Монтаж блока питания контроль его параметров

Методика тестирования блоков питания 2007

Для любого тестирования нужна методика, описывающая задачи, цели, средства и этапы измерения. Другой вопрос, что иногда методика не излагается напрямую, а подразумевается или, как вариант, находится исключительно в голове автора, и нигде в явном виде не изложена, такое тоже бывает. Мы же постараемся изложить нашу методику тестирования блоков питания достаточно популярно и в тоже время без излишних технологических подробностей.

Перед изложением непосредственно методики тестирования и оценки блоков питания хотелось бы привести основные теоретические сведения на основе которых мы, собственно, и основывались при ее создании. Начать стоит с основных определений и вводных данных.

Мощность — скорость поступления энергии от источника к потребителю.

Активная мощность (P) в цепи переменного тока характеризует необратимое преобразование электрической энергии в другой вид или род энергии, например, в тепловую, световую и механическую энергию. Единица измерения — ватт (Вт).

Реактивная мощность (Q) в цепи переменного тока является энергией, которой обменивается генератор и приемник и непосредственно в процессе преобразования она не участвует. Единица измерения — вольтампер реактивный (ВАР)

Коэффициент полезного действия (КПД) представляет собой отношение активной мощности Рвых, отбираемой от преобразователя (в данном случае блока питания), к активной мощности Рвх, подводимой к преобразователю.

Полная мощность (S) в сети переменного тока представляет собой произведение действующих значений напряжения и силы тока в цепи или находится как геометрическая сумма активной и реактивной мощности. Для источников электрической энергии переменного тока (генераторов, источников бесперебойного питания) указывается полная мощность, которая соответствует активной мощности (S=P, Q=0) в случае нагрузки, представляющей собой чисто активное сопротивление, при этом PF=1. Единица измерения — вольтампер (ВА)

Читайте также:  Требования по монтажу пожарных гидрантов

Коэффициент мощности (КМ) (PF) представляет собой отношение активной мощности, потребленной преобразователем, к полной мощности подведенной к нему посредством электрической сети переменного тока и показывает эффективность использования энергоресурсов электрической сети (источника переменного тока) потребителем (преобразователем).

Корректор коэффициента мощности (ККМ) (PFC) — функциональный модуль блока питания, предназначенный для повышения коэффициента мощности с целью снижения паразитной нагрузки на источник переменного тока (электрическую сеть общего пользования) за счет уменьшения реактивной мощности путем повышения линейности формы потребляемого тока.

В компьютерных блоках питания встречаются две разновидности ККМ. Пассивный корректор коэффициента мощности (PPFC) представляет собой дроссель (трансформатор), при этом является чисто пассивным, но зато очень увесистым, элементом. Эффективность применения подобного корректора невысокая, хотя некоторый эффект он и дает.

Активный корректор коэффициента мощности (APFC) имеет в своем составе накопительный дроссель, ключевые транзисторы и управляющую микросхему. АККМ по сути является импульсным преобразователем, имеющем на выходе напряжение около 400 В. При этом за счет высокой частоты работы преобразователя, составляющей от десятков до сотен килогерц (в схеме без APFC частота 50 Гц) на входе блока питания форма тока представляет собой практически правильную синусоиду, то есть для электросети общего пользования блок питания, оснащенный модулем APFC представляется в виде обычного активного сопротивления. При использовании APFC коэффициент мощности блоков питания находится, как правило, в диапазоне 0,95—0,99 (95—99%).

Дополнительным преимуществом применения APFC в блоке питания является возможность использования более энергоемких конденсаторов во входном выпрямителе. Дело в том, что энергоемкость конденсатора пропорциональна квадрату напряжения, поэтому энергоемкость конденсаторов на 400 В и 160 В отличаются примерно в шесть раз при прочих равных условиях. Данный факт позволяет использовать меньшее количество конденсаторов во входном выпрямителе (один вместо двух), а также снижать их емкость без ущерба для энергетических возможностей блока питания.

Основные сведения по компьютерным блокам питания содержатся в документе Power Supply Design Guide for Desktop Platform Form Factor, последняя ревизия 1,1 датирована мартом 2007 года. Данный документ включает в себя спецификации ATX 12V текущей версии 2,3, которые раньше содержались в отдельном документе PSDG ATX12V, имеющем последнюю версию 2,2.

В спецификациях рекомендуемая мощность блоков питания представлена в двух видах: как таблица с максимальными и пиковыми токами по соответствующим линиям, так и в графическом виде с указанием мощности по шинам в ваттах.

Что касается табличного представления, то в данном случае приводятся максимальные токи, которые достигаются по каждой линии отдельно, но при этом нагрузка по остальным линиям подразумевается немаксимальной. Также нельзя просто просуммировать полученные произведения максимальных токов и номинальных напряжений, точнее просуммировать конечно можно, но при этом получаем число никакого отношения к реальной выходной мощности блока питания не имеющее. Разница между максимальным и пиковым током заключается в том, что первый — блок питания обязан обеспечивать продолжительное время в течение, как минимум часа, а второй — кратковременно в течение 17 секунд. В своих измерениях мы используем только значения максимальных токов, то есть блоки питания тестируются в номинальном режиме работы.

Отличие шины питания от линии питания достаточно условное, схематично шину можно представить себе, как участок цепи от вторичной обмотки основного трансформатора до выходных разъемов на проводах со стороны комплектующих, линия же представляет собой участок шины либо от диодной сборки выходного каскада, либо от точки разделения шины на несколько линий. В блоке питания, как правило, всегда присутствуют две основные шины — это 12V и 3,3&5V. При это линий может быть достаточно большое количество.

В характеристиках блока питания, помимо общей выходной мощности, как правило, указывается мощность по отдельным шинам, хотя, в существующих условиях, мощность по шине 3,3&5V абсолютно не критична, так потребление системного блока по данной шине крайне редко превышает 50 Вт, а все современные блоки питания способны отдать в нагрузку по ней минимум 100 Вт, а чаще всего 140-200 Вт. Поэтому основное внимание нужно уделять прежде всего шине 12V, так как основное энергопотребление в современном системном блоке производится именно по данной шине. Для получения максимального значения допустимого тока нагрузки по шине 12V необходимо поделить указанную на БП максимальную мощность 12V на значение номинального напряжения, то есть на 12 В, полученное значение и будет являть силой тока в амперах, характеризующее реальную выходную мощность данной шины БП, реальную — с точки зрения заявленных характеристик конечно.

Как было сказано ранее, графическое представление характеристик оперирует уже мощностью по каналам, что, собственно говоря, нам только на руку. С помощью вышеупомянутых диаграм была составлена более развернутая таблица характеристик.

Источник

Монтаж блока питания контроль его параметров


7423 полёта фантазии

Многие IT-издания ежемесячно публикуют массы материалов с различными тестами всевозможных процессоров, видеоадаптеров, материнских плат, памяти и жестких дисков. Но вот тесты блоков питания проводят очень немногие, поскольку это связано с техническими особенностями и необходимостью инженерного опыта и знаний принципов работы импульсных источников питания. И сегодня, на страницах Modlabs.net открываем цикл статей, посвященных тестированию блоков питания для персональных компьютеров. Наличие качественного и надежного блока питания критически важно для обеспечения бесперебойной работы любой системы. А когда комплектующие подвергнуты серьезному разгону с применением кастомных систем охлаждения и вольтмодами то качество электропитания и стабильность всех напряжений становится одним из ключевых средств для стабильного и безошибочного функционирования компьютера. Однако достаточно слов, приступим к обзору характеристик, которыми обладает любой импульсный блок питания предназначенный для питания компьютерной техники.

Стандарты и типы блоков питания

Все продаваемые в рознице блоки питания для домашних и офисных ПК должны соответствовать стандарту ATX версии 2 и более новой. Серверные блоки питания обычно сертифицируются по более жесткому SSI EPS, который принципиально схож с ATX. С конкретными величинами и характеристиками можно ознакомиться, скачав стандарты по ссылкам в конце статьи, а пока рассмотрим несколько ключевых характеристик и их значение. Эта документация предназначается производителям блоков питания для обеспечения совместимости их аппаратуры с общепринятым стандартом. Сюда входят геометрические, механические и, конечно же, электрические характеристики устройств. Каждый из блоков питания для компьютеров должен быть протестирован и отвечать всем требованиям стандартов.

Входные характеристики

Блок питания обязан нормально работать при напряжении в сети 90-140В для сетей 110В и 180-264 для сетей 220В, при частоте от 47 до 63Гц. Напряжение ниже указанных, не должно приводить к повреждению схем блока питания. Пропажа сетевого напряжения на любой период времени, в любой момент работы также не должно приводить к неисправности блока. При включении, ток зарядки высоковольтных конденсаторов не должен превышать номинальные значения входных цепей (предохранитель, выпрямительные диоды и схемы ограничения тока). Существует миф, что более мощный блок питания потребляет больше мощности из розетки, в сравнении по сравнению с маломощным дешевым аналогом. В действительности, часто имеет место обратная ситуация. Каждый блок имеет потери энергии при преобразовании сетевого напряжения в низковольтное постоянное, потребляемое компонентами компьютера. КПД (коэффициент полезного действия, или эффективность) современного дешевого блока обычно колеблется около величины 65-70%, тогда как более дорогие модели могут обеспечивать эффективность работы 85% или даже лучше. Например, подключив оба блока к нагрузке 200 Вт (приблизительно столько потребляет большинство компьютеров) получим потери 70 Вт в первом случае, и только 30 Вт во втором. 40 ватт экономии при ежедневной работе компьютера по 5 часов в сутки и 30-денному месяцы помогут сэкономить 6 кВт на счете за электроэнергию. Конечно, это мизерная цифра для одного ПК, но если взять уже офис на 100 компьютеров, то цифра может оказаться заметной. Также стоит учесть, что эффективность преобразования разная при разной мощности нагрузки. А раз пик максимального КПД приходится на 50-70% диапазон нагрузки, то практического смысла в приобретении БП с двукратным и более запасом мощности нет. Эффективность работы должна превышать 70% для полной нагрузки, и 65% для 20%-ной нагрузки. При этом рекомендованная эффективность как минимум 75% или лучше. Существует добровольная система сертификации для производителей, известная как Plus 80. Все источники питания принимают участие в этой программе имеют эффективность свыше 80%. На данный момент список участников-производителей в инициативе Plus 80 включает больше 60 наименований.

Напряжения и токи

Одна из ключевых характеристик — уровень напряжения по каждому из каналов блока питания. Современны блоки питания ATX выдают напряжения +12, +5, +3.3 и -12В, а также дополнительное дежурное +5В и несколько дополнительные сигнальный линий. Если отклонение напряжения ниже чем 5-10% порог, значительно увеличивается вероятность появления сбоев в работе компьютера, или спонтанное пере загрузки во время загрузки на процессор либо видеокарту. Слишком высокое напряжение негативно сказывается на тепловом режиме работы преобразователей напряжения на материнской плате и платах расширения, а также способно вывести из строя чувствительные контроллеры винчестеров, или вызвать повышенный износ. В лояльном ATX Power Supply Design Guide по каналу +12В допустимо 10% отклонение при пиковой нагрузке, однако напряжение по каналу +12V2 (который обычно предназначается для питания процессора), не должно снизиться ниже +11 В. Однако на практике часто уже даже 11.6В вызывает сбои в работе видеокарт. Не менее важным является и контроль импульсных помех (пульсаций) напряжения на каждой из линий. Допустимые рамки описаны в стандарте как обязательные, согласно стандарту SSI EPS 2.91 PSDG. Источниками пульсаций обычно являются схемы преобразователей внутри самого блока питания, а также мощные потребители с импульсным характером потребления, такие как процессоры, платы обработки трехмерных изображений, жесткие диски

Узлы защиты от повреждений

Кабели и различные разъемы

Современные блоки питания оснащаются рядом кабелей со стандартными разъемами, которые описаны в стандартах ATX и EPS. Материнская плата подключается 24-контактным (ранее был 20-контактный) разъемом с двухрядным расположением контактов, стандарта MiniFit. Конвертор напряжения питания процессора использует отдельный канал для питания, и оснащается 8\4-контактным разъемом MiniFit. Видеокарты используют кабели с напряжением +12В, с 6-ти и 8-ми контактными разъемами такого же типа, как и процессорный. SATA-устройства используют свой собственный проприетарный разъем с напряжениями +5, +3.3 и +12В. Периферийные устройства и старые накопители довольствуются давно существующими 4-контактными Molex с напряжениями +5 и +12В. Многие производители упаковывают кабели в нейлоновую оплетку, которая аккуратно выглядит и более удобна. Иногда доходит и до крайностей, как у Topower с толстыми экранированными кабелями с пластиковой трубке, или до черных одноцветных шин как у блоков Ultra. Также модно делать кабели отключаемыми от блока питания, что якобы удобнее и позволяет избавиться от пучка просто свисающих от БП проводов. Но, во-первых, удобство спорно, хотя бы из-за плотности, с какой расположены разъемы для подключения модульных кабелей, да и большой возможности воткнуть кабель не в свой разъем, например подключив жесткий диск к разъему питания видеокарт. Хорошо если защита в блоке питания сработает раньше, чем сгорит винчестер, а если нет? А во вторых, часто меняют комплектующие и кабели в компьютере разве что энтузиасты-оверклокеры и заядлые игроки, проводящие апгрейд каждый месяц. К тому же модульные разъемы хоть и несильно, но ухудшают электрический контакт, появляется еще один узел, где возможен плохой контакт или замыкание, разъемы стоят денег и удорожают монтаж блока.

Системы охлаждения блоков питания

Почти все блоки питания оснащаются вентилятором для активного охлаждения компонентов внутри корпуса. Кроме этого, вентилятор также выбрасывает подогретый воздух внутри корпуса компьютера наружу в окружающую среду. Большинство современных источников питания имеют вентилятор размера 120мм, расположенный на нижней стенке кожуха. Все чаще встречаются модели с вентилятором 135 или даже 140 мм, благодаря чему можно добиться снижения уровня шума при сохранении эффективности охлаждения. Однако в старших мощных (более чем 700 Вт) моделях, как и раньше, применяется вентилятор типоразмера 80х80мм в задней торцевой стенке. Возможно также вариации с использованием разного расположения вентилятора, или применением нескольких вентиляторов. Почти все блоки оснащены схемой динамического управления оборотами вентиляторов, в зависимости от температуры внутри БП (чаще всего температуры радиатора с диодами стабилизатора). Некоторые производители рассчитывают и указывают мощность блока питания при сниженной температуре 25°С, или даже 15°С, и попытка нагрузить указанной мощностью подобный прибор при повышенной температуре окружающей среды может привести к неприятному финалу и порчи комплектующих и самого блока питания. Это именно тот случай, когда примечание шестым пунктом снизу имеет значение.

Стенд для тестирования

Для проверки соответствует ли любой экземпляр блока питания рекламным заявлениям производителя, специально для обзоров был спроектирован и изготовлен испытательный стенд. Итоговый прибор, сравнявшись по стоимости с топовыми процессорами, в какой-то мере является микрокомпьютером, способным в автоматическом режиме проводить измерения всех каналов напряжения, отслеживать действующие на линиях токи и проводить всесторонние тесты узлов БП. Основные возможности стенда таковы:

» Включение\отключение блока питания, замер длительности включения\отключения блока
» Непрерывный мониторинг напряжений на всех каналах блока питания
» Непрерывный мониторинг токов на всех силовых каналах блока питания (кроме -12В)
» Непрерывное слежение за температурами внутри стенда и на выходе из БП
» Возможность подключения осциллографа, для замера пульсаций и слежения за шумом
» Отслеживание и защита от повреждений при аварийных ситуациях
» Возможность снятия кросс-нагрузочных характеристик и оценка по каждому основных напряжений.
» Приближенные к реальным условиям использования БП в ПК профили тестирования
» Гибкие возможности расширения и поддержка дополнительных модулей
» Модуль измерения характеристик электросети (сетевое переменное напряжение, частота и ток)
» Интерфейс для связи и управления к компьютеру USB 2.0
» Поддержка операционных систем Windows 2000/2003/Vista, включая 64-бит версии.
» Автономное сетевое питание от электросети 220В 50Гц
» Переносимость и небольшие габариты устройства.

Стенд имеет 8 каналов нагрузки, полностью управляемые, и способны потреблять ток более 30 ампер. Так как нагрузка стенда построена с использованием мощных полевых транзисторов, точность и возможности установки тока потребления легко варьировать в широких пределах. Шаг задания тока на всех каналах — 50мА, но при тестах в ручном режиме используются более большие шаги. 6 каналов подключены к различным разъемам с напряжением +12В, 1 канал создает нагрузку на +5В, и еще один — на +3.3В. Также имеется неуправляемый канал +5Vstb создающий нагрузку 1.5А, неизменную во время всех тестов, и канал для создания нагрузки 0.3А на линии -12В. Суммарно испытательный стенд позволяет тестировать блоки питания с мощностью до 1700Вт, при температуре окружающей среды не выше +25°С. Одна только мощность потребляемая вентиляторами достигает величины 80Вт по каналу +12В, поэтому стенд питается от собственного автономного блока питания.

Все вентиляторы снабжены защитными решетками, чтобы защитить оборудование и любопытствующих от травм, поскольку мощный вентилятор с агрессивными лопастями подобен мясорубке. Шум от работающего на полной мощности стенда легко заглушает даже самые громкие системы охлаждения видеокарт и процессоров. Поэтому на данный момент никаких оценок и замеров шумности тестируемых блоков не проводится. Итоговая упрощенная схема подключения испытуемого блока питания представлена на рисунке

На рисунке отображены только два провода на блок нагрузки, однако на самом деле их двадцать, так как одновременно подключаются все имеющиеся каналы и линии. Во время начальных испытаний стенд был смонтирован на монолитном алюминиевом радиаторе 500х122х38 мм.

В дальнейшем, для приближения тестовых условий работы изучаемого БП к реальным условиям использования внутри компьютера весь стенд собран внутри серийного компьютерного корпуса Thermaltake Soprano RS 100, с учетом модификаций шасси для крепления блоков стенда. Ведь в реальном компьютере, блок питания работает в сложных тепловых режимах, когда мощный процессор и видеокарты довольно значительно подогревают воздух внутри корпуса, а вентилятор блока питания уже горячим воздухом обдувает узлы блока питания. Тесты же блока питания вне корпуса не учитывают этого, и блоки работают в тепличных условиях даже при полной мощности нагрузки. В нашем стенде испытуемый блок питания устанавливается в заводское монтажное место, расположенное сверху слева, согласно стандарту АТХ. Подключаемые кабели от блока питания выводятся наружу к плате с разъемами через отверстие в крыше корпуса. Такой подход позволяет быстро менять схему подключения нагрузок, контролировать нагрев кабелей, подключать измерительные приборы для дополнительного контроля.

В нижней части, там, где в компьютерах располагаются системная плата с процессором, видеокартой и винчестеры в стендовом корпусе закреплены три массивных радиатора из алюминия, с установленными модулями нагрузок. На верхнем из них расположены нагрузки каналов +3.3 и +12V6, на среднем — три канала +12V1, +12V2, +5, а на нижнем оставшиеся +12V3, +12V4, +12V5 и дежурное +5Vstb. Радиаторы во время работы на полной мощности сильно разогреваются, вплоть до температур +100°С. Для охлаждения использовано шесть мощных вентиляторов типоразмера 120х120х38мм, со скоростью вращения крыльчатки около 4000-5000 оборотов в минуту, которые продувают весь корпус. Для защиты от перегрева в наиболее горячих точках установлено несколько температурных датчиков, которые непрерывно опрашиваются микропроцессором стенда.

Микропроцессорный модуль построен на базе 32-битного микроконтроллера с архитектурой ARM7, имеет 16 каналов АЦП, таймеры, 256КБ флеш-памяти для программ и большое количество различных интерфейсов. Для установки тока по каналам применяется 8-битный ЦАП на 8 независимых каналов и модули усиления и фильтрации помех. Ряд светодиодов на плате индицируют состояние устройства, наличие напряжений, а также текущие режимы работы. Благодаря наличию портов отладки функционал и код программы может быть быстро изменен с помощью персонального компьютера и среды разработки.

Силовая плата с разъемами служит для подключения разъемов от блока питания к нагрузочным модулям, а также для мониторинга величин. Напряжения измеряются в точке подключения кабеля к нагрузке. На плате установлен 24-контактный разъем, 4 разъема PCI-Express с 8 контактами, один 8-контактный разъем под кабель питания процессора и восемь стандартных 4-контактных молексов. На каждом канале установлен дополнительно высокочастотный экранированный разъем SMA для подключения измерительный пробников, а также емкости, предусмотренные по стандарту для тестовых испытания (10мкФ танталовый и 0.1мкФ керамический).

Контролем сетевого напряжения поступающего на испытуемый блок питания, а также замером потребляемого активного и реактивного токов занимается отдельный модуль, питаемый от электросети автономно. Модуль имеет собственный RS-232 порт для связи с главным микроконтроллером, жидкокристаллический индикатор для отображения текущего значения мощности, а также высокоточные АЦП и ИОН. На плате установлены также цепи защиты от перегрузки, во избежание перегрева и возгорания.

Для контроля возможно подключение знаково-цифрового индикатора со стандартным контроллером Hitachi HD44780 , либо совместимым аналогом. Электроника стенда связана с нагрузкой мощными толстыми проводами в прочной изоляции с хвостовиками под винтовой монтаж. Ведь ток потребляемый нагрузками только по каналу +12В может достигать 150 (!) ампер при полной мощности. Сварочные аппараты нередко рассчитаны на меньший ток.

Каждый из полевых транзисторов, используемых в нагрузке, способен рассеять 480Вт, при условии соответствующего теплоотвода от корпуса. Максимальный ток работы примененных FB180SA10 достигает 180А, при напряжении 100В. В импульсном режиме этот ток еще выше, поэтому запас по прочности у использованных компонент многократный, что значительно повышает надежность испытательного стенда. За все время работы установки и тестов более тридцати различных блоков питания примененная элементная база функционировала безукоризненно.

Для управления работой стенда было специально разработано программное обеспечение с графическим интерфейсом под операционные системы семейства Windows 2000/2003 Server. Программа служит для задания параметров тестов, с возможностью как ручного управления, так и запуском автоматических программ и тестов. Мониторинг напряжений и токов выполняется непрерывно по запросу управляющей программы, а слежение и защита по температурным показателям микроконтроллер стенда выполняет полностью автономно, сообщая программе только текущие значения. При первом подключении стенда к компьютеру стандартным периферийным USB-кабелем Windows находит новое устройство и предлагает установить драйвер. После установки драйвера стенд полностью функционален.

После запуска и настройки программы управления на заданный порт и скорость связи можно увидеть главное окно. Здесь же находятся регуляторы для установки тока по каждому из независимых каналов нагрузки, отображается текущее и расчетные величины мощности и тока, действующая мощность на выходе тестируемого блока питания, мощность на входе БП, эффективность работы, сетевые напряжение, ток и частота, 4 температуры с датчиков стенда, а также 2 скорости оборотов вентилятора. Для замера оборотов применяются бесконтактные оптические датчики оборотов. Также имеется таймер, считающий время, которое пробыл блок питания во включенном состоянии. Приблизительный вид главного окна может быть следующим:

Очень удобны для оценки качества стабилизации, так называемые графики кросс-нагрузочных характеристик (КНХ) блока питания. Они представляют собой трехмерный массив данных, где по оси Х (горизонтальная) отмечены величины суммарного тока нагрузки по +12В, по Y(вертикальная ось) отражает величину суммарного тока по +5 и +3.3В каналам, а сами точки в глубину отражают величину отклонения измеренного напряжения от идеального. График для каждого напряжения измеряется и строится отдельно, таким образом, количество графиков равно количеству каналов у блока питания. Для наглядности и удобства каждый график отражает отклонение по точкам с помощью цвета, от -5% (темно-синий цвет точки) до +5% (темно-красный цвет). Отклонения не более 1% отображаются оттенками зеленого, превышения напряжения на 2-3% — оттенками красного и желтого, а понижение ниже идеального на 2-4% — голубыми цветами. Выражаясь более простым языком, чем «зеленее» график, тем меньше погрешности в стабилизации блока питания, тем ближе его напряжения к идеальным +12.0, +5.0, +3.3В. Напомним, по стандарту ATX 2.3 блок обязан укладываться в 5% допуск по напряжению, а по более жесткому серверному SSI EPS v2.91 — в 3% величину отклонения. Качественный блок с раздельной стабилизацией по каналам имеет примерно такой график:

Некачественные блоки обычно похожи на радугу разукрашку на графиках КНХ. В различных комбинациях токов и напряжений такие изделия то превышают допуски стандарта, выдавая слишком высокое напряжение, то наоборот, слишком занижают напряжения, также нарушая требования.

Кроме того КНХ позволяет увидеть, в каких комбинациях нагрузочных токов блок работает неустойчиво, либо вообще не способен функционировать. Не секрет, что некоторые мощные блоки питания даже не стартуют, если на определенных каналах нет минимально необходимой нагрузки. С этим сталкивались владельцы современных блоков питания при попытке их подключить к устаревшим ныне системам на базе платформ Socket 478, Socket 462 и подобных. Снятие же КНХ без стенда, в ручном режиме заняло бы не один месяц работы даже для одного блока питания, не говоря уже о каком-либо тесте нескольких блоков питания. Ведь установку всех токов стенд проводит меньше чем за 250 микросекунд, а оператору-человеку потребовались бы минимум минуты, чтобы только выкрутить все регуляторы на нагрузках на нужные значения, и еще потратить массу времени и сил на запись результатов измерения и занесения их в таблицу точек. Стенд с процессорным управлением же справляется с построением уже готовых шести графиков КНХ для блока питания мощностью тысячу ватт за 18 минут. Все последующие материалы-тесты и обзоры блоков питания будут использовать описанные в текущей методике стенд и оборудование для проведения всех тестов. По мере обновления и усовершенствований материал будет дополняться и расширяться. На данный момент собранный и готовый к использованию экземпляр испытательного стенда возможно приобрести в облегченной конфигурации для нужд испытаний и тестирования блоков питания, для чего достаточно связаться с автором. Описанный в текущей статье прототип используется уже более года и зарекомендовал себя как надежный и удобный инструмент для оценки параметров импульсных блоков питания.

Благодарности и ссылки

X12V Power Supply Design Guide, version 2.2
SSI EPS Power Supply Design Guide, version 2.91
cyclone, за предоставленные возможности и посильную помощь
iZerg, за ценные рекомендации и бесценный опыт
J-34, за поддержку в создании прототипа
А также компании ATMEL, ALTERA, Intel, Tektronix, International Rectifier за отличные изделия.

Источник