- Чем одномодовое оптоволокно отличается от многомодового
- Определение одномодового и многомодового оптоволокна
- Конструкция и диаметр сердечника оптоволокна
- Цена оптоволоконного кабеля и компонентов системы
- Подведем итоги
- Одномодовый и многомодовый волоконно-оптический кабель: отличия и правила выбора
- Одномодовый и многомодовый волоконно-оптический кабель: правила выбора
- Тестирование одномодовых и многомодовых оптических кабелей
- Чем отличаются кабели SingleMode и MultiMode? — Особенности 2 видов оптоволокна
- Особенности оптоволокна разных типов
- Особенности многомодового оптоволокна
- Классификация MultiMode волокон по стандарту ISO/IEC 11801
- Классификация ММ волокон
- Особенности одномодового оптоволокна
- Классификация SingleMode волокон по стандартам ITU-T G.652-657
- Где применяют 2 типа кабелей?
Чем одномодовое оптоволокно отличается от многомодового
Определение одномодового и многомодового оптоволокна
- Одномод (SingleModeFiber — SMF) передает только один несущий световой сигнал или одну моду. Из-за малого диаметра сердечника световой сигнал способен проходить через одномодовое оптическое волокно только по одному пути («моде»).
- Многомод (MultiModeFiber MMF) передает несколько независимых световых сигналов (мод) с разными длинами волн и фазами. В многомодовом оптическом волокне диаметр сердечника гораздо больше, чем в одномодовом, поэтому один и тот же световой сигнал проходит по нескольким разным путям («модам»).
Конструкция и диаметр сердечника оптоволокна
Пропускная способность одномодового кабеля составляет 10 Гбит/с и более, теоретически она вообще не ограничена. У многоводового пропускная способность гораздо скромнее – до 2,5 Гбит/с.
Рассеивание и затухание сигнала
В одномодовом волокне тонкий сердечник и минимальная модовая дисперсия, то есть сигнал практически не рассеивается и не затухает.
SMF может передавать сигнал на большие расстояния без ретрансляторов. MMF из-за дисперсии используется только на коротких линиях, между которыми нужно устанавливать повторители.
Цена оптоволоконного кабеля и компонентов системы
Подведем итоги
Оставьте заявку и наш менеджер свяжется с Вами
Источник
Одномодовый и многомодовый волоконно-оптический кабель: отличия и правила выбора
Волоконно-оптические системы связи ведут свою историю с 1960 года, когда был изобретен первый лазер. При этом само оптическое волокно появилось только 10 лет спустя, и сегодня именно оно является физической основой современного интернета.
Оптические волокна, применяемые для передачи данных, имеют принципиально схожее строение. Светопередающая часть волокна (ядро, сердечник или сердцевина) находится в центре, вокруг него располагается демпфер (который иногда называют оболочкой). Задача демпфера – создать границу раздела сред и не дать излучению покинуть пределы ядра.
И ядро, и демпфер изготавливаются из кварцевого стекла, при этом показатель преломления ядра несколько выше, чем показатель преломления демпфера, чтобы реализовать явление полного внутреннего отражения. Для этого достаточно разницы в сотые доли – например, ядро может иметь показатель преломления n1=1.468, а демпфер – значение n2=1.453.
Диаметр ядра одномодовых волокон составляет 9 мкм, многомодовых – 50 или 62.5 мкм, при этом диаметр демпфера у всех волокон одинаков и составляет 125 мкм. Строение световодов в масштабе показано на иллюстрации:
Ступенчатый профиль показателя преломления (step—index fiber)– самый простой для изготовления световодов. Он приемлем для одномодовых волокон, где условно считается, что «мода» (маршрут распространения света в ядре) одна. Однако для многомодовых волокон со ступенчатым показателем преломления характерна высокая дисперсия, вызванная наличием большого количества мод, что приводит к рассеиванию, «расползанию» сигнала, и в итоге ограничивает расстояние, на котором возможна работа приложений. Минимизировать дисперсию мод позволяет градиентный показатель преломления. Для многомодовых систем настоятельно рекомендуется использовать именно волокна с градиентным показателем преломления (graded—index fiber), в которых переход от ядра к демпферу не имеет «ступеньки», а происходит постепенно.
Основной параметр, характеризующий дисперсию и, соответственно, способность волокна поддерживать работу приложений на определенные расстояния – коэффициент широкополосности. В настоящее время многомодовые волокна делятся по этому показателю на четыре класса, от OM1 (которые не рекомендуется применять в новых системах) до наиболее производительного класса OM4.
Класс волокна
Размер ядра/демпфера, мкм
Коэффициент широкополосности,
режим OFL, МГц·км
Примечание
850 нм
1300 нм
OM1
Применяется для расширения ранее установленных систем. Использовать в новых системах не рекомендуется.
OM2
Применяется для поддержки приложений с производительностью до 1 Гбит/с на расстоянии до 550 м.
OM3
Волокно оптимизировано для применения лазерных источников. В режиме RML коэффициент широкополосности на длине волны 850 нм составляет 2000 МГц·км. Волокно применяется для поддержки приложений с производительностью до 10 Гбит/с на расстоянии до 300 м.
OM4
Волокно оптимизировано для применения лазерных источников. В режиме RML коэффициент широкополосности на длине волны 850 нм составляет 4700 МГц·км. Волокно применяется для поддержки приложений с производительностью до 10 Гбит/с на расстоянии до 550 м.
Одномодовые волокна делятся на классы OS1 (обычные световоды, используемые для передачи на длинах волн либо 1310 нм, либо 1550 нм) и OS2, которые можно применять для широкополосной передачи во всем диапазоне от 1310 нм до 1550 нм, поделенном на каналы передачи, или в даже более широком спектре, например, от 1280 до 1625 нм. На начальном этапе выпуска волокна OS2 маркировались обозначением LWP (Low Water Peak), чтобы подчеркнуть, что в них минимизированы пики поглощения между окнами прозрачности. Широкополосная передача в наиболее производительных одномодовых волокнах обеспечивает скорости передачи свыше 10 Гбит/с.
Одномодовый и многомодовый волоконно-оптический кабель: правила выбора
Учитывая описанные характеристики многомодовых и одномодовых волокон, можно привести рекомендации по выбору типа волокна в зависимости от производительности приложения и расстояния, на котором оно должно работать:
для скоростей свыше 10 Гбит/с выбор в пользу одномодового волокна независимо от расстояния
для 10-гигабитных приложений и расстояний свыше 550 м выбор также в пользу одномодового волокна
для 10-гигабитных приложений и расстояний до 550 м также возможно применение многомодового волокна OM4
для 10-гигабитных приложений и расстояний до 300 м также возможно применение многомодового волокна OM3
для 1-гигабитных приложений и расстояний до 600-1100 м возможно применение многомодового волокна OM4
для 1-гигабитных приложений и расстояний до 600-900 м возможно применение многомодового волокна OM3
для 1-гигабитных приложений и расстояний до 550 м возможно применение многомодового волокна OM2
Стоимость оптического световода во многом определяется диаметром ядра, поэтому многомодовый кабель при прочих равных обходится дороже одномодового. При этом активное оборудование для одномодовых систем из-за использования в них мощных лазерных источников (например, лазер Фабри-Перо) стоит существенно дороже активки для многомода, где используются либо относительно недорогие лазеры поверхностного излучения VCSEL либо еще более дешевые светодиодные источники. При оценке стоимости системы необходимо учитывать затраты как на кабельную инфраструктуру, так и на активное оборудование, причем последние могут оказаться существенно больше.
На сегодняшний день сложилась практика выбора оптического кабеля в зависимости от сферы использования. Одномодовое волокно используется:
в морских и трансокеанских кабельных линиях связи;
в наземных магистральных линиях дальней связи;
в провайдерских линиях, линиях связи между городскими узлами, в выделенных оптических каналах большой протяженности, в магистралях к оборудованию операторов мобильной связи;
в системах кабельного телевидения (в первую очередь OS2, широкополосная передача);
в системах GPON с доведением волокна до оптического модема, размещаемого у конечного пользователя;
в СКС в магистралях длиной более 550 м (как правило, между зданиями);
в СКС, обслуживающих центры обработки данных, независимо от расстояния.
Многомодовое волокно в основном используется:
в СКС в магистралях внутри здания (где, как правило, расстояния укладываются в 300 м) и в магистралях между зданиями, если расстояние не превышает 300-550 м;
в горизонтальных сегментах СКС и в системах FTTD (fiber—to—the—desk), где пользователям устанавливаются рабочие станции с многомодовыми оптическими сетевыми картами;
в центрах обработки данных в дополнение к одномодовому волокну;
во всех случаях, где расстояние позволяет применять многомодовые кабели. Хотя сами кабели обходятся дороже, экономия на активном оборудовании покрывает эти затраты.
Можно ожидать, что в ближайшие годы волокно OS2 постепенно вытеснит OS1 (его снимают с производства), а в многомодовых системах исчезнут волокна 62.5/125 мкм, поскольку их полностью вытеснят световоды 50 мкм, вероятно, классов OM3-OM4.
Тестирование одномодовых и многомодовых оптических кабелей
После монтажа все установленные оптические сегменты подлежат тестированию. Только измерения, проведенные специальным оборудованием, позволяют гарантировать характеристики установленных линий и каналов. Для сертификации СКС применяются приборы с квалифицированными источниками излучения на одном конце линии и измерителями на другом. Такое оборудование производят компании Fluke Networks, VIAVI, Psiber; все подобные устройства имеют предустановленные базы допустимых оптических потерь в соответствии с телекоммуникационными стандартами TIA/EIA, ISO/IEC и другими. Более протяженные оптические линии проверяют с помощью оптических рефлектометров, имеющих соответствующий динамический диапазон и разрешающую способность.
На этапе эксплуатации все установленные оптические сегменты требуют бережного обращения и регулярного использования специальных чистящих салфеток, палочек и других средств очистки.
Нередки случаи, когда проложенные кабели повреждают, например, при копке траншей или при выполнении ремонтных работ внутри зданий. В этом случае для поиска места сбоя необходим рефлектометр или другой диагностический прибор, основанный на принципах рефлектометрии и показывающий расстояние до точки сбоя (подобные модели есть у производителей Fluke Networks, EXFO, VIAVI, NOYES (FOD), Greenlee Communication и других).
Встречающиеся на рынке бюджетные модели предназначены в основном для локализации повреждений (плохих сварок, обрывов, макроизгибов и т д). Зачастую они не в состоянии провести детальную диагностику оптической линии, выявить все её неоднородности и профессионально создать отчет. Кроме этого, они менее надежны и долговечны.
Качественное оборудование – напротив надежно, способно диагностировать ВОЛС в мельчайших деталях, составить корректную таблицу событий, сгенерировать редактируемый отчет. Последнее крайне важно для паспортизации оптических линий, потому как иногда встречаются сварные соединения с настолько низкими потерями, что рефлектометр не в состоянии определить такое соединение. Но сварка ведь всё равно есть, и ее необходимо отобразить в отчёте. В этом случае программное обеспечение позволяет принудительно установить на рефлектограмме событие и в ручном режиме измерить потери на нем.
Многие профессиональные приборы также имеют возможность расширения функциональных возможностей за счет добавления опций: видеомикроскопа для инспектирования торцов волокон, источника лазерного излучения и измерителя мощности, оптического телефона и др.
Источник
Чем отличаются кабели SingleMode и MultiMode? — Особенности 2 видов оптоволокна
04 марта 2021 17:31
В статье поговорим об одномодовых и многомодовых волокнах, их классификациях и сферах применения. Читайте, чтобы выбрать подходящий оптоволоконный кабельдля вашей сети.
Особенности оптоволокна разных типов
Оптические волокна имеют две важные составляющие:
- Сердечник — передает световой сигнал. Эту часть еще называют ядром или сердцевиной.
- Наружная оболочка — это граница, которая не дает излучению выйти за пределы сердцевины. Еще называется демпфером.
Волокна делят на одно- или многомодовые по количеству мод — световых лучей, которые способны пройти через ядро. В зависимости от его размера, в оптоволокне распространяется либо одна, либо несколько мод. Если диаметр у сердечника маленький, то он может пропустить только одну моду, если большой — несколько.
Диаметры ядра двух типов волокна таковы:
- одномодовое — до 10 микрон, чаще — 9 мкм;
- многомодовое — до 62,5 микрон, популярнее — 50 мкм.
Толщина же оболочки одинакова у обоих типов. Она составляет 125 микрон.
Дроп кабель или любой другой вид оптического провода может отличаться показателем преломления демпфера и ядра — профилем. Если показатель по сечению равномерен, то профиль называется ступенчатым. Он подходит для волокна типа SM, а вот в ММ типе может ухудшить прохождение сигнала, поскольку появляется дисперсия — искажение формы светового импульса. Она возникает из-за разных маршрутов, по которым распространяются отдельные моды.
Чтобы снизить дисперсию, оптоволокно изготавливают с другим профилем, где оптическая плотность плавно снижается от центра к границе. Он называется градиентным. Благодаря этому маршруты, по которым распространяются боковые моды, корректируются. Такие многомодовые волокна стоят дороже, однако они показывают лучшее качество сигнала.
Особенности многомодового оптоволокна
У многомодового волокна ограничены дальность и скорость сигнала. Также они характеризуются большим затуханием, если сравнивать с SM-волокном. Однако есть и плюс. Он заключается в том, что не требуют слишком точной юстировки, так как ММ волокно толще.
Классификация MultiMode волокон по стандарту ISO/IEC 11801
Всего существует 4 категории ММ. Модели отличаются:
- толщиной сердцевины;
- коэффициентом широкополосности (КШ) — определяет дистанцию, на которую распространяется сигнал на определенных длинах волн;
назначением.
Примечание: показатели затухания для всех классов одинаковы, но зависят от длины волны — для 850 нм значение составляет 3,5 Дб/км, для 1300 нм — 1,5 Дб/км.
Классификация ММ волокон
Класс | Диаметры (мкм) | КШ (МГц*км), Длина волны 850 нм / 1300 нм | Назначение | |
ОМ1 | 62,5/125 | 200 | 500 | В новых системах не используется. Предназначен лишь для расширения старых сетей. |
ОМ2 | 50/125 | 500 | 500 | Для передачи данных до 1 Гбит/с на дистанции 550 м максимум. |
ОМ3 | 50/125 | 1500 | 500 | Может обеспечить пропускную способность до 10 Гбит/с. При этом дистанция передачи данных составляет максимум 300 метров. |
ОМ4 | 50/125 | 3500 | 500 | Обеспечивает ту же скорость, что и предыдущий вариант, но работает на больших расстояниях — до 550 метров. |
Интересно: в 2016 г. утвердили ОМ5. Эти волокна дают возможность использовать технологию уплотнения по коротким длинам волн SWDM. При этом технология может применяться с 4 разными длинами. Это позволяет повысить пропускную способность в четыре раза и при этом сохранить, и даже немного увеличить, максимальную длину линии. Впрочем, в нашей стране волокна 5-го класса почти не используются: чтобы раскрыть их преимущества необходимы трансиверы с поддержкой SWDM: пока о массовом внедрении такого волокна речь не идет.
Особенности одномодового оптоволокна
В SM волокне нет дисперсии, поэтому у него меньше величина затухания и больше расстояние, а также скорость передачи сигнала. Однако такое оптическое волокно требует высокой точности юстировки и ввода излучения. Это делает монтаж и обслуживание сети сложнее, да и оборудование для работы с одномодовыми кабелями в среднем стоит дороже.
Примечание: раньше SM волокно стоило больше, а потому применялось только для дальних дистанций. Сейчас же дроп кабель оптический с одномодовым волокном стали использовать и для сетей с небольшой протяженностью.
Классификация SingleMode волокон по стандартам ITU-T G.652-657
Тип (G.) | Длина волны (нм) | Дисперсия | Примечание |
652 | 1300 | несмещенная | Популярны всеволновые волокна G.652.C и G.652.D. На 1383 нм они характеризуются малым затуханием. По этой причине подходят для CWDM систем. |
654 | 1550 | смещенная длина волны отсечки | Показатель затухания не достигает и 0,18 Дб/км. Используется для наземных и подводных ВОЛС. Такое волокно сложно изготавливать, поэтому стоит оно недешево. |
655 | от 1530 до 1565 | ненулевая смещенная | Не используется с системами DWDM. |
656 | от 1460 до 1625 | ненулевая смещенная | Можно использовать в DWDM и CWDM системах. |
Примечание: существует еще G.657. Особенность такого волокна заключается в том, что оно не является чувствительным к потерям на макроизгибе. Отметим, что у этого типа есть несколько подклассов. Они отличаются радиусом изгиба и значением потерь соответственно. Эти показатели указывают в характеристиках кабелей.
Где применяют 2 типа кабелей?
Исходя из вышенаписанного, можно определить сферы использования одно- и многомодовых кабелей. Так, первый тип подходит для передачи данных на дальние дистанции. Это делает его подходящим вариантом для магистральных, городских линий связи. Для небольших участков сети подойдет многомодовый вариант.
Также при выборе стоит помнить о типе кабеля по способу монтажа. По этому признаку модели тоже делят на два вида:
- Оптический кабель для наружной прокладки — монтажа в грунте, на опорах и столбах (подвесной вариант), в колодцах и коллекторах, водоемах.
- Для монтажа внутри зданий применяется оптический кабель для внутренней прокладки.
Отметим, что внешний оптический кабель обычно оснащается очень плотной оболочкой черного цвета. Она эффективно защищает волокна от механических повреждений и осадков, ультрафиолета и прочих воздействий окружающей среды. Оптический кабель внутренний обычно оснащается белой или цветной оболочкой. Нередко она обладает дополнительными свойствами: является малодымной и/или огнестойкой, не выделяет галогенов при горении. Также существует универсальный в плане монтажа провод. Это ftth кабель.
Зная особенности разных типов оптического волокна, вы сможете правильно спроектировать и построить ВОЛС.
Источник