается улучшением планировки.
Средние каркасные здания – высота 35…75 м
В этой группе зданий следует стремиться к оптимальному размещению диафрагм, однако здесь возможно некоторое небольшое отступление, если это существенно улучшает планировку.
Высокие каркасные здания – высота более 70-80 м (высотные здания)
Положение диафрагм должно соответствовать излагаемым ниже требованиям (правилам) к их размерам и размещению в плане и должно быть оптимальным.
Отступления 4) от этих требований значительно усложняют конструкции и ухудшают их работу. В связи с этим при компоновке высотных зданий первенство должно быть отдано размещению диафрагм, даже если при этом архитектурно-планировочному решению наносится некоторый ущерб.
Правила компоновки системы диафрагм
Система пилонов и архитектурно-планировочное решение здания должны быть максимально взаимоувязаны. В процессе увязки приоритет определяется в зависимости от высоты здания.
При компоновке высоких (более 70-80 м) и средних зданий (35-75 м) по высоте зданий следует стремиться к минимальному числу диафрагм. Необходимая прочность и жесткость здания легче достигается увеличением размера диафрагм, а не их числа. Увеличивать количество пилонов по сравнению с минимально необходимым целесообразно только в зданиях с протяженным планом, когда лимитирующим параметром оказываются расстояния между пилонами.
Минимально необходимой и достаточной для обеспечения геометрической неизменяемости здания (согласно правила прикрепления твердых тел и систем) является система диафрагм, в состав которой входит не менее трех стен, плоскости которых не пересекаются на одной прямой и не параллельны.
Геометрически неизменяемая система
Мгновенно изменяемая система
(могут возникать усилия теоретически бесконечно большие или неопределенные)
Оптимальна такая компоновка здания, при которой центр массы и центр изгиба здания совпадают в плане и через эту же точку проходят равнодействующие ветровых нагрузок. Следует стремиться к тому, чтобы расстояние между центром массы и центром изгиба было минимальным.
Размеры поперечных сечений пилонов, не имеющих развитых фибр, следует назначать не менее 1/6…1/8 высоты надземной части здания.
В зданиях с протяженным планом расстояния между параллельными стенами пилонов следует принимать не более 30 м, расстояние от стены крайнего пилона до крайней оси – не более 12 м. При этом увеличивается количество диафрагм – лимитирующим является параметр расстояния между диафрагмами.
Источник