- Конструкция оптических кабелей с повивной скруткой
- Конструкция кабелей связи ТПП (ТППэп, ТППэпЗ, ТСВ, ТПВ)
- О маркировке ТПП (ТППэп, ТППэпЗ, ТСВ, ТПВ).
- МТППЗ, МТППэпЗ, КАПЗ, КАПЗоп
- О системах скрутки жил в кабеле типа ТПП
- Повивная скрутка
- Пучковая скрутка
- Классификация оптических кабелей
- Кабели повивной концентрической скрутки
- Кабели с центральным оптическим модулем
- Кабели с фигурным сердечником
- Плоские кабели ленточного типа
- Введение в волоконно-оптические кабели. Часть 3
- 3.3. Ленточные волокна
- Обмотка лентой
- Связывание отдельных волокон друг с другом
- Заключение всех волокон в общую оболочку
- 4. Оптический сердечник
- 4.1. Сердечник модульной скрутки
- 4.1.1. Центральный силовой элемент (ЦСЭ) сердечника модульной скрутки
- 4.1.2. Скрутка
- 4.1.3. Деформация растяжения и сжатия.
- 4.2. Профилированный оптический сердечник
Конструкция оптических кабелей с повивной скруткой
18.12.13. Страница дополнена более официальной информацией по ссылке Конструкция кабелей ТПппЗП и ТППэпЗ
Конструкция кабелей связи ТПП (ТППэп, ТППэпЗ, ТСВ, ТПВ)
10 — 20 лет назад кабеля этого типа предназначались для обычной телефонии и считались низкочастотными. Их конструкция с тех пор почти не изменилась, не изменились и частотные характеристики, унаследованные от свинцовых ТГ. Зато заметно изменилась аппаратура, которую на эти кабеля «вешают». Начали сами связисты с аппаратуры уплотнения типа ИКМ и АВУ. Далее включились модемы, подняв скорость передачи данных по кабелям этого типа до 56 К. Сейчас по ним уже запросто передаётся картинка с видеокамер, а скорость передачи при помощи xDSL-технологии уже достигает сотен Мбит/с.
Всё разнообразие марок кабеля связи представлено здесь: http://cable.ru/cable/kabel-svyazi.php
О маркировке ТПП (ТППэп, ТППэпЗ, ТСВ, ТПВ).
Для примера возьмём что-нибудь подлиннее, например ТППэпЗБ 100 х 2 х 0,5
П — полиэтиленовая изоляция жил кабеля.
П — полиэтиленовая изоляция оболочки (В — виниловая).
эп — обозначает, что в кабеле плёночный экран. Ранее чаще использовалась алюминиевая фольга, в этом случае буквы не пишутся.
З — заполненный, то есть содержит гидрофобный заполнитель. По народному «жирный».
Б — содержит броневой покров, то есть, обмотан жестяной лентой.
Далее может содержать буквы обозначающие тип дополнительного покрытия, например Ш — шланг полиэтиленовый
По обозначению бронепокровов (буквы «К», «Б») и подушек (буквы «п», «л», «2л» и «в») страница → Защитные покровы
100 х 2 — имеет в своём сердечнике 100 пар. Следует заметить, что в кабелях с ёмкостью 50 пар и более, присутствуют запасные пары. То есть в данном кабеле пар будет 103, или 206 жил. (число запасных пар непостоянно и зависит от производителя кабеля).
Кабеля этого типа выпускаются с числом пар от 5 до 600, причём кое где ещё действуют кабеля и большей парной ёмкости (до 2400 пар).
0,5 — диаметр жил. Сейчас выпускают ТПП с диаметрами жил 0.32, 0.4, 0.5, 0.64 мм, раньше встречался и более экзотические диаметр 0.7 мм.
В кабеле ТСВ буква «С» обозначает станционный, а все возможные варианты маркировки на странице → Кабели телефонные
МТППЗ, МТППэпЗ, КАПЗ, КАПЗоп
Кабеля с меньшим числом пар стали выпускать относительно недавно и в маркировке к привычному ТПП спереди добавили букву М, то есть малопарный. Бывают 5-и, 4-х, 3-х, 2-х и однопарные. Отсутствие букв «эп» в маркировке МТППЗ не обозначает, что экран в нём из фольги, в таком кабеле его вообще нет.
КАПЗ от МТППЗ ни чем не отличается, разве что бывает с толщиной жилы 0.9 и 1.2 мм. КАПЗоп содержит стальную оплётку с дополнительной полиэтиленовой изоляцией. Расшифровка маркировки: «К» — кабель, «А» — абонентский, «П» — полиэтиленовая изоляция, «З» — заполненный (с гидрофобным наполнителем).
Конструкция ТПП, ТППэп, ТППэпЗ, ТСВ, ТПВ, МТППЗ, МТППэпЗ, КАПЗ, КАПЗоп
О системах скрутки жил в кабеле типа ТПП
В кабелях ТПП жилы могут иметь повивную и пучковую скрутку.
Повивная скрутка
Кабеля с повивной скруткой сейчас видимо не выпускаются, но ещё используются. Повивная система скрутки осталась такой же, как старом свинцовом кабеле типа ТГ (кстати ТГ расшифровывается, как телефонный голый). Пары делятся на слои, называемые повивами. В разных по ёмкости кабелях количество пар в каждом повиве различно.
Для большей наглядности картинка, показывающая расположение пар в повивном кабеле. ТПП 50 х 2.
Конструкция повивного телефонного кабеля (ТПП, ТПВ) 50 х 2″
Повивной кабель имеет, как правило, бедную расцветку жил. Первая пара в повиве красная, вторая синяя, и она же задаёт направление счёта (по часовой или против), остальные одинакового цвета. Повивы разделены нитками и при снятии оболочки не распадаются; то есть, снимаем первую пару ниток, рассыпается последний повив, далее предпоследний. Надо сказать, что из-за сложности счёта в таком кабеле спайщики часто ошибались с подсчётом пар, либо вовсе игнорировали его. Жилы сращивались просто попарно без учёта счёта, а собирались на последнем этапе монтажа кабеля при прозвонке. Так что вся эта система не прижилась. Некоторый плюс повивного кабеля в меньшей толщине кабеля. Пары в нём укладываются плотнее и сотня повивная заметно тоньше сотни скрученной пучками.
Пучковая скрутка
1.2. Конструктивные характеристики
В настоящее время кабеля ТПП (ТППэп, ТППэпЗ, ТСВ, ТПВ) выпускаются с пучковой скруткой, то есть пары скручены пучками по 5 или 10. В зависимости от от общей ёмкости кабеля эти пучки свиваюстя по 50 или 100 пар. Пучки формируются при помощи двух ниток, обвивающих пучок по спирали. Так же пучок содержит цветную нитку или лавсановую ленту, отличающую один пучок от другого. Надо сказать, что не всегда эти нитки имеют оригинальные цвета, то есть в кабеле могут быть два — три пучка с одинаковой ниткой. Возможно производители кабеля ТПП (ТППэп, ТППэпЗ, ТСВ) предполагают, что пучки будут считать так же, как пары в повиве, но я не встречал спайщиков, которые бы на такой счёт полагались — полагаются на прозвонку.
Таблица расцветки пар в десятке кабеля ТПП (ТППэп, ТППэпЗ, ТСВ, ТПВ):
Таблица расцветки пар в десятке кабеля ТПП, ТППэп, ТППэпЗ, ТСВ, ТПВ
А вот как выглядит эта расцветка в модуле СМЖ при монтаже муфты:
Увеличить фотографию |
расцветка жил кабеля в модуле СМЖ при монтаже муфты
Учитывая, что пары на плинтах и кроссах (громполосах) принято считать с «0», то разводка жил приобретает следующий вид:
Расцветка пар телефонного кабеля ТПП при зарядке в плинты
Так выглядит зарядка плинта на фотографии. Учитывая, что это вид сзади счёт перевёрнут наоборот.
Увеличить фотографию |
Зарядка плинтов бокса БКТ кабелем ТППэпЗ
Стоит заметить, что такая разводка не обязательна и долгое время носила рекомендательный характер. Станционным монтажникам или спайщикам при монтаже удобно пользоваться этой расцветкой, избегая лишней прозвонки. Но пользуются ей не все и не всегда именно такой, например, встречаются участки, которые первыми считают пары с красными жилами. Что касается эксплуатации, то кое где сохранился повивной кабель или кабель с другой расцветкой пар (выпускались когда-то и такие) и кабельщики заряжая коробки игнорируют цветовой счёт, полагаясь на прозвонку. Так что, разрезая кабель в длине, и выбирая бело-голубую пару, вы не обязательно выбираете нулевую (первую).
Порядок счёта пар и четвёрок по цветам оговорен в некоторых стандартах. Цвета и счёт в повивном четвёрочном кабеле прописан в ГОСТ 15125-92. Кабели связи симметричные высокочастотные с кордельно-полистирольной изоляцией. Технические условия. И в ГОСТ Р 54429-2011. Кабели связи симметричные для цифровых систем передачи. Общие технические условия. В приложении прописан порядок счета, как пар, так и четвёрок. Выписки из этихдокументов по ссылкам:
• Цветовой счёт в симметричных парных кабелях связи
• Цветовой счёт в четвёрочных кабелях связи
Далее жилы кабелей, собранные в пучки или повивы обматываются полихлорвиниловой лентой предохраняющей полиэтиленовую изоляцию жил от повышенной температуры и сплавления при монтаже.
Следующим слоем идёт экран, сейчас в основном выпускается с плёночной основой (буквы «эп» в маркировке). Вместе с экраном всегда идёт лужёная, без изоляции жила.
Ну и наконец оболочка.
Первым после свинцовых ТГ появился кабель ТПВ в котором оболочка была виниловой. Первоначально считалось, что этот кабель предназначен для наружной прокладки и прокладки в грунт, и использовался повсеместно. Но вскоре было замечено, что в грунте он теряет изоляционные свойства из-за «намокания». Отличается от ТПП цветом: бывает синим и серым, впрочем, и чёрным то же.
Нeсколько позже появился кабель ТПП. Полиэтилен гораздо меньше напитывается водой (с годами всё же теряет изоляцию) и более пожароопасен — полиэтилен поджечь легче, чем винил. Именно из-за этого он запрещён для прокладки внутри телефонных станций, где на смену ему ложится ТСВ.
В последние годы на оболочку кабелей ТППэпЗ стала наноситься маркировка с маркой кабеля и метражом.
18.12.13. Страница дополнена более официальной информацией по ссылке Конструкция кабелей ТПппЗП и ТППэпЗ
Источник
Классификация оптических кабелей
Оптические кабели связи (далее по тексту ОК), подразделяются по применению на:
а) ОК наружной прокладки (для прокладки вне зданий и сооружений);
б) ОК внутренней прокладки (для прокладки внутри зданий и сооружений);
в) ОК наружной прокладки в зависимости от области применения подразделяются на следующие типы: подземные, подвесные (воздушной прокладки), подводные.
В настоящее время в мире и в частности, в РФ, разрабатываются и производятся различные типы ОК, но в целом их все можно разделить на три основные группы, относящиеся к кабелям наружной прокладки:
Кабели повивной концентрической скрутки
Кабели повивной концентрической скрутки, (наиболее популярные в РФ и СНГ), где полимерные трубки внутри которых находятся оптические волокна (в совокупности называемый оптическими модулями – далее по тексту ОМ), скручиваются вокруг осевого силового элемента (далее по тексту — ОЭ), в качестве которого могут служить: стеклопластиковый пруток, канат стальной, проволока или стренга.
Оптический модуль может содержать от 1-го до 24-х оптических волокон.
Как правило, одноповивная скрутка содержит от 4-х до 12-ти ОМ скрученных вокруг ОЭ. Максимальное количество волокон в такой конструкции сердечника скрутки достигает 288 ОВ. В случае, если требуется большее количество ОВ в кабеле, применяется многоповивная скрутка с количеством волокон до 576 ОВ. Кабели данного типа сердечника, устойчивы к самым жестким климатическим требованиям эксплуатации от -60°С до +70°С.
Кабели с центральным оптическим модулем
Кабели с центральным оптическим модулем, (также популярные в РФ и СНГ), где сердечник кабеля выполнен в виде одного ОМ. Максимальное количество волокон в такой конструкции, может достигать 48 ОВ. Но по соотношению цен с кабелями повивной концентрической скрутки , кабели подобной конструкции оптимальны до 24 ОВ. Как правило, кабели с центральным модулем применяются для климатическим требованиям эксплуатации от -50°С до +50°С.
Кабели с фигурным сердечником
Кабели с фигурным сердечником, (не нашли широкого применения в РФ и СНГ), где вокруг ОЭ наложена полимерная оболочка с профилированными пазами, куда укладываются ОМ или плоские оптические ленты (далее по тексту – ОЛ).
Максимальное количество ОВ в такой конструкции может достигать более 576 ОВ. Но из-за дороговизны конструкции и сложности разделки кабеля при монтаже – эта конструкция пока непопулярна.
Плоские кабели ленточного типа
Плоские кабели ленточного типа, где несколько ОЛ уложены в центральный оптический модуль. Максимальное количество ОВ может достигать до 288 ОВ. Но из-за сложности разделки кабеля при монтаже – эта конструкция пока непопулярна в РФ и СНГ.
В РФ и СНГ в основном производятся следующие конструкции ОК наружной прокладки: кабели повивной концентрической скрутки и кабели с центральным оптическим модулем.
В России производятся различные типы ОК. Для организации многоканальной связи в основном покупаются оптические кабели на несколько волокон, а при создании современных городских магистральных и локальных компьютерных сетей обычно применяется магистральный оптический кабель на 36 или 72 волокна. В городских телефонных сетях, часто используется кабель, содержащий от 48 волокон.
Источник
Введение в волоконно-оптические кабели. Часть 3
3.3. Ленточные волокна
Третьим способом упаковки волокон является укладка рядом друг с другом нескольких (обычно 2 , 12) волокон с первичным покрытием и нанесение на них дополнительного покрытия. Такая конструкция называется волоконно-оптической лентой или ленточным модулем (см. Рис.5).
При такой технологии два или более волоконных световода объединяются упорядоченным образом в плоский модуль. Отдельные световоды связаны в одной плоскости параллельно друг другу с одинаковым шагом. С пленочным ленточным покрытием.
Существует три способа изготовления волоконно-оптических лент:
Ленточные модули объединяют в стопку-матрицу с прямоугольным сечением и помещают в пазы профилированного сердечника кабеля.
Обмотка лентой
Этот способ проиллюстрирован на Рис.5а. Обмотка лентой – это первый способ, разработанный для изготовления волоконно-оптических лент. В такой конструкции световоды склеены в одной плоскости между пленками на основе полиэфирной смолы. Данный способ применялся, например, американской компанией AT&T для создания сетей дальней связи. Однако в последнее время он вытесняется двумя другими способами, обеспечивающими получение волоконно-оптических лент, более устойчивых по отношению к микро- и макроизгибам и характеризующихся меньшим затуханием при колебаниях температуры или механических нагрузках.
Связывание отдельных волокон друг с другом
Этот способ также проиллюстрирован на Рис.5б. При его использовании промежутки между двумя соседними волокнами заполняются акрилатом. Лента может состоять из нескольких (числом до 12) волокон, уложенных параллельно друг другу. При использовании этого способа отдельные волокна легче подготовить к сварке или механическому сращиванию. Недостаток этого метода заключается в том, что волокна, образующие ленту, относительно восприимчивы к механическим воздействиям и поэтому могут быть повреждены.
Заключение всех волокон в общую оболочку
При использовании этого способа все волокна ленты укладываются рядом друг с другом, и все вместе покрываются со всех сторон тонким слоем акрилата, образующим общую оболочку. Число волокон в ленте может быть от 4 до 16. В полученной таким образом ленте волокна заключены в общую полимерную оболочку и, тем самым, связаны между собой (см. рис. 5в). Более толстый слой покрытия из акрилата (общая толщина волокна и покрытия – 0.4 мм) представляет собой эффективный буфер, обеспечивающий более надежную защиту от механических воздействий. Такие ленты удобнее сваривать или сращивать механическим способом, а также помещать в кабель и проводить монтаж на месте.
Рисунок 5. Типы ленточных конструкций.
Ленточные модули возникли и распространены в основном в Японии поскольку минимизируют стоимость работ по стыковке волокон. В России они практически не применяются, поскольку требуют наличия специального дорогостоящего оборудования и обеспечивают худшее, по сравнению с одиночными волокнами, качество стыка. По-видимому, распространение ленточных волокон может начаться в эпоху бурного использования световодов для последней мили (волокно в каждый дом).
Разнообразие областей применения световодов в системах волоконно-оптической связи требует, чтобы были разработаны самые разные конструкции кабелей с соответствующими размерами и материалами. Исходя из применения кабеля, выбираются типы модулей и соответствующая им конструкция сердечника кабеля и защитных покровов. Особое внимание уделяется предотвращению повреждений световодов в кабелях из-за воздействий окружающей среды, таких как перепады температуры и механические нагрузки.
4. Оптический сердечник
Оптический сердечник, который образуется в результате скрутки оптических модулей, называется сердечником модульной скрутки. Сердечник, образованный на основе расположения модулей в пазах профилированного стержня, – профилированный оптический сердечник. Сердечник с центральным расположением модуля, имеющий трубчатую конструкцию называется трубчатый сердечник.
4.1. Сердечник модульной скрутки
4.1.1. Центральный силовой элемент (ЦСЭ) сердечника модульной скрутки
В целях увеличения механической прочности оптических кабелей модули скручивают вокруг центрального элемента, который является силовым элементом кабеля (ЦСЭ). При этом центральный элемент может служить для защиты от продольного изгиба и от растяжения. Поэтому он изготавливается из таких материалов, которые имеют большой модуль упругости и сохраняют устойчивость при колебаниях температуры в определенном диапазоне.
В качестве ЦСЭ кабеля может использоваться стальная проволока диаметром 2 , 3.5 мм (или тросик примерно такого же диаметра из несколких проволок более тонкого сечения), вокруг которой укладываются модули, образуя скрутку. Недостатком такой конструкции оптического сердечника является существование проводника в центре оптического кабеля, что означает возможность повреждения оптических волокон при разряде молнии на проводнике – проволоке ЦСЭ. Таким образом, оптические кабели с металлическим ЦСЭ нельзя применять в случаях, когда отсутствуют грозозащитные элементы, например, непосредственно в грунт. Такие типы кабелей, согласно нашей классификации (см. Таблица 1), могут применяться в случаях 1 и ограниченно – в городской канализации 2. Известны случаи прокладки дополнительного грозозащитного проводника при использовании металлического ЦСЭ, что, на наш взгляд, является экономически неэффективным.
Для исключения металлических элементов в структуре оптического сердечника, в качестве ЦСЭ используется диэлектрический стержень. В большинстве случаев он выполнен из стеклопрутка, который получается в результате склеивания стеклянных нитей (ровингов) с помощью эпоксидной смолы. При особо высоких требованиях к прочности и гибкости ЦСЭ выполняют из арамидного прутка, в котором несущими являются арамидные нити. Однако, широкого распространения арамидный ЦСЭ не получил, из-за высокой удельной стоимости арамида как силового элемента.
4.1.2. Скрутка
Благодаря скрутке световоды в модуле имеют определенное свободное пространство, при перемещении в пределах которого при растяжении, изгибе, сжатии не ухудшаются их передаточные характеристики. Наряду с модулями в различном исполнении, в скрутку могут быть дополнительно включены наполнители, т.е. просто полиэтиленовые элементы (кордели). Часто в комбинированных кабелях элементом скрутки являются изолированные медные жилы. Совокупность силовых и скручиваемых элементов, а также скрепляющей ленты или оболочки вокруг них, если такая имеется, называется сердечником кабеля. Пример расчета геометрических параметров элементов скрутки приведен в Приложении.
Таблица 5. Цветная кодировка модулей.
Кабели с сердечником
По требованию может поставляться с другим цветовым сочетанием
Самой распространенной в технике оптических кабелей является скрутка слоями или послойная скрутка. При этом скручиваемые элементы располагаются концентрически вокруг ЦСЭ в один или несколько слоев (см. Рис.6). Шаг спирали рассчитывается для того, чтобы предотвращать увеличение затухания в кабеле, вызываемое, прежде всего, изгибами кабеля в процессе его изготовления, при прокладке и при установке, а также вследствие колебаний температуры.
Если скручиваются отдельные элементы, например, модули или наполнители, то в этом случае говорят о кабеле повивной скрутки. Если же сердечник кабеля скручивается из элементов, состоящих из скрученных модулей, то такой кабель называется кабелем жгутовой скрутки (см. Рис.6). При использовании кабелей жгутовой скрутки плотность упаковки может быть существенно увеличена.
| |
Рисунок 6. Различные способы скрутки элементов сердечника оптического кабеля.
Если кабель предназначен для наружной прокладки, то пространство между модулями заполняется веществом (гидрофобным наполнителем), придающим кабелю водонепроницаемость по всей его длине. Поверх скрутки накладывается защитная наружная оболочка из полимера.
4.1.3. Деформация растяжения и сжатия.
Наряду с изгибом необходимо ограничивать растяжение и сжатие световодов в модулях с тем, чтобы в заданных диапазонах нагрузок на растяжение и температурных диапазонах в волоконно-оптическом кабеле не возникали недопустимые изменения передаточных характеристик и опасность повреждения световодов. Световоды в модулях со свободной укладкой волокон могут свободно передвигаться внутри оболочки. В ненагруженном состоянии они располагаются в центре модуля, и их зазор DR (по отношению к защитной оболочке модуля) определяется с учетом внутреннего диаметра di оболочки модуля и наружного диаметра df световода (см. Рис.7). В случае модуля со свободной укладкой, в котором находятся несколько световодов, за наружный диаметр df следует принять диаметр воображаемой окружности, охватывающей световоды как можно плотнее.
Относительное изменение длины DL/L волоконно-оптического кабеля, т.е. допустимое удлинение eK или сжатие eTK (сжатие, обусловленное температурой) кабеля с повивной скруткой радиусом R и шагом S равно:
где знак «+» используется для сжатия кабеля eTK, а знак «-» — для удлинения кабеля eK. Это уравнение может привести к выводу, что уменьшение шага скрутки S вызовет существенное увеличение допустимого удлинения или сжатия кабеля. Но при этом необходимо учитывать допустимый радиус кривизны световода, который различен для одномодовых и многомодовых волокон.
Рисунок 7. Размеры и положение волокна в модуле в ненагруженном состоянии.
Чтобы вычислить максимально допустимое растягивающее усилие Fmax необходимо знать площади поперечного сечения A материалов, используемых в кабеле, и значения их модуля Юнга Е (модуля продольной упругости). Тогда сумма всех произведений EiAi, умноженных на максимально допустимое удлинение кабеля eK, дает максимальное растягивающее усилие для кабеля, при котором световоды не подвергаются механическому напряжению:
На Рис.8 показаны различные состояния световода в полой оболочке. Без какого-либо напряжения длина световода и оболочки одинаковая (а). При растяжении за счет растягивающего напряжения волоконно-оптического кабеля световод смещается в направлении внутренней стороны полой оболочки (б), при этом сначала ее не касается и не подвергается деформациям. Удлинение кабеля передается на световод только при величине, превышающей примерно 0,5 %, в зависимости от размеров полой оболочки. Реакцией световода будет повышение затухания.
Рисунок 8. Различное положение волокон в модуле
При низких температурах имеет место обратное явление. Полимер, из которого сделана оболочка модуля, сжимается. Поэтому, при охлаждении кабеля происходит его сжатие, и световод движется к внешней стороне полой оболочки (в).
4.2. Профилированный оптический сердечник
Некоторые кабели и во время, и после прокладки постоянно подвергаются воздействию раздавливающих усилий. Для защиты волокон в этих кабелях должны быть приняты специальные меры. С этой целью было разработано несколько различных видов сердечников. Большинство из них являются профилированными сердечниками, т.е. сердечниками, снабженными пазами (см. Рис.9).
Оптические волокна укладываются в них в направляющие пазы. Обычно профилированный сердечник с 6 — 12 пазами отливается вокруг металлического или неметаллического центрального силового элемента (ЦСЭ). Пазы могут быть спиральными, идущими в любом направлении, либо их направление чередуется. Спиральные пазы идут в одном и том же направлении по всей длине кабеля, в то время как направление пазов второго вида чередуется через определенные отрезки длины. Такие пазы (и сердечники с такими пазами) называются SZ-пазами (SZ-сердечниками). Это название они получили потому, что сначала пазы образуют S-образную кривую, а затем – Z-образную. Применение сердечников с чередованием направления пазов упростило как изготовление, так и установку этого вида оптического кабеля.
Все три вида сердечников обычно изготавливаются из полипропилена. Они получаются путем экструзии, причем их длина достигает 25 ÷ 30 км. ЦСЭ, как правило, делается из стали или из пластмассы, армированной стекловолокном. У всех видов таких сердечников имеется по 6 ÷ 12 пазов, в каждом из которых помещается от 1 до 16 волокон.
В зависимости от размеров и формы этих углублений в центральном элементе в них могут свободно помещаться один или несколько световодов – отдельно или в виде ленточной конструкции. Как и в случае с модулями, эти пазы заполняются компаундом. В случае если требуется конструкция кабеля без наполнителя, водонепроницаемость по длине может быть обеспечена с помощью водоблокирующей ленты.
Рисунок 9. Профилированный сердечник оптического кабеля
Для дальнейшего увеличения числа световодов в кабеле, в пределах одной общей внешней оболочки могут быть свиты по жгутовому принципу несколько отдельных кабельных элементов с профилированным стержнем. Преимуществом данной конструкции в сочетании с ленточной компоновкой кабелей с большим количеством световодов (более 100) является, во-первых, большая плотность упаковки, а, во-вторых, упрощенная технология соединения вследствие упорядоченного размещения световодов.
Данный вид сердечника очень распространен у зарубежных производителей (особенно у Ericsson – изобретателя профилированного оптического сердечника), но в России распространения не получил. Причиной оказалось как отсутствие опыта производства профилированных сердечников, так и необходимость специального оборудования, загрузка которого не гарантируется. Высокую стойкость к раздавливающим усилиям – основное преимущество профилированного сердечника – российские производители компенсируют толщиной стенки оптических модулей и увеличением толщины и жесткости первичной оболочки, накладываемой непосредственно на сердечник модульной скрутки.
Источник