- 3.6 Устройство сети сжатого воздуха
- 3.6.1. Общие сведения
- 3.6.1.1. Воздушный рессивер.
- 3.6.2. Конструкция сети сжатого воздуха.
- 3.6.3. Определение параметров сети сжатого воздуха
- 3.6.4. Измерение расхода.
- Монтаж линий сжатого воздуха
- Как правильно организовать воздушную линию для подключения пневматических инструментов
3.6 Устройство сети сжатого воздуха
3.6.1. Общие сведения
К системам распределения сжатого воздуха предъявляются три требования, выполнение которых обеспечивает их надежную работу и хорошие экономические показатели. К ним относятся: низкое падение давления между компрессором и местом потребления, минимальные утечки и максимально возможное отделение конденсата в системе, если не установлен осушитель сжатого воздуха. Это в первую очередь относится к магистральным трубопроводам. Стоимость установки труб большего диаметра, а также требующейся арматуры низка по сравнению с реконструкцией системы, которая потребуется позже. Трассировка сети воздуховодов, конструкция и диаметры труб важны для эффективной работы установки, надежности и расходов на ее эксплуатацию. Иногда значительное падение давления в трубопроводе компенсируется повышением рабочего давления компрессора, например с 7 бар (изб.) до 8 бар (изб.). Это дает незначительную экономию сжатого воздуха. Когда потребление сжатого воздуха снижается, падение давления также снижается и давление в точке потребления возрастает выше допустимого уровня. Стационарные установки сжатого воздуха должны быть рассчитаны так, чтобы падение давления в трубопроводах от компрессора до самого удаленного потребителя не превышало 0,1 бар. К этому нужно добавить падение давления в шлангах, соединениях шлангов и арматуре. Особенно важно определить размеры этих компонентов, так как наибольшее падение давления очень часто происходит именно в соединениях. Наибольшую допустимую протяженность трубопроводной сети для указанного падения давления можно вычислить по следующей эмпирической формуле:
Самым приемлемым решением является проектирование трубопроводной системы в виде кольцевой линии вокруг зоны, где имеются потребители сжатого воздуха. От магистральной трубы отводятся ответвления до потребителей. Это обеспечивает равномерную подачу сжатого воздуха, несмотря на сильные пульсации потребления, так как воздух к действующим точкам потребления подается с двух направлений. Такую систему следует использовать для всех установок, даже если некоторые потребители находятся на большом расстоянии от компрессорной установки. К этим зонам прокладывается отдельная магистраль.
3.6.1.1. Воздушный рессивер.
В каждую компрессорную установку включается один или несколько воздушных резервуаров. Их размер определяется, например, производительностью компрессора, системой регулирования и требованиями потребителей к сжатому воздуху потребителей. Воздушный ресивер представляет собой хранилище сжатого воздуха, которое сглаживает поступающие от компрессора пульсации, охлаждает воздух и собирает конденсат. Соответственно, воздушный ресивер должен оснащаться дренажными устройством. При определении объема ресивера применяется приведенная ниже формула. Обратите внимание, что формула применима только к компрессорам с регулированием путем разгрузки/нагрузки.
Ниже приведена упрощенная формула, которая применяется в следующих условиях: давление окружающего воздуха 1 бар (абс.), температура — примерно 20°С, время цикла — 30 секунд. Когда в короткие промежутки времени потребляются большие объемы сжатого воздуха, неэкономично рассчитывать параметры компрессора или трубопроводной сети в соответствии с таким потреблением. В этом случае вблизи потребителя размещается отдельный воздушный ресивер, а его объем выбирается в соответствии с ма- ксимальным расходом. В экстремальных ситуациях используется меньший компрессор высокого давления вместе с большим воздушным ресивером, способным покрывать большое краткосрочное потребление сжатого воздуха в промежутках между длительными интервалами отсутствия потребления. Затем компрессор рассчитывается на среднее потребление. Для расчета такого резервуара применяется следующая формула:
В приведенной формуле не учитывается тот факт, что компрессор может поставлять сжатый воздух во время фазы разгрузки ресивера. Обычно такая система применяется для пуска больших судовых двигателей, где давление в ресивере равняется 30 бар.
3.6.2. Конструкция сети сжатого воздуха.
В небольших установках одна и та же труба может служить в качестве вертикальной и распределительной. При проектировании и определении параметров сети сжатого воздуха отправным пунктом является список оборудования, где перечислены все потребители сжатого воздуха, и дан чертеж, показывающий их расположение. Потребители группируются в логические блоки и питаются от одной и той же распределительной трубы. Распределительная труба в свою очередь питается через вертикальную трубу от компрессорной централи. Более крупную сеть сжатого воздуха можно разделить на четыре основные части: вертикальные трубы, распределительные трубы, разводящие трубы и арматура для сжатого воздуха. Вертикальные трубы транспортируют сжатый воздух от компрессорной централи до зоны потребления. Распределительные трубы распределяют сжатый воздух по зонам его потреб- ления. Разводящие трубы подают сжатый воздух из распределительных трубопроводов к рабочим местам. Арматура для сжатого воздуха представляет собой соединения между разводящими трубами и потребителями сжатого воздуха.
3.6.3. Определение параметров сети сжатого воздуха
Давление, получаемое непосредственно на выходе компрессора, вообще говоря, никогда не может использоваться полностью. Поэтому нужно рассчитать потери, связанные с распределением сжатого воздуха, в первую очередь потери на трение в трубо- проводах. Кроме того, в вентилях и в изгибах труб происходят дросселирование и изменения направления потока. Потери, которые преобразуются в тепло, приводят к падению давления, и его для прямой трубы можно вычислить по формуле:
При расчете различных частей сети сжатого воздуха могут использоваться следующие значения допустимого падения давления:
Требуемая длина труб для различных частей сети (в вертикальных, распределительных и разводящих трубопроводах) рассчитывается приближенно. Подходящей основой для оценки длины является чертеж в масштабе с планом вероятной сети. Длина трубопровода корректируется добавлением эквивалентной длины трубопровода для вентилей, клапанов, изгибов труб, соединений и т.д., как показано на рис. 3:36. При расчете диаметра трубопровода в качестве альтернативы формуле, приведенной на стр. 99, можно для получения наи- более подходящего диаметра трубопровода воспользоваться номограммой, приведенной на рис. 3:37. Для проведения расчетов нужно знать расход, давление, допустимое падение давления и длину трубопровода. Затем для установки выбирается стандартная труба ближайшего большего диаметра. Эквивалентные длины труб для всех частей установки рассчитываются с использованием списка арматуры и компонентов труб, а также с учетом сопротивления потоку, выраженного в виде длины трубы. Эти «дополнительные» длины труб добавляются к начальной длине трубопровода. Выбранные размеры сети затем пересчитываются, чтобы быть уверенными, что паде- ние давления не будет слишком велико. Отдельные участки (разводящие, распределительные и вертикальные трубы) в большой установке следует рассчитывать по отдельности.
3.6.4. Измерение расхода.
Размещенные в стратегических пунктах расходомеры позволяют вести внутренний учет и определять ассигнования на использование сжатого воздуха внутри компании. Сжатый воздух является средством производства и подлежит учету в качестве производственных расходов отдельных подразделений компании. Поэтому все, кого это касается, заинтересованы в уменьшении расходования сжатого воздуха в пределах различных подразделений компании. Имеющиеся на рынке современные расходомеры предоставляют все возможности — от считывания числовых значений до ввода данных измерений непосредственно в компьютер или в модуль учета. Расходомеры, как правило, монтируются вблизи запорных вентилей. Измерения в кольцевых трубопроводах предъявляют дополнительные требования, так как расходомер должен быть способен измерять поток, протекающий как вперед, так и назад.
Источник
Монтаж линий сжатого воздуха
Для подключения конечного оборудования потребуются следующие компоненты:
Самые прочные на разрыв — армированные маслобензостойкие шланги из резины. Такие сложно повредить даже колесом автомобиля, но и цена у них самая высокая. Более доступны гибридно-полимерные модели с неплохими рабочими характеристиками.
В первую очередь, следует определиться с сечением шланга, которое подбирается в соответствии с рекомендациями производителя инструмента. В общем случае, рекомендуется выбирать шланги диаметром 10 и 12 мм, чтобы впоследствии не возникло «бутылочного горлышка». У двух моделей с одинаковым сечением могут быть разные характеристики прочности и рабочего давления, поэтому стоит уточнять эти параметры для каждой позиции отдельно.
При эксплуатации пневмолинии в автосервисе полезно использовать максимально гибкие шланги, ведь «дубовая» магистраль будет за все цепляться, легче заламываться и ее сложно перемещать по помещению. За это отвечает параметр сгибаемости в характеристиках товара.
Что касается формы, то существует три варианта:
Вне зависимости от формы и материала изготовления, не рекомендуется использовать шланги более 15 м длиной, так как это приводит к потери мощности.
Шланги прямо влияют на надежность линии и правильное функционирование инструмента. Чтобы те же гайковерты работали в соответствии с паспортными показателями, важно выполнить следующие условия:
1. Выбран шланг с подходящим рабочим давлением и внутренним диаметром. Высокопроизводительный инструмент может предъявлять более жесткие требования к прочности и пропускной способности шланга.
2. При монтаже пневмолинии соблюден баланс длины шлангов и числа разветвителей. Чем больше планируется ответвлений, тем внимательнее необходимо подбирать сечение раздаточных шлангов и учитывать производительность компрессора.
3. Использованы подходящие по сечению разветвители и быстросъемные разъемы (БРС).
Пневмо-разветвители часто называют воздушными тройниками или фитингами-тройниками для пневматических шлангов. Разветвители позволяют подключать к основному выводу компрессора дополнительные магистрали для одновременной работы нескольких пневматических инструментов.
Воздушные тройники делятся на два вида:
- Разветвители с соединением «елочка». Позволяют подключать отводящие магистрали к основному шлангу, а не компрессору. Выполнены в виде крестовины с четырьмя выходами. Размеры подбирают в соответствии с диаметром воздушного шланга. Наиболее популярны разветвители на 8, 10 и 12 мм.
- Резьбовые фитинги-тройники. Оборудованы входом и тремя выходами с резьбой определенного размера. Предназначены для использования совместно с резьбовыми переходниками и соединителями.
Для подключения оконечного оборудования принято использовать быстроразъемные соединения (БРС). С их помощью можно оперативно и надежно подключить гайковерт, пульверизатор и другое оборудование. БРС также позволяет отключать пневмоинструмент от линии без прекращения подачи воздуха. В качестве штуцера используется «елочка» или резьбовое соединение.
Встречается двух типов: БРС папа и БРС мама. Чаще всего штуцеры «папа» устанавливаются на пневмоинструмент, а разъем «мама» накручивается на шланг к компрессору.
При использовании мощных гайковертов и другого производительного оборудования важно подобрать и БРС с высокой пропускной способностью. В отличие от стандартного варианта, он рассчитан на большие давление и поток сжатого воздуха.
Подключение инструмента напрямую к выходу компрессора чревато преждевременной коррозией и повышенным износом рабочих механизмов гайковертов и шиномонтажных стендов.
Чтобы избежать раннего ремонта и замены, в пневмолинию необходимо включить дополнительное оборудование для подготовки воздуха:
Источник
Как правильно организовать воздушную линию для подключения пневматических инструментов
Сердцем любой пневмолинии является компрессор. Это устройство, призванное обеспечить потребителей воздушной энергии сжатым воздухом. Правильнее всего будет подобрать конкретную модель после того, как определитесь с видом и количеством требуемых инструментов. Кроме этого, не забудьте учесть количество одновременно потребляемого воздуха. Максимальное значение этой величины и будет отправной точкой для выбора вида (поршневой или винтовой) и конкретной модели компрессора.
Кроме грамотного подбора этого важного устройства, нужно еще правильно построить воздушную линию, чтобы максимально избежать ненужных потерь и одновременно обеспечить полное функционирование всех инструментов. Неважно, на основе каких элементов вы планируете строить свою воздушную линию. Будут ли это шланги, металлические или металлопластиковые трубы, решение об этом принимается индивидуально для конкретного случая.
Существуют две основные схемы воздушной магистрали:
— линейная
— кольцевая (закольцованная)
Самая обычная линейная схема выглядит следующим образом:
Имеется один компрессор, к которому поочередно подключаются нужные инструменты. Больше подходит для небольших бригад, автосервисов, ремонтных мастерских, индивидуального использования.
Состав самый простой: компрессор, устройство очистки воздуха (влаго-маслоотделительный фильтр), маслораспылитель (лубрикатор), шланг, необходимые для соединения фитинги и, собственно, сами пневматические инструменты.
Если предполагается одновременное использование нескольких инструментов, то эта схема немного видоизменяется: вместо шланга появляется основная воздушная магистраль с разводкой, к которой присоединяются потребители.
Структурная схема такой линии приведена ниже:
Как правило, диаметр основной магистрали выбирают больше диаметра рабочих отводов, идущих от нее к инструментам. Это нужно для обеспечения дальних инструментов требуемым количеством сжатого воздуха. Кроме этого, если в системе есть инструменты, не требующие смазки (например, краскопульт), а так же для обеспечения необходимым количеством масла самых дальних инструментов, который обычно испытывают «масляный голод», так как до них долетает меньше всего воздушно-масляной смеси, эта схема изменяется в следующую, по сути «идеальный» вариант линейной воздушной системы:
Наличие фильтров перед рабочими местами служит для более тщательной очистки воздуха от скоплений конденсата в магистрали.
Эта схема как нельзя лучше подходит для небольших производств, не занимающих много места.
Основные ее достоинства: простота и дешевизна.
Однако у «идеальной» линейной воздушной схемы есть один огромный недостаток: при увеличении длины магистрали или количества одновременно работающих инструментов, последние в этой линейке пневмоинструменты начинают испытывать воздушный голод, не хватает рабочего давления. То есть, их технические характеристики не выдерживаются, что, в итоге, ведет к снижению качества работы.
Это можно попытаться избежать следующими способами:
— Максимально увеличив пропускную способность основной магистрали. Ведь внутренний объем шлангов это, по сути, тоже ресивер. Однако этот способ ограничен производительностью компрессора. Увеличивая общий объем магистрали, мы заставляем компрессор работать дольше, снижая его ресурс.
— Использование компрессора с более высокой производительностью тоже не выход. В этом случае увеличивается цена на покупку самого компрессора и растут расходы на электричество, так как в компрессоре с большей производительностью будет стоять более мощный электродвигатель.
— Использование дополнительного ресивера в конце магистрали. Вполне может спасти ситуацию, но опять же, требует большей работы компрессора или увеличения его производительности со всеми присущими этому минусами.
— Применение так называемой кольцевой (закольцованной) схемы. Это позволяет уравнять давление во время работы всех инструментов одновременно. Пожалуй, на сегодняшний день , этот вариант является самым оптимальным. Для его исполнения достаточно всего лишь дополнительного шланга, требуемой длины.
Схема кольцевой воздушной линии представлена на структурной схеме:
Пожалуй, из минусов здесь можно выделить только более высокую стоимость из-за большего количества элементов, требующихся для ее организации, а так же чуть большую сложность монтажа. Но при этом, мы имеем воздушную линию лишенную многих недостатков и позволяющую наиболее оптимально использовать компрессор и пневматические инструменты.
Напоследок хочу заметить, что обе описанные схемы с успехом
применяются на различных производствах, от маленьких и до очень крупных. Выбор каждой из нах, прежде всего, зависит от вашей конкретной ситуации. Не стесняйтесь консультироваться у грамотных специалистов, ведь это залог удачной и позитивной работы!
Заместитель директора ООО «Пневмо»
Мороз Владимир Викторович
Источник