Методы определения повреждения силового кабеля

Методы определения повреждения силового кабеля

Методы поиска повреждений на кабелях подразделяют на абсолютные и относительные. Относительные предполагают определение расстояния до повреждения в процентах к общей длине линии или в метрах от оконечного устройства. (Относительно длины). Абсолютные определяют повреждения прямо на месте.

К абсолютным можно отнести индукционный, акустический, индукционно-акустический и в какой-то мере прожиг.

Индукционный метод

Основан на прослушивании электромагнитных наводок вокруг кабеля при прохождении по нему токов звуковых частот. Один из основных абсолютных методов поиска не только повреждений, но и трассировки кабельной линии. Почти без изменений применяется также на телекоммуникационных кабелях (стр. → Индукционный метод. Поиск трассы кабеля кабелеискателем).

Для введения тока звуковой частоты в кабель используется специализированный генератор. Поиск повреждения или трассировка осуществляется приёмной частью комплекта, состоящего из антенны и приёмника, способных улавливать возникающее вокруг кабеля электромагнитное поле.

Методом можно определить место короткого замыкания в кабеле, трассу прокладки и глубину залегания. Приёмам и способам работы с кабелеискателем, а именно он использует индукционный метод посвящены страницы:
• Подключение генератора кабелеискателя,
• Иллюстрации использования кабелеискателей
• Индуктивные методы трассировки кабеля: схемы и описания
• Подключение к кабелю генератора звуковой частоты

Прожиг или преобразование повреждения


Схема прожигающего устройства ЛВИ—3М (Ярославская)

В силовых кабелях есть также возможность использования больших токов и преобразования повреждения, что серьёзно увеличивает возможности обнаружения места пробоя. Например, в случае, когда происходит пробой изоляции только при большом, в несколько сотен или тысяч вольт напряжении или сопротивление повреждения большое, то средствами высоковольтной лаборатории такое повреждение можно дожечь. Для этой цели используют прожигающее устройство.

Читайте также:  Какую нагрузку выдержит кабель медный сечением 4

Основой такого прибора является мощный высоковольтный трансформатор с возможностью переключения коэффициента трансформации и автотрансформатором в первичной обмотке. Прожиг начинают с постепенного поднятия переменно напряжения в кабеле и наблюдают за протекающим через повреждение током. При каком-то значении напряжения в месте повреждения кабеля возникает устойчивый пробой и соответственно зажигается дуга. Постепенно эта дуга и дожигает место повреждения — полностью сплавляет изоляцию кабеля, превращая её в проводящий ток уголь. Либо, что случается реже, повреждённая жила отгорает до обрыва. Не всегда этот процесс протекает одинаково и для того чтобы добиться устойчивого горения дуги оператору приходится менять коэффициент трансформации установки и выходное напряжение.

В итоге после удачного прожига сопротивление повреждения либо падает до десятков Ом, либо жила переходит в обрыв. В обоих из этих случаев расстояние до повреждения легко определяется импульсным методом (рефлектометром) или индукционным методом (кабелеискателем). Тем не менее, с применением прожига спешить не стоит, так как он имеет свои недостатки. Так его опасно применять на низковольтных кабелях с небольшим сечением жилы — ток, протекающий по кабелю, может его перегреть в неповреждённой длине.

Прожиг кабеля увеличивает время поиска повреждения. Сначала ведь кабель надо дожечь, а затем еще и искать место повреждения индукционным методом. Быстрее определить место повреждения помогает акустический метод с использованием генератора высоковольтных импульсов.

Прожиг в абсолютные методы поиска можно отнести условно. Если вдуматься в его суть, то это даже не метод поиска повреждений, а лишь способ улучшить условия использования таких методов как акустический, индукционный и импульсный. Тем не менее, иногда он может быть использован именно как абсолютный. Его иногда используют при сомнениях в определённых муфтах или разделках — подав через ЛВИ приличный ток можно добиться возгорания сомнительного места, тем самым абсолютно точно определить повреждение.

Акустический метод или метод удара

Метод предполагает использование генератора высоковольтных импульсов и иногда его же называют ударом.

Основой генератора для акустического метода является высоковольтный конденсатор с нагруженным на него трансформатором и выпрямителем. Через автотрансформатор на этом конденсаторе задаётся высокое напряжение. Затем через ручной или автоматический переключатель это напряжение подаётся в кабельную линию. Учитывая приличную энергию, накопленную на конденсаторе, импульс такого генератора на короткое время зажигает дуговой разряд в месте пробоя изоляции с образованием громкого выстрела (удара). Если генератор перевести в автоматический режим, то можно добиться непрерывной последовательности таких ударов.


Схема выходного каскада генератора высоковольтных импульсов ЛВИ—3М (Ярославль)

Далее поиск повреждения зависит от характера повреждения изоляции и трассы кабельной линии. Так, если кабель проложен открыто, то выстрелы могут быть слышны на десятки и сотни метров и поиск дефекта сводится прослушиванию трассы без приборов. В месте повреждения, как правило, видны вспышки высоковольтного разряда.

Если кабель лежит в грунте, то конечно, эти удары слышны не так далеко. Но тоже бывает достаточно пройтись по трассе — удары часто слышны в пределах нескольких метров от повреждения, причём часто толчки ощущаются даже подошвами ног.

Стоит заметить, что акустический метод может быть использован совместно с импульсным (→ Импульсно-дуговой метод) и в этом случае он перестаёт быть абсолютным. Результат измерений рефлектометра будет обозначен в метрах, а это уже относительно.


Приемник ударных волн Digiphone+
(геомикрофон слева, вверху
увеличенный экран прибора)

Геомикрофон и индукционно-акустический метод

Если повреждение не выгорело наружу, то возможна ситуация, когда удары не слышны. В этом случае используется специальный геомикрофон. Прибор этого типа, как правило, имеет размер с пол-литровую банку и закреплён на полуметровой ручке. Шнур от такого геомикрофона соединяется со специальным портативным усилителем и оператор, проходя по трассе кабеля, ищет по громкости щелчка место повреждения. Во время поиска датчик прибора периодически ставят на грунт и не шевелят его, слушая щелчки в наушниках. По максимальной громкости разрядов и определяют место повреждения.

В более новых приборах микрофон дополняется ещё и электромагнитной антенной — при этом акустический метод становится индукционно-акустическим. Геомикрофон такого типа ловит не только звук выстрела, но и электромагнитный импульс, возникающий при разряде. Учитывая, что звук распространяется медленней электромагнитного поля, то у электронной начинки прибора есть возможность сравнить время прихода обоих сигналов и рассчитать расстояние до места пробоя в метрах. Результат отображается на экране такого прибора.

Источник

Основные методы определения мест повреждения (ОМП)

Неизбежные материальные и финансовые потери, к которым приводит выход из строя кабельной линии (КЛ), заставляют искать наиболее эффективные, минимизирующие эти потери, способы устранения повреждений. Правильный выбор метода и оборудования для поиска мест повреждений определяют эффективность решения поставленной задачи, т.е. максимальную вероятность правильного определения места повреждения и минимальное время, затрачиваемое на это. Причины появления дефектов в кабелях весьма разнообразны. Основные из них: механические или коррозионные повреждения, заводские дефекты, дефекты монтажа соединительных и концевых муфт, осушение изоляции вследствие местных перегревов кабеля и старение изоляции.

Основные виды повреждений силовых кабелей

  • однофазное замыкание на «землю»;
  • межфазное замыкание; межфазное замыкание на «землю»;
  • обрыв жил кабеля без заземления или с заземлением как оборванных, так и необорванных жил;
  • заплывающий пробой, проявляющийся в виде короткого замыкания (пробоя) при высоком напряжении и исчезающий (заплывающий) при номинальном напряжении.

Классификация методов ОМП

Виды повреждений и основные методы поиска

Виды повреждений Схема повреждения Переходное сопротивление, Ом Дистанционный метод Топографический метод Оборудование для определения мест повреждений
Замыкание фаз на оболочку кабеля Rп 4 Мостовой Акустический,
накладная рамка
РЕЙС-305, SC40, ПКМ-105,
ГП-24 «Акустик» , ПА-1000А
Rп ≤ 50 Импульсный Акустический,
индукционный,
накладная рамка
РЕЙС-105М1, КП-500К
100 4 Петлевой
(мостовой)
Акустический РЕЙС-305, SC40, ПКМ-105,
ГП-24 «Акустик» , ПА-1000А
Rп ≤ 50 Импульсный Акустический РЕЙС-105М1, КП-500К
100 4 Мостовой Акустический,
индукционный
РЕЙС-305, SC40, ПКМ-105,
ГП-24 «Акустик» , ПА-1000А
Замыкания между фазами Rп 10 6 Импульсный,
колебательного разряда
Акустический,
индукционный,
накладная рамка
РЕЙС-305, SC40, SDC50,
SD80, АИП-70,
ГП-24 «Акустик» ,ПА-1000А,
КП-500К
Rп > 10 6 Импульсный,
колебательного разряда
Акустический РЕЙС-305, SC40, SDC50, SD80, АИП-70 ,
ГП-24 «Акустик» , ПА-1000А
0 Rп 3 Импульсный Акустический,
индукционный
РЕЙС-105М1,
ГП-24 «Акустик», ПА-1000А,
КП-500К
Заплывающий пробой Rп > 10 6 Колебательного разряда Акустический РЕЙС-305, SC40, SD80,
АИП-70,
ГП-24 «Акустик» , ПА-1000А

Дистанционные (относительные) методы

  • Импульсный метод заключается в том, что в кабельную ли­нию посылаются электрические импульсы (зондирующие импуль­сы), которые, распространяясь по линии, частично отражаются от неоднородностей волнового сопротивления и возвращаются к месту, откуда были посланы. По времени прохождения импульса до неоднородности и обратно, которое пропорционально рассто­янию до него вычисляют расстояние. Можно определить рассто­яние до места повреждения, обрыва жилы, длину кабеля, Можно определять расстояния до неоднородностей, муфт, однофазных и междуфазных повреждений кабеля.
  • Емкостный метод возможно использовать при обрывах жил кабеля. Расстояние до места обрыва определяется по значе­нию измеренной емкости жил КЛ. Измерение проводится с помо­щью мостов переменного тока. Мостами переменного тока можно измерять емкость при обрывах с сопротивлением изоляции в ме­сте повреждения не менее 300 Ом. При меньших сопротивлениях точность измерения падает ниже допустимого значения.
  • Метод колебательного разряда используется при опре­делении расстояния до мест однофазных повреждений с переход­ным сопротивлением в месте повреждения порядка 10-100 килоом. С помощью высоковольтной испытательной установки на поврежденной жиле кабеля поднимается напряжение до пробоя. Короткое замыкание в заряженной жиле кабеля приводит к по­явлению электромагнитных волн, которые распространяются от места пробоя в месте дефекта к началу и к концу кабельной линии. Анализируя эпюры напряжения колебательного процесса можно вычислить расстояние до дефекта.
  • Волновой метод используется, в том случае, если сопро­тивление в месте повреждения составляет от нуля до сотен килоом. Осуществляется метод следующим образом. При пробое разрядника высоковольтной выпрямительной установки в линию посылается высоковольтная электромагнитная волна от заряжен­ного конденсатора, которая создает пробой в месте повреждения кабельной линии, что вызывает волновой колебательный процесс в цепи конденсатор-линия. При достижении электромагнитной волной, посланной от конденсатора, места повреждения произой­дет пробой в случае, если сопротивление в месте повреждения не равно нулю Ом, после чего отраженный от повреждения фронт волны вернется к месту посылки — конденсатору, отразится от него и вернется к месту повреждения. Если сопротивление в месте повреждения близко к нулю, разряда не произойдет и волна отраз­ится от короткого замыкания. Этот процесс будет продолжаться до тех пор, пока волна не затухнет. С помощью измерений времен­ной зависимости напряжения на зажимах кабеля во время коле­бательного процесса, можно установить время, за которое волна достигнет места пробоя, и рассчитать расстояние до него.
  • Петлевой метод основан на измерении сопротивления току жил кабеля (как правило, с помощью моста). Используется при определении места повреждения защитной пластмассовой изоляции. Точность определения расстояния до места поврежде­ния невелика и составляет около 15% измеряемой длины.

Топографические (абсолютные) методы

  • Акустический метод поиска основан на прослуши­вании над местом повреждения звуковых колебаний, возни­кающих в месте повреждения в момент искрового разряда от электрических импульсов, посылаемых в кабельную линию.
  • Потенциальный метод поиска основан на фиксации на поверхности грунта вдоль трассы электрических потенциалов, создаваемых протекающими по оболочке КЛ в земле токами.
  • Индукционный метод поиска основан на контроле магнитного поля вокруг кабеля, которое создается протекающим по нему током от специализированного генератора. Оценивая уровень магнитного поля, определяют наличие КЛ и глубину ее залегания, а по характеру изменения и уровню поля определяют место повреждения. Этот метод применяется для непосредственного отыскания на кабеле мест повреждения при пробое изоляции жил между собой или на «землю», обрыве с одновременным пробоем изоляции между жилами или на «землю», для определения трассы кабеля и глубины его залегания, для определения местоположения соединительных муфт.

Рассмотрим основные свойства и характеристики предъявляемые к поисковой аппаратуре

  • Высокая избирательность приемника. Этот параметр обеспечит электрическую помехозащищенность, позволяющую успешно проводить поиск при наличии мощных источников регулярных помех.
  • Высокая чувствительность приемника. В совокупности с высокой избирательностью обеспечит поиск коммуникаций со слабым сигналом на большой глубине.
  • Качество и временная стабильность выходного сигнала генератора. Это обеспечит и необходимую избирательность, и достаточную помехозащищенность. Кроме того, сигнал генератора не будет влиять на работу другой электронной аппаратуры.
  • Достаточно большая выходная мощность генератора, позволяющая работать на глубоко (до 10 метров) залегающих и протяженных (до нескольких десятков километров) КЛ. Это требование является совершенно необходимым для российских условий. Также мощный и надежный генератор с большим выходным током допустимо использовать в качестве устройства дожига кабеля.
  • Высокая надежность генератора, обеспечивающая неограниченное время работы на активную и реактивную нагрузку в диапазоне от короткого замыкания до холостого хода с возможными резкими изменениями по величине.
  • Высокие эксплуатационные характеристики. Минимальный диапазон рабочих температур эксплуатации: от -30 °С до +40 °С.
  • Достаточный набор рабочих частот генератора и частотных каналов приемника, обеспечивающий гарантированное выполнение функций трассопоиска и определения мест повреждений.
  • Универсальность, т.е. возможность работать индукционным, акустическим и потенциальным методами. Желательное свойство, позволяющее минимизировать необходимый комплект оборудования.

Все вышеуказанные свойства и характеристики позволяют с максимальной эффективностью, т.е. с минимальными затратами времени, средств и гарантированным результатом проводить поиск мест повреждений КЛ.

В наши дни поиск места повреждения кабеля осуществляется с помощью современных поисковых комплектов. Профессиональные поисковые комплекты, такие как, например, КП-500К, КП-250К и КП-100К позволяют в кратчайшие сроки выполнять поиск места дефекта и определить глубину залегания кабеля.

Источник