Контроль точности монтажа конструкций

Геодезический контроль и проверка установки строительных конструкций

Геодезический контроль и проверка установки строительных конструкций производятся практически в трех ситуациях, а именно:

  • при установке монтажного оборудования, конструкций, опалубки;
  • при окончательном выставленном их положении перед заливкой бетоном, сваркой закладных деталей, болтов или других, предусмотренных технологией приемов закрепления;
  • при приемочном контроле.

Проверка устройства монтажных конструкций, опалубки, колонн

При выполнении монтажных работ по установке системной опалубки или готовых железобетонных, металлических конструкций строительными нормами и правилами, технологическими картами, проектами производства работ предусматривается измерительный контроль геометрических параметров, характеризующих проектное и пространственное их положение.

Геометрической основой для установки конструкций и оперативных их проверок служит геодезическая внутренняя разбивочная сеть этажа (яруса) и результаты детальных разбивочных работ по выносу монтажных, установочных или вспомогательных осей.

Устройство опалубки стен и колонн выполняют на основании схемы разбивки. От монтажных осей до внутреннего контура опалубки по всему ее периметру с помощью рулетки производится разметка установочных осей, которые фиксируются на перекрытии строительным карандашом. В обозначенный контур крепятся деревянные маяки (кондукторы), соответствующие ширине стены и стальные стержни для фиксации щитовых панелей. По выполненной разметке мест установки щитов монтируют панели, раскрепляют их при помощи подкосов, соединяют между собой и производят выверку установленного контура опалубки путем измерений стальной рулеткой расстояний от монтажных осей. Контрольные измерения производят в двух крайних положениях нижней ее части. Для щитов длиной более двух метров промеры осуществляются через каждые 1500 мм.

Кроме выставления планового положения нижней части сооружений дополнительно выверяется вертикальность (отвесность) каждой устанавливаемой конструкции. В зависимости от высоты поверяемых сооружений применяются различные инструменты и способы измерений. Так при их высоте до трех метров применяется шнуровой отвес, строительный уровень длиной 2-3 метра. Если высота достигает свыше трех метров, применяют уже оптические теодолиты, лазерные нивелиры, построитель плоскостей (например PLS-5), электронные тахеометры.

Читайте также:  Порядок монтажа натяжного потолка своими руками

Измерения вертикальности поверхностей сооружений определяются следующими способами:

  • с использованием строительного отвеса и рулетки;
  • с применением теодолита и линейки, при установке прибора на монтажной оси;
  • рейкой-отвесом;
  • с использованием электронного тахеометра, измеряемого горизонтального проложения от точек стояния прибора до нижней и соответственно верхней части сооружения.

Первый способ заключается в следующем. Наверху конструкции (опалубки) на консоли подвешивается отвес, который успокаивается внизу в емкости с вяжущей жидкостью или вручную при безветренной погоде. С помощью короткой рулетки (линейки) измеряются горизонтальные расстояния от отвеса до вертикальной плоскости вверху (l1) и внизу (l2). Измерения проводятся не менее двух раз, при необходимости многократно.

Рис.1. Определение вертикальности плоскости шнуровым отвесом и линейкой

(1 – элемент конструктива; 2 — консольная подвеска шнурового отвеса; 3 — линейка; 4 – шнуровой отвес; 5 – емкость с жидкостью; 6 – вертикальная линия конструктива).

Второй способ подразумевает использование оптического теодолита. Его устанавливают на точку монтажной оси, которая закреплена на перекрытии. После приведения в рабочее положение теодолит ориентируют по монтажной оси на самой удаленной ее точке. В дальнейшем, поочередно возле каждого проверяемого сооружения, снимают отсчеты по вертикальной сетке нитей горизонтальных расстояний на рулетке, линейке или нивелирной рейке, установленных нулем к вертикальной плоскости то вверху, то внизу. Алгебраическая разность верхнего и нижнего отсчетов дает значение предельного отклонения вертикальности, а также направления наклона вертикальной поверхности.

Рис.2. Определение вертикальности теодолитом и линейкой

Третий способ определения заключается в подвешивании на монтируемой конструкции специального устройства рейки-отвеса (Рис.3). И по нему берутся отсчеты по шкале при спокойном состоянии отвеса. После разворота рейки берется второй отсчет. Разность отсчетов дает фактическую точность измерений, а среднеарифметическое значение,- вертикальность поверхности

Рис.3. Определение вертикальности рейкой-отвесом

(1 – щитовая панель; 2 — рейка-отвес; 3 — упоры; 4 – шнуровой отвес; 5 — нивелирная рейка; 6 — шкала вертикальных отклонений).

Четвертый способ определения вертикальности поверхностей электронным тахеометром заключается в линейных измерениях горизонтального проложения от прибора до точек по отвесной линии плоскости вверху и внизу элементов конструкций. Разность этих горизонтальных расстояний дает значение вертикальности. Направление наклона вертикальной линии также рассчитывается с учетом того, какое из расстояний имеет большее значение. При выполнении исполнительных съемок готовой строительной конструкции учитывается нижнее плановое ее смещение.

Проверка устройства горизонтальных поверхностей конструкций, опалубки

При установке горизонтальных этажных перекрытий высотная отметка и горизонтальность опалубки проверяется геометрическим нивелированием с применением нивелира и рейки. Исходными данными для этого служат геодезическая высотная основа в виде рабочих реперов на монтажном горизонте и рабочие чертежи с проектными размерами и отметками перекрытия.

Перед началом работ определяется проектная отметка низа фанеры опалубки. Дополнительно, прибавив к ней +5-10мм, устанавливается запас на просадку так называемой палубы после армирования.

Устанавливают нивелир в рабочее положение между рабочими реперами, и измеряют превышение. Оно должно быть не более ±5 мм. Определяют горизонт инструмента нивелира (ГИ). Он будет равен алгебраической сумме высотной отметки репера (Нр) и отсчета по рейке (а), установленной на репере.

ГИ = Нр ± а

Далее определяют отсчеты, которые должны быть считаны по рейке при установленной опалубке в проектном положении.

в = Нпр – ГИ

в – отсчет по рейке, при выставленной опалубке в проектное положение, мм;

Нпр – проектная отметка низа фанеры +5-10мм, мм;

ГИ – горизонт инструмента нивелира, мм.

Устанавливая рейку в фанеру палубы и удерживая ее приблизительно в отвесном положении, снимают отсчет по рейке, который должен соответствовать расчетному отсчету (в). При несоответствии отсчета опорным винтом стоек поднимают или опускают плоскость палубы в данной точке, добиваясь необходимого отсчета по рейке в перекрестии сетки нитей нивелира. Такой контроль горизонтальности выставления палубы выполняют через каждые 2-4 метра по всему этажному перекрытию.

Исполнительные съемки

Исполнительная съемка осуществляются при геодезическом контроле и приемке элементов и конструктивов зданий. В процессе их проведения определяют соответствие как планового, так и высотного положений проектным положениям.

Исполнительные съёмки выполняются с целью проверки геометрии сооружений. И только после принятия и подписания заказчиком выполненных работ приступают к выполнению последующего вида (этажа, отсечки) работ.

Исполнительные съёмки выполняются с точностью, вычисляемой по формуле:

m Рис.4. Исполнительная схема этажа.

Источник

Контроль качества монтажных работ

Точность монтажа.Под точностью монтажа понимается степень соответствия действительных значений параметров, достигаемых при выполнении монтажных работ, значениям, заданным чертежами и техническими требованиями.

Заданная точность монтажа достигается ее метрологическим и геодезическим обеспечением.

Метрологическое обеспечение точности монтажа – это установление и применение научных и организационных основ метрологии, технических средств, методов, правил и норм, необходимых для достижения единства и требуемой точности измерений.

Технологическое обеспечение точности монтажа включает: выбор технологии и методов достижения заданной точности; способы и средства регулировки; отработку оборудования на монтажную технологичность по критерию точности (в том числе выбор и предъявление требований к необходимому качеству изготовления проверочных (выверочных) и основных монтажных баз; назначение производственных монтажных допусков и требований к точности вспомогательных монтажных и действительных измерительных баз).

К основным монтажным базам относят базы, принадлежащие к устанавливаемому оборудованию, а базы, относящиеся к элементам строительных конструкций или ранее установленному оборудованию, с которыми сопрягаются основные, относят к вспомогательным.

Геодезической основой монтажа называют совокупность продольных и поперечных осей и высотных отметок, служащих для установки и выверки технологического оборудования. Параллельно продольным и поперечным строительным разбивочным осям располагают монтажные оси, которые подразделяются на контрольные и рабочие.

Рабочие оси и высотные отметки служат для установки и выверки в проектное положение объектов монтажа, а контрольные – проверки рабочих осей и отметок.

Оси устанавливают с помощью различных геодезических и монтажных инструментов (теодолитов, оптических или лазерных приборов), а фиксируют знаками (плашками на фундаментах), струнами, отвесами.

Высотные отметки устанавливают с помощью нивелиров, реек, а фиксируют реперами или простановкой на строительных конструкциях.

Контроль качества монтажа типовых деталей, узлов и механизмов оборудования.Оборудование, машины и механизмы, используемыена предприятиях автосервиса, поставляются в монтажную зону, как правило, в собранном виде (шиномонтажный стенд, балансировочный станок и др.) или комплектными сборочными единицами (автомобильный подъемник, тормозной стенд и др.). Поэтому контроль качества монтажа оборудования сводится в основном к контролю точности его установки на проектном месте и контролю точности сборочных операций. Последний вид контроля при приемке оборудования в эксплуатацию, естественно, относится не только к сборочным операциям, выполненным в процессе монтажа, но и к технологическим операциям сборки, выполненным на заводе-изготовителе.

Рассмотрим критерии качества выполнения этих операций на примере монтажа, сборки типовых элементов оборудования.

Валы и муфты. При контроле качества монтажа валов и муфт проверяются отклонения от соосности, перпендикулярности и параллельности. Отклонение от соосности валов вызывает торцовое и радиальное биение соединительных муфт, что приводит к недопустимым вибрациям и перегрузкам элементов оборудования, снижению долговечности деталей муфт, подшипников. Отклонение от перпендикулярности и параллельности валов приводит к нарушению работоспособности кинематически связанных передач.

Проверку соосности валов проводят по полумуфтам, установленным на валах концентрично. Условием идеальной центровки валов является равенство размеров а и b в четырех диаметрально противоположных точках измерения (рисунок на слайде 20).

Расцентровку подсчитывают как полуразность диаметрально противоположных размеров в горизонтальной и вертикальной плоскостях.

Допустимые отклонения расцентровок принимаются равными допускаемыми значениями торцового и радиального биений для соответствующих типов муфт и передаваемых крутящих моментов.

Зубчатые и червячные передачи. Качество монтажа (сборки) зубчатых зацеплений проверяется по положению и размеру пятна касания, зазору и шуму (слайд 21).

Максимальные размеры пятен касания при правильном положении пар зацепления должны быть не менее указанных в таблицах слайда 21.

Нормальному зацеплению червячной пары и смещению осей червяка и червячного колеса соответствуют пятна касания, показанные на рисунке слайда 21. При правильном зацеплении червяка краска должна покрывать поверхность зуба червячного колеса не менее чем на 60-70% по длине и высоте.

Цепные передачи. Контроль качества монтажа этих передач заключается в определении стрелы прогиба цепи, параллельности валов и относительного положения звездочек. Взаимное положение звездочек цепной передачи проверяют путем измерения расстояний (слайд 22) l1, l2, D до струны С – С. Угол перекоса звездочки, определяемый по формуле не должен превышать 30°.

Провисание f для новой горизонтальной цепной передачи принимают в зависимости от межцентрового расстояния L (мм), равным f= 0,02 L, а для передач с углом наклона более 20° величину провисания рекомендуется принимать в пределах fmах = (0,01–0,015) L. В вертикальных передачах ветви не должны иметь слабины.

Ременные передачи. При монтаже передач с клиновыми ремнями проверяют взаимное расположение шкивов и провисание ремней.

Правильность расположения шкивов проверяют аналогично методике проверки для цепной передачи. Допустимое провисание ремней принимается равным f = 0,01 L. Действительное значение f проверяется путем приложения нагрузки Q на ремень, величину которой рассчитывают по формуле (слайд 23)

Обычно Q принимается в пределах 50–100 Н. Величина натяжения ремня является важнейшим показателем качества монтажа ременной передачи. Слабо натянутый ремень «бьет» и проскальзывает, а чрезмерное натяжение ремня приводит к потере им эластичности и способности к упругому скольжению. Величину скольжения (Y) можно определить, замерив действительные частоты вращения ведущего n1, и ведомого n2 шкивов, по формуле (слайд 21).

Контроль герметичности и прочности сосудов и трубопроводных систем при монтажных работах.Контролю на герметичность и прочность подвергаются сосуды, аппараты, трубопроводы и системы: смазочные, гидравлические, пневматические и т. д., работающие под давлением и сборка которых производилась в процессе монтажа, а также при истечении их срока гарантийного хранения.

Контроль на герметичность и прочность производят водой или воздухом пробным давлением.

Величина пробного давления при контроле водой принимается в соответствии с таблицей 1 слайда 24. При этом коэффициентом k учитывается снижение прочности материала стенок контролируемых сосудов, трубопроводов и т. п. при рабочих температурах. Значение этого коэффициента принимают для наименее прочного материала деталей монтируемого изделия (сосуда и др.), равным отношению пределов прочности этого материала при нормальной и рабочей температурах.

Для сосудов и аппаратов, работающих под давлением при отрицательных температурах, пробное давление такое же, как и при 20 °С. Температура воды и окружающей среды не должна различаться более чем на 5 °С. Изделие должно находиться под пробным давлением в течение определенного времени (таблица 2 слайда 24), после чего давление снижают до рабочего значения и изделие осматривают. Изделие признается годным при контроле водой, при отсутствии на нем признаков разрыва, течи, потения и видимых остаточных деформаций.

Испытание воздухом сосудов, аппаратов, трубопроводов для газообразной рабочей среды производят при определенном режиме (таблица слайда 25).

После выдержки пробное давление снижают до рабочего и проверяют герметичность сварных соединений нанесением на них мыльного раствора. Герметичность же в целом сосуда, аппарата проверяется по критерию «падение давления» в течение 24 ч, которое определяется по формуле (слайд 25).

Для токсичных рабочих газов допускаемое падение давления Δр за один час не должно превышать 0,1 и 0,2% при взрыво- и пожароопасных средах соответственно.

Источник