- Пример выбора сечения кабеля на напряжение 10 кВ
- Пример выбора сечения кабеля 10кВ
- Выбор сечения. Токовые нагрузки кабелей
- Нормированная плотность тока для кабелей, А/мм2
- Экономическая мощность линий 6-35 кВ, выполненных кабелями с вязкой пропиткой и пластмассовой изоляцией, МВт
- Экономическая мощность линий 110-500 кВ, выполненных маслоналолненными кабелями с медными жилами, МВт
- Поправочные коэффициенты к табл. 3.36 и 3.37
- Допустимая по нагреву длительная мощность трехжильного кабеля напряжением 6—10 кВ
- Допустимый длительный ток для трехжильных кабелей на напряжение 6 кВ с медными и алюминиевыми жилами с пластмассовой изоляцией, прокладываемых в земле и в воздухе
- Допустимый длительный ток для одножильных кабелей на напряжение 6 и 10 кВ с медными и алюминиевыми жилами с изоляцией из сшитого полиэтилена, прокладываемых в земле и в воздухе, А
Пример выбора сечения кабеля на напряжение 10 кВ
Требуется выбрать сечение кабеля на напряжение 10 кВ для питания трансформаторной подстанции 2ТП-3 мощностью 2х1000 кВА для питания склада слябов на металлургическом комбинате в г. Выкса Нижегородская область. Схема электроснабжения представлена на рис.1. Длина кабельной линии от ячейки №12 составляет 800 м и от ячейки №24 составляет 650 м. Кабели будут, прокладываться в земле в трубах.
Таблица расчета электрических нагрузок по 2ТП-3
Наименование присоединения | Нагрузка | Коэффициент мощности cos φ | ||
---|---|---|---|---|
Активная, кВт | Реактивная, квар | Полная, кВА | ||
2ТП-3 (2х1000 кВА) | 955 | 590 | 1123 | 0,85 |
Трехфазный ток КЗ в максимальном режиме на шинах РУ-10 кВ составляет 8,8 кА. Время действия защиты с учетом полного отключения выключателя равно 0,345 сек. Подключение кабельной линии к РУ осуществляется через вакуумный выключатель типа VD4 (фирмы Siemens).
Рис.1 –Схема электроснабжения 10 кВ
Сечение кабельной линии на напряжение 6(10) кВ выбирают по нагреву расчетным током, проверяют по термической стойкости к токам КЗ, потерям напряжения в нормальном и послеаварийном режимах.
Выбираем кабель марки ААБлУ-10кВ, 10 кВ, трехжильный.
1. Определяем расчетный ток в нормальном режиме (оба трансформатора включены).
где:
n – количество кабелей к присоединению;
2. Определяем расчетный ток в послеаварийном режиме, с учетом, что один трансформатор отключен:
3. Определяем экономическое сечение, согласно ПУЭ раздел 1.3.25. Расчетный ток принимается для нормального режима работы, т.е. увеличение тока в послеаварийных и ремонтных режимах сети не учитывается:
Jэк =1,2 – нормированное значение экономической плотности тока (А/мм2) выбираем по ПУЭ таблица 1.3.36, с учетом что время использования максимальной нагрузки Тmax=6000 ч.
Сечение округляем до ближайшего стандартного 35 мм2.
Длительно допустимый ток для кабеля сечением 3х35мм2 по ПУЭ,7 изд. таблица 1.3.16 составляет Iд.т=115А > Iрасч.ав=64,9 А.
4. Определяем фактически допустимый ток, при этом должно выполняться условие Iф>Iрасч.ав.:
Коэффициент k1, учитывающий температуру среды отличающуюся от расчетной, выбираем по таблице 2.9 [Л1. с 55] и таблице 1.3.3 ПУЭ. Учитывая, что кабель будет прокладываться в трубах в земле. По таблице 2-9 температура среды по нормам составляет +25 °С. Температура жил кабеля составляет +65°С, в соответствии с ПУЭ, изд.7 пункт 1.3.12.
Принимаем по таблице 4.13 [Л5, с.86] среднемесячную температуру грунта для наиболее жаркого месяца (наиболее тяжелый температурный режим работы) равного +17,6 °С (г. Москва). Температуру грунта для г. Москвы, я принимаю в связи с отсутствием данных по г. Выкса, а так как данные города находятся в одном климатическом поясе — II, то погрешность в разности температур будет в допустимых пределах. Округляем выбранное значение температуры грунта до расчетной равной +20°С.
Для определения средней максимальной температуры воздуха наиболее жаркого месяца, можно воспользоваться СП 131.13330.2018 таблица 4.1.
По ПУЭ таблица 1.3.3 выбираем коэффициент k1 = 1,06.
Коэффициент k2 – учитывающий удельное сопротивление почвы (с учетом геологических изысканий), выбирается по ПУЭ 7 изд. таблица 1.3.23. В моем случае поправочный коэффициент для нормальной почвы с удельным сопротивлением 120 К/Вт составит k2=1.
Определяем коэффициент k3 по ПУЭ таблица 1.3.26 учитывающий снижение токовой нагрузки при числе работающих кабелей в одной траншее (в трубах или без труб), с учетом, что в одной траншее прокладывается один кабель. Принимаем k3 = 1.
Определив все коэффициенты, определяем фактически допустимый ток:
5. Проверяем кабель ААБлУ-10кВ сечением 3х35мм2 по термической устойчивости согласно ПУЭ пункт 1.4.17.
- Iк.з. = 8800 А — трехфазный ток КЗ в максимальном режиме на шинах РУ-10 кВ;
- tл = tз + tо.в =0,3 + 0,045 с = 0,345 с — время действия защиты с учетом полного отключения выключателя;
- tз = 0,3 с – наибольшее время действия защиты, в данном примере наибольшее время срабатывания защиты это в максимально-токовой защиты;
- tо.в = 45мс или 0,045 с — полное время отключения вакуумного выключателя типа VD4;
- С = 95 — термический коэффициент при номинальных условиях, определяемый по табл. 2-8, для кабелей с алюминиевыми жилами.
Сечение округляем до ближайшего стандартного 70 мм2.
6. Проверяем кабель на потери напряжения:
6.1 В нормальном режиме:
где:
r и x — значения активных и реактивных сопротивлений определяем по таблице 2-5 [Л1.с 48].
Для кабеля с алюминиевыми жилами сечением 3х70мм2 активное сопротивление r = 0,447 Ом/км, реактивное сопротивление х = 0,086 Ом/км.
Определяем sinφ, зная cosφ. Вспоминаем школьный курс геометрии.
Если Вам не известен cosφ, можно определить для различных электроприемников по справочным материалам табл. 1.6-1.8 [Л3, с 13-20].
6.2 В послеаварийном режиме:
Из расчетов видно, что потери напряжения в линии незначительные, следовательно, напряжение у потребителей практически не будет отличаться от номинального.
Таким образом, при указанных исходных данных выбран кабель ААБлУ-10 3х70.
Для удобства выполнения выбора кабеля всю литературу, которую я использовал в данном примере, Вы сможете скачать в архиве.
- Проектирование кабельных сетей и проводок. Хромченко Г.Е. 1980 г.
- СНиП 23-01-99 Строительная климатология. 2003 г.
- Расчет и проектирование систем электроснабжения объектов и установок. Кабышев А.В, Обухов С.Г. 2006 г.
- Правила устройства электроустановок (ПУЭ). Седьмое издание. 2008г.
- Справочник работника газовой промышленности. Волков М.М. 1989 г.
Источник
Пример выбора сечения кабеля 10кВ
Выбор кабелей 10 кВ немного отличается от выбора кабелей 0,4 кВ. Здесь есть некоторые особенности, о которых нужно знать. Также хочу представить свою очередную вспомогательную программу, с которой выбор сечения кабелей 10 кВ станет проще.
Еще в далеком 2012 г у меня была статья: Как правильно выбрать сечение кабеля напряжением 6 (10) кВ? На тот момент я не владел теми знаниями, которые есть у меня сейчас, поэтому данная статья является дополнением.
Задача: выбрать кабель для питания трансформаторной подстанции 250 кВА. Расстояние от точки питания (РУ-10кВ, ТП проходного типа) до проектируемой КТП – 200 м. Объект в городской черте.
Первое, с чем необходимо определиться: тип кабеля.
Я решил применить кабель с изоляцией из сшитого полиэтилена.
Полезная информация из каталога:
Кабели марок ПвП, АПвП, ПвПу, АПвПу, ПвБП, АПвБП, в том числе с индексами «г», «2г», «гж» и «2гж» предназначены для эксплуатации при прокладке в земле независимо от степени коррозионной активности грунтов. Допускается прокладка этих кабелей на воздухе, в том числе в кабельных сооружениях, при условии обеспечения дополнительных мер противопожарной защиты, например, нанесения огнезащитных покрытий.
Прокладка одножильного кабеля в стальной трубе не допускается.
Кабели указанных марок с индексами «г», «2г», «гж» и «2гж» предназначены для прокладки в земле, а также в воде (в несудоходных водоемах) — при соблюдении мер, исключающих механические повреждения кабеля.
Кабели марок ПвПу, АПвПу, ПвБП, АПвБП, в том числе с индексами «г», «2г», «гж» и «2гж» предназначены для прокладки на сложных участках кабельных трасс, содержащих более 4 поворотов под углом свыше 30 градусов или прямолинейные участки с более чем 4 переходами в трубах длиной свыше 20 м или с более чем 2 трубными переходами длиной свыше 40 м.
Кабели марок ПвВ, АПвВ, ПвВнг-LS, АПвВнг-LS, ПвБВ, АПвБВ, ПвБВнг-LS, АПвБВнг-LS могут быть проложены в сухих грунтах (песок, песчано-глинистая и нормальная почва с влажностью менее 14%).
Кабели марок ПвВнг-LS, ПвБВнг-LS могут быть использованы для прокладки во взрывоопасных зонах классов В-I, B-Ia; кабели марок АПвВнг-LS,
АПвБВнг-LS – во взрывоопасных зонах В-Iб, В-Iг, B-II, B-IIa.
Кабели предназначены для прокладки на трассах без ограничения разности уровней.
Исходя из рекомендаций, выбор мой остановился на АПвБП. В этой статье не буду рассматривать стоимость различных марок кабелей.
Далее нам необходимо определиться с сечением кабеля.
Сечение кабеля 6 (10) кВ выбирают на основании расчетного тока линии, длины линии, тока трехфазного КЗ на шинах питания, времени срабатывания защиты, материала изоляции и жилы кабеля.
Основные проверки, которые нужно выполнить при выборе сечения кабеля 6 (10) кВ:
1 Проверка кабеля по длительно допустимому току.
2 Проверка кабеля по экономической плотности тока.
3 Проверка кабеля по термической устойчивости току трехфазного КЗ.
4 Проверка по потере напряжения (актуально для больших длин).
5 Проверка экрана кабеля на устойчивость току двухфазного КЗ (при наличии).
Для упрощения выбора сечения кабеля я сделал программу: расчет сечения кабеля 6 (10) кВ.
Внешний вид программы:
Программа для расчета сечения кабеля 6 (10)кВ
Более подробно о программе и выборе сечения кабеля смотрите в видео:
Выбор сечения кабеля:
Изначально выбираем кабель по расчетному току: АПвБП- (3×35) 16. Расчетный ток в нашем примере всего около 15 А. По экономической плотности тока выходит и вовсе 10 мм2.
При проверке кабеля на термическую устойчивость минимальное сечение получается 29 мм2. Здесь стоит отметь, ток трехфазного КЗ я принял 10 кА, т.к. сейчас в отпуске и нет возможности запросить данное значение в РЭСе, а в ТУ не указано. Согласно ТУ необходимо предусмотреть КСО с выключателем нагрузки (для установки в подключаемой ТП). Выключатель нагрузки я применил с предохранителями типа ПКТ на 40 А.
Согласно время-токовой характеристике предохранителя ПКТ, время отключения составит не более 0,01 с. Я решил перестраховаться и принял время 0,1 с.
Для расчета потери напряжения можно использовать программу: расчет потери напряжения в трехфазных сетях с учетом индуктивного сопротивления. В моем случае нет смысла проверять кабель на потери напряжения.
Экран выбранного кабеля способен выдержать ток двухфазного КЗ.
На основании всех расчетов и с учетом того, что ток трехфазного КЗ мне пришлось принять самому я решил подстраховаться и выбираю кабель АПвБП- (3×50) 16, за что от вас получу справедливую критику =) Попытаюсь запросить дополнительную информацию в РЭСе и сделаю новый расчет, который с этой программой займет пару минут.
На подготовку данного материала у меня ушло около двух дней. Но, с этими знаниями вы сможете сделать подобную программу значительно быстрее.
Источник
Выбор сечения. Токовые нагрузки кабелей
Выбор сечения КЛ выполняется по нормативной плотности тока, установленной в зависимости от конструкции кабеля и числа часов использования максимальной нагрузки (табл. 3.35).
Нормированная плотность тока для кабелей, А/мм2
Тип кабеля | Тmax, ч/год | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
более 1000 до 3000 | более 3000 до 5000 | более 5000 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Кабели с бумажной, резиновой и поливинилхлоридной изоляцией с жилами: алюминиевыми | 2,4 1,0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Кабели с резиновой и пластмассовой изоляцией с жилами: алюминиевыми | 2,8 Экономическая мощность КЛ, рассчитанная по нормированной плотности тока, приведена в табл. 3.36 и 3.37. Экономическая мощность линий 6-35 кВ, выполненных кабелями с вязкой пропиткой и пластмассовой изоляцией, МВт
1. U = 1,05 Uном; cos = 0,9; Тmax = 3000-5000 ч/год. 2. При cos 0,9 вводится поправочный коэффициент, равный cos /0,9. 3.При Tmax, 3000—5000 ч/год вводятся поправочные коэффициенты, приведенные в табл. 3.38. 4. В знаменателе приведены данные КЛ 6 кВ с пластмассовой изоляцией. Экономическая мощность линий 110-500 кВ, выполненных маслоналолненными кабелями с медными жилами, МВт
2. При cos 0,9 вводится поправочный коэффициент, равный cos /0,9. Поправочные коэффициенты к табл. 3.36 и 3.37
Сечение жил кабеля, выбранное по нормированным значениям плотности тока, должно удовлетворять условиям допустимого нагрева в нормальных и послеаварийных режимах работы. В ряде случаев (например, при прокладке в воздухе) сечение кабеля определяется допустимой длительной нагрузкой, которая (особенно для маслонаполненных кабелей) ниже экономической. Значение допустимого длительного тока для кабелей зависит от конструкции кабеля, условий прокладки, количества параллельно проложенных кабелей и расстояния между ними. Для каждой КЛ должны быть установлены наибольшие допустимые токовые нагрузки, определяемые по участку трассы с наихудшими тепловыми условиями при длине участка не менее 10 м. Длительно допустимые токовые нагрузки для разных марок кабелей напряжением до 35 кВ при различных условиях прокладки принимаются в соответствии с ПУЭ. В табл. 3.39—3.42 приведены допустимые длительные мощности КЛ, рассчитанные при среднем эксплуатационном напряжении (h®5 Vом). Допустимые нагрузки для маслонаполненных кабелей в большой степени зависят от условий прокладки. Данные табл. 3.37 приведены для среднерасчетных условий и конструкций отечественных кабелей переменного тока. Приведенные значения соответствуют длинам, не превышающим 8—10 км. Для КЛ длиной более 10 км определение передаваемой мощности производится специальным расчетом или ориентировочно поданным Допустимые длительные мощности соответствуют условию прокладки в земле одного кабеля. При прокладке нескольких кабелей вводятся поправочные коэффициенты: 0,9 — для двух кабелей, 0,8 – для четырех, 0,75 – для шести кабелей. При прокладке в воздухе и воде допустимые длительные мощности соответствуют любому количеству кабелей. Данные табл. 339—3.42 определены исходя из температуры окружающей среды: при прокладке кабеля в земле +15 °С и при прокладке в воздухе (туннеле) +25 «С. При другой температуре окружающей среды данные умножают на коэффициенты, приведенные в табл. 3.43. Допустимая по нагреву длительная мощность трехжильного кабеля напряжением 6—10 кВ
Допустимый длительный ток для трехжильных кабелей на напряжение 6 кВ с медными и алюминиевыми жилами с пластмассовой изоляцией, прокладываемых в земле и в воздухемм2 | Токовые нагрузки, А | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
В земле | В воздухе | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Поливинил-хлорид и полиэтилен | Вулканизированный полиэтилен | Поливинилхло- рид и полиэтилен | Вулканизированный полиэтилен | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
10 | 70/55 | 79/62 | 65/50 | 73/57 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
]6 | 92/70 | 104/79 | 85/65 | 96/73 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
25 | 122/90 | 138/102 | 110/85 | 124/96 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
35 | 147/110 | 166/124 | 135/105 | 153/119 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
50 | 175/130 | 198/147 | 165/125 | 186/141 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
70 | 215/160 | 243/181 | 210/155 | 237/175 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
95 | 260/195 | 294/220 | 255/190 | 288/215 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
120 | 295/220 | 333/249 | 300/220 | 339/249 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
150 | 335/250 | 379/283 | 335/250 | 379/283 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
185 | 380/285 | 429/322 | 385/290 | 435/328 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
240 | 445/335 | 503/379 | 460/345 |
Примечания: в числителе данные для кабелей с медными, знаменателе — с алюминиевыми жилами.
Мощности для кабелей, проложенных в воде, определяются умножением показателей табл. 3.40 на коэффициент 1,3.
Допустимый длительный ток для одножильных кабелей на напряжение 6 и 10 кВ с медными и алюминиевыми жилами с изоляцией из сшитого полиэтилена, прокладываемых в земле и в воздухе, А
Сечение, мм2 | Сечение экрана, мм2 | Медь | Алюминий | ||||||
Воздух | Земля | Воздух | Земля | ||||||
о оо | ооо | о оо | ооо | о оо | ооо | о оо | ооо | ||
50 | 16 | 245 | 290 | 220 | 230 | 185 | 225 | 170 | 175 |
70 | 300 | 360 | 270 | 280 | 235 | 280 | 210 | 215 | |
95 | 370 | 435 | 320 | 335 | 285 | 340 | 250 | 260 | |
120 | 425 | 500 | 360 | 380 | 330 | 390 | 280 | 295 | |
150 | 25 | 475 | 560 | 410 | 430 | 370 | 440 | 320 | 330 |
185 | 545 | 635 | 460 | 485 | 425 | 505 | 360 | 375 | |
240 | 645 | 745 | 530 | 560 | 505 | 595 | 415 | 440 | |
300 | 740 | 845 | 600 | 640 | 580 | 680 | 475 | 495 | |
400 | 35 | 845 | 940 | 680 | 730 | 675 | 770 | 540 | 570 |
500 | 955 | 1050 | 750 | 830 | 780 | 865 | 610 | 650 | |
630 | 1115 | 1160 | 830 | 940 | 910 | 1045 | 680 | 750 | |
800 | 1270 | 1340 | 920 | 1030 | 1050 | 1195 | 735 | 820 |
Допустимая по нагреву длительная мощность трехжильного кабеля
напряжением 20 и 35 кВ с медными и алюминиевыми жилами
и бумажной пропитанной изоляцией
Сечение, мм2 | 20 кВ | 35 кВ | ||
Земля | Воздух | Земля | Воздух | |
С медными жилами | ||||
25 | 3,5/4,1 | 3,2/3,9 | — | — |
35 | 4,6/4,9 | 3,9/4,7 | — | — |
50 | 5,1/6,3 | 4,0/5,7 | — | — |
70 | 6,2/7,2 | 5,8/7,2 | — | — |
95 | 7,4/87 | 7,0/8,7 | — | — |
120 | 8,4/9,8 | 8,2/10,1 | — | — |
150 | 9,5/11,1 | 9,3/11,4 | 14,0/16,3 | 13,9/17,2 |
185 | 10,7/12,4 | 10,6/13,1 | 15,9/18,6 | 15,8/19,5 |
С алюминиевыми жилами | ||||
25 | 2,8/3,3 | 2,5/3,1 | _ | — |
35 | 3,2/3,8 | 2,9/3,6 | — | — |
50 | 3,9/4,6 | 3,6/4,4 | — | — |
70 | 4,8/5,6 | 4,5/5,6 | — | — |
95 | 5,8/6,7 | 5,4/6,7 | — | — |
120 | 6,6/7,7 | 6,4/8,8 | — | — |
150 | 7,5/8,7 | 7,7/8,8 | 11,0/12,9 | 10,9/13,4 |
185 | 8,4/9,8 | 8,4/10,3 | 12,2/14,3 | 12,2/15,1 |
1. В числителе указаны допустимые мощности для кабелей с изоляцией, пропитанной вязкими составами, содержащими полиэтиленовый воск в качестве загустителя, в знаменателе — с изоляцией, пропитанной нестекающим составом или канифольным составом, содержащим не менее 25 % канифоли.
2. Для кабелей с защитным покровом типа К, проложенных в воде, допустимые мощности определяются умножением показателей при прокладке в земле на коэффициент 1,1.
Поправочные коэффициенты на температуру окружающей среды
к табл. 3.39-3.42
Условная температура среды С | Нормированная температура С | Поправочные коэффициенты на температуру окружающей среды, °С | |||||||||||
-5 и ниже | 0 | +5 | +10 | +15 | +20 | +25 | +30 | +35 | +40 | +45 | +50 | ||
15 | 80 | 1,14 | 1,11 | 1,08 | 1,04 | 1,00 | 0,96 | 0,92 | 0,88 | 0,83 | 0,78 | 0,73 | 0,68 |
25 | 80 | 1,24 | 1,20 | 1,17 | 1,13 | 1,09 | 1,04 | 1,00 | 0,95 | 0,90 | 0,85 | 0,80 | 0,74 |
25 | 70 | 1,29 | 1,24 | 1,20 | 1,15 | 1,11 | 1,05 | 1,00 | 0,94 | 0,88 | 0,81 | 0,74 | 0,67 |
15 | 65 | 1,18 | 1,14 | 1,10 | 1,05 | 1,00 | 0,95 | 0,89 | 0,84 | 0,77 | 0,71 | 0,63 | 0,55 |
25 | 65 | 1,32 | 1,27 | 1,22 | 1,17 | 1,12 | 1,06 | 1,00 | 0,94 | 0,87 | 0,70 | 0,71 | 0,61 |
15 | 60 | 1,20 | 1,15 | 1,12 | 1,05 | 1,00 | 0,94 | 0,88 | 0,82 | 0,75 | 0,67 | 0,57 | 0,47 |
25 | 60 | 1,35 | 1,31 | 1,25 | 1,20 | 1,13 | 1,07 | 1,00 | 0,93 | 0,85 | 0,76 | 0,66 | 0,54 |
15 | 55 | 1,22 | 1,17 | 1,12 | 1,07 | 1,00 | 0,93 | 0,86 | 0,79 | 0,71 | 0,61 | 0,50 | 0,36 |
25 | 55 | 1,41 | 1,35 | 1,29 | 1,23 | 1,15 | 1,08 | 1,00 | 0,91 | 0,82 | 0,71 | 0,58 | 0,41 |
15 | 50 | 1,25 | 1,20 | 1,14 | 1,07 | 1,00 | 0,93 | 0,84 | 0,76 | 0,66 | 0,54 | 0,37 | — |
25 | 50 | 1,48 | 1,41 | 1,34 | 1,26 | 1,18 | 1,09 | 1,00 | 0,89 | 0,78 | 0,63 | 0,45 | — |
Для кабелей с бумажной пропитанной изоляцией напряжением до 10 кВ, несущих нагрузки меньше допустимых, кратковременную перегрузку допускается принимать в соответствии с таблицей 3.44.
Кратковременная перегрузка кабелей напряжением 10 кВ с бумажной пропитанной изоляцией по отношению к допустимой нагрузке
Коэффициент предварительной нагрузки | Вид прокладки | Кратковременная перегрузка по отношению к продолжительно допустимой в течение, ч | ||
0,5 | 1,0 | 3,0 | ||
До 0,6 | В земле | 1,35 | 1,00 | 1,15 |
В воздухе | 1,25 | 1,30 | 1,10 | |
В трубах (в земле) | 1,20 | 1,15 | 1,00 | |
Свыше 0,6 до 0,8 | В земле | 1,20 | 1,10 | 1,10 |
В воздухе | 1,15 | 1,15 | 1,05 | |
В трубах (в земле) | 1,10 | 1,10 | 1,00 |
На период ликвидации послеаварийного режима для кабелей с изоляцией из сшитого полиэтилена допускается перегрузка до 17 % номинальной при их прокладке в земле и до 20 % при прокладке в воздухе, а для кабелей из поливинилхлоридного пластика и полиэтилена — до 10 % при их прокладке в земле и в воздухе на время максимума нагрузки, если его продолжительность не превышает 8 ч в сутки, а нагрузка в остальные периоды времени не превышает 1000 ч за срок службы кабелей.
Для кабелей, находящихся в эксплуатации более 15 лет, перегрузка по току не должна превышать 10 %.
Для маслонаполненных КЛ 110—220 кВ разрешается перегрузка до повышения температуры жилы не более, чем на 10 °С выше нормированной заводом. При этом длительность непрерывной перегрузки не должна превышать 100 ч, а суммарная — 500 ч в год. Этим условиям примерно соответствуют кратности перегрузок, указанные в табл. 3.45.
Ориентировочные допустимые длительности перегрузок
кабельных линий 110-220 кВ при прокладке в земле, ч
Маслонаполненный напряжением, кВ | Загрузка в предшествующем режиме | Допустимые длительности перегрузок, ч, при кратности перегрузки | ||||
1,1 | 1,25 | 1,5 | 1,75 | 2,0 | ||
110 | 0 | 100 | 60 | 2,77 | 0,92 | 0,3 |
0,5 | 59 | 2,34 | 0,83 | 0,25 | ||
1,0 | 41,7 | 0,75 | 0,2 | 0,07 | ||
220 | 0 | 100 | 46 | 7,0 | 3,83 | 2,0 |
0,5 | 42 | 4,5 | 2,5 | 1,25 | ||
0,75 | 40 | 3,34 | 1,67 | 0,83 | ||
1,0 | 32 | 1,0 | 0,5 | 0,2 |
Приведенные данные соответствуют маслонаполненному кабелю 110 кВ сечением 270 мм2, проложенному в земле при температуре земли 15 °С и кабелю 220 кВ сечением 500 мм2 в асбоцементных трубах при параллельном следовании двух линий, проложенных на расстоянии 0,5 м, при коэффициенте заполнения суточного графика нагрузки 0,85.
Кабель 110 кВ с пластмассовой изоляцией при заполнении суточного графика нагрузки 0,8 допускает перегрузку в 1,2 раза.
При прокладке нескольких кабелей в земле, а также в трубах продолжительно допустимые мощности (токи) должны быть уменьшены путем введения соответствующих коэффициентов (табл. 3.46).
Поправочные коэффициенты на количество работающих кабелей, лежащих рядом в земле
Расстояние между осями кабелей, мм | Значение коэффициента снижения продолжительно допустимого тока при количестве кабелей | |||||
1 | 2 | 3 | 4 | 5 | 6 | |
100 | 1,0 | 0,84 | 0,72 | 0,68 | 0,64 | 0,61 |
200 | 1,0 | 0,88 | 0,79 | 0,74 | 0,70 | 0,68 |
300 | 1,0 | 0,90 | 0,82 | 0,77 | 0,74 | 0,72 |
Для кабелей, проложенных в земле, продолжительно допустимые мощности (токи) приняты из расчета, что удельное тепловое сопротивление земли составляет 1,2 м·К/Вт. Если сопротивление отличается от указанного, следует применять поправочные коэффициенты по табл. 3.47.
Удельные емкостные токи однофазного замыкания на землю кабелей 6—35 кВ с бумажной изоляцией и вязкой пропиткой приведены в табл. 3.48.
Поправочные коэффициенты на продолжительно допустимые
токи для кабелей, проложенных в земле, в зависимости от удельного сопротивления земли
Характеристика земли | Удельное тепловое сопротивление, М·К/Вт | Поправочный коэффициент |
Песок влажностью более 9 %, песчано-глинистая почва влажностью более 14 % | 0,8 | 1,13 |
Нормальная почва и песок влажностью 7—9 %, песчано-глинистая почва влажностью 12-14% | 1,2 | 1,00 |
Песок влажностью более 4 % и менее 7 %, лесчано-глинисгая почва влажностью 8—12 % | 2,0 | 0,87 |
Песок влажностью более 4 %, Каменистая почва | 3,0 | 0,75 |
Удельные емкостные токи однофазного замыкания на землю кабелей
6-35 кВ с бумажной изоляцией и вязкой пропиткой, А/км
Сечение жилы, мм2 | Кабели с поясной изоляцией | Кабели с отдельно освинцованными жилами | Сечение жилы, мм2 | Кабели с поясной изоляцией | Кабели с отдельно освинцованными жилами | ||||
6кВ | 10 кВ | 20 кВ | 35 кВ | 6кВ | 10 кВ | 20 кВ | 35 кВ | ||
10 | 0,33 | — | — | — | 120 | 0,89 | U | 3,4 | 4,4 |
16 | 0,37 | 052 | — | — | 150 | 1.1 | 1.3 | 3,7 | 4,8 |
25 | 0,46 | 0,62 | 2,0 | — | 185 | 1,2 | 1,4 | 4,0 | — |
35 | 0,52 | 0,69 | 2,2 | — | 240 | 1,3 | 1,6 | — | — |
50 | 0,59 | 0,77 | 2,5 | — | 300 | 1,5 | 1,8 | — | — |
70 | 0,71 | 0,9 | 2,8 | 3,7 | 400 | 1,7 | 2,0 | — | — |
95 | 0,82 | 1,0 | 3,1 | 4,1 | 500 | 2,0 | 2,3 | — | — |
Технические параметры кабелей 10—110 кВ с изоляцией из СПЭ приведены в табл. 3.49—3.55.
Индуктивное сопротивление жилы кабеля с изоляцией из СПЭ с учетом заземления экрана с 2-х сторон
Номинальное сечение жилы, мм2 | Индуктивное сопротивление, Ом/км | |||||
10 кВ | 20 кВ | 35 кВ | ||||
ООО* | О ОО | ООО* | О ОО | ООО* | О ОО | |
50 | 0,184 | 0,126 | 0,217 | 0,141 | 0,228 | 0,152 |
70 | 0,177 | 0,119 | 0,210 | 0,133 | 0,220 | 0,144 |
95 | 0,170 | 0,112 | 0,202 | 0,125 | 0,211 | 0,135 |
120 | 0,166 | 0,108 | 0,199 | 0,123 | 0,208 | 0,132 |
150 | 0,164 | 0,106 | 0,193 | 0,116 | 0,202 | 0,125 |
185 | 0,161 | 0,103 | 0,188 | 0,111 | 0,196 | 0,120 |
240 | 0,157 | 0,099 | 0,183 | 0,106 | 0,192 | 0,115 |
300 | ОД 54 | 0,096 | 0,179 | 0,103 | 0,187 | 0,111 |
400 | 0,151 | 0,093 | 0,173 | 0,097 | 0,181 | 0,105 |
500 | 0,148 | 0,090 | 0,169 | 0,093 | 0,176 | 0,100 |
630 | 0,145 | 0,087 | 0,165 | 0,089 | 0,172 | 0,096 |
800 | 0,142 | 0,083 | 0Д60 | 0,085 | 0,167 | 0,091 |
*Расстояние между кабелями в свету равно диаметру кабеля.
Сопротивление жилы постоянному току кабеля с изоляцией из СПЭ при 20 С
Номинальное сечение жилы, мм2 | Сопротивление, не меже | |
медной жилы, Ом/км | алюминиевой жилы, Ом/км | |
50 | 0,387 | 0,641 |
70 | 0,268 | 0,443 |
95 | 0,193 | 0,320 |
120 | 0,153 | 0,253 |
150 | 0,124 | 0,206 |
185 | 0,0991 | 0,164 |
240 | 0,0754 | 0,125 |
300 | 0,0601 | 0,100 |
400 | 0,0470 | 0,0778 |
500 | 0,0366 | 0,0605 |
630 | 0,0280 | 0,0464 |
800 | 0,0221 | 0,0367 |
Сопротивление жилы при температуре, отличной от 20 °С, вычисляется по формуле:
Rt = R20 · (234,5 + )/254,5 — для медной жилы,
Rt = R20 · (228 + )/254,5 — для алюминиевой жилы,
где — температура жилы, С,
R20— сопротивление жилы при температуре 20 «С, Ом/км,
Rt — сопротивление жилы при температуре С, Ом/км.
Емкость кабеля с изоляцией из СПЭ, мкФ/км
Сечение жилы, мм2 | 50 | 70 | 95 | 120 | 150 | 185 | 240 | 300 | 400 | 500 | 630 | 800 |
10 кВ | 0,23 | 0,26 | 0,29 | 0,31 | 0,34 | 0,37 | 0,41 | 0,45 | 0,50 | 0,55 | 0,61 | 0,68 |
20 кВ | 0.17 | 0,19 | 0,21 | 0,23 | 0,26 | 0,27 | 0,29 | 0,32 | 0,35 | 0,39 | 0,43 | 0,49 |
35 кВ | 0,14 | 0,16 | 0,18 | 0,19 | 0,20 | 0,22 | 0,24 | 0,26 | 0,29 | 0,32 | 0,35 | 0,40 |
110 кВ | – | – | – | – | – | 0,331 | 0,141 | 0,151 | 0,172 | 0,186 | 0,202 | 0,221 |
Технические характеристики СПЭ-кабеля напряжением 10 кВ
Сечение | 50 | 70 | 95 | 120 | 150 | 185 | 240 | 300 | 400 | 500 | 630 | 800 | |
Толщина изоляции | мм | 4,0 | 4,0 | 4,0 | 4,0 | 4,0 | 4,0 | 4,0 | 4,0 | 4,0 | 4,0 | 4,0 | 4,0 |
Толщина оболочки | мм | 2,5 | 2,5 | 2,5 | 2,5 | 2,5 | 2,5 | 2,5 | 2,5 | 2,5 | 2,5 | 2,7 | 2,7 |
Внешний диаметр | мм | 28 | 29,7 | 31 | 33 | 34 | 36 | 3S | 40 | 44 | 47 | 50 | 54 |
Вес прибл. мед, жила | кг/км | 725 1020 | 825 1260 | 935 1540 | 1040 1800 | 1230 2175 | 1370 2530 | 1575 3100 | 3795 3730 | 2195 4655 | 2570 5705 | 3015 7080 | 3605 8710 |
Мин. радиус изгиба | см | 42 | 45 | 47 | 50 | 51 | 54 | 57 | 60 | 66 | 71 | 75 | 81 |
Допустимые мед. жила | кН | 1,5 2.5 | 2,1 3,5 | 2,85 4,75 | 3,60 6,00 | 4,50 7,50 | 5,55 9,25 | 7,20 12,0 | 9,00 15,0 | 12,0 20,0 | 15,0 25,0 | 18,9 31,5 | 24,0 40,0 |
Строительная длина поставки | м | 2500 | 2500 | 2000 | 1800 | 1800 | 1600 | 1400 | 1200 | 1000 | 800 | 800 | 700 |
Длит. допустимый oo медн. | А | 170 220 | 210 270 | 250 320 | 280 360 | 320 410 | 360 460 | 415 530 | 475 600 | 540 6S0 | 610 750 | 680 830 | 735 920 |
Длит. допустимый медн. | А | 175 230 | 215 280 | 260 335 | 295 380 | 330 430 | 375 485 | 440 560 | 495 640 | 570 730 | 650 830 | 750 940 | 820 1030 |
Длит. допустимый oo медн. | А | 185 245 | 235 300 | 285 370 | 330 425 | 370 475 | 425 545 | 505 645 | 580 740 | 675 845 | 780 955 | 910 1115 | 1050 1270 |
Длит. допустимый оoo медн. | А | 225 290 | 230 360 | 340 435 | 390 500 | 440 560 | 505 635 | 595 745 | 680 845 | 770 940 | 865 1050 | 1045 1160 | 1195 1340 |
Технические характеристики СПЭ-кабеля напряжением 20 кВ
Сечение | мм2 | 50 | 70 | 95 | 120 | 150 | 185 | 240 | 300 | 400 | 500 | 630 | 800 |
Толщина изоляции | мм | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 6,0 | 60 |
Толщина оболочки | мм | 2,5 | 2,5 | 2,5 | 2,5 | 2,5 | 2,5 | 2,5 | 2,5 | 2,5 | 2,5 | 2,7 | 2,9 |
Внешний диаметр | мм | 33 | 34 | 36 | 38 | 39 | 41 | 43 | 45 | 49 | 52 | 56 | 60 |
Вес прибл. мед. жила | кг/км | 904 1213 | 1011 1542 | 1133 1721 | 1248 1990 | 1467 2395 | 1615 2760 | 1833 3318 | 2068 3925 | 2539 5014 | 2907 6000 | 3401 7299 | 3999 8948 |
Мин радиус изгиба | см | 50 | 51 | 54 | 57 | 59 | 62 | 65 | 68 | 74 | 78 | 84 | 90 |
Допустимые усилия тяжения мед. жила | кН | 1,5 2,5 | 2,1 3,5 | 2,85 4,75 | 3,60 6,00 | 4,50 7,50 | 5,55 9,25 | 7,20 12,0 | 9,0 25,0 | 18,9 31,5 | 24,0 40,0 | ||
Строительная длина поставки | м | 2350 | 2350 | 1850 | 1650 | 1650 | 1450 | 1250 | 1050 | 850 | 650 | 650 | 550 |
Длит. допустимый oo алюм. | А | 225 175 | 270 215 | 325 255 | 365 290 | 415 330 | 465 370 | 540 425 | 615 480 | 700 550 | 780 620 | 860 690 | 970 760 |
Длит. допустимый oоo алюм. | А | 230 185 | 290 225 | 345 270 | 390 305 | 435 350 | 490 390 | 570 450 | 650 510 | 750 600 | 855 685 | 950 770 | 1050 850 |
Длит. допустимый oo алюм. | А | 250 190 | 310 240 | 375 295 | 430 340 | 490 395 | 560 450 | 650 515 | 745 595 | 880 700 | 980 795 | 1130 900 | 1285 1025 |
Длит. допустимый oоo алюм. | А | 290 225 | 365 280 | 440 345 | 505 395 | 575 450 | 660 515 | 750 595 | 845 680 | 955 785 | 1060 875 | 1185 970 | 1340 1100 |
Технические характеристики СПЭ-кабеля напряжением 35 кВ
Сечение | мм2 | 50 | 70 | 95 | 120 | 150 | 185 | 240 | 300 | 400 | 500 | 630 | 800 |
Толщина изоляции | мм | 9.0 | 9,0 | 9,0 | 9,0 | 9.0 | 9,0 | 9,0 | 9.0 | 9,0 | 9,0 | 9,0 | 9,0 |
Толщина оболочки | мм | 2,5 | 2,5 | 2,5 | 2,5 | 2,5 | 2.5 | 2,5 | 2,7 | 2,7 | 2,9 | 2,9 | 2,9 |
Внешний диаметр | мм | 39 | 40 | 42 | 44 | 45 | 47 | 49 | 52 | 55 | 58 | 62 | 66 |
Вес прибл. мед. жила | кг/км | 1187 1496 | 1310 1743 | 1446 2034 | 1574 2317 | 180S 2733 | 1968 3113 | 2235 3720 | 2492 4348 | 2995 5469 | 3390 6483 | 3883 7780 | 4517 9467 |
Сечение | мм2 | 50 | 70 | 95 | 120 | 150 | 185 | 240 | 300 | 400 | 500 | 630 | 800 |
Мин. радиус изгиба | см | 59 | 60 | 63 | 66 | 68 | 71 | 74 | 78 | 83 | 87 | 93 | 99 |
Допустимые усилия тяжения алюм. жила меда жила | кН | 1,5 3,5 | 2,85 4,75 | 3,60 6,00 | 4,50 7,50 | 5,55 9,25 | 7,20 12,0 | 9,0 15,0 | 12,0 20,0 | 15,0 25,0 | 18,9 31,5 | 24,0 40,0 | |
Строительная длина поставки | м | 1200 | 1200 | 1200 | 1000 | 1000 | 1000 | 800 | 800 | 600 | 600 | 600 | 500 |
Длит. допустимый oo алюм. | А | 225 175 | 270 215 | 325 255 | 365 290 | 415 330 | 465 370 | 540 425 | 615 480 | 700 550 | 780 620 | 860 690 | 970 760 |
Длит. допустимый oоo алюм | А | 230 185 | 290 225 | 345 270 | 390 305 | 435 350 | 490 390 | 570 450 | 650 510 | 750 600 | 855 685 | 950 770 | 1050 850 |
Длит. допустимый oo алюм. | А | 250 190 | 310 240 | 375 295 | 430 340 | 490 395 | 560 450 | 650 515 | 745 595 | 880 700 | 980 795 | 1130 900 | 1285 1025 |
Длит. допустимый oоo алюм. | А | 290 225 | 365 280 | 440 345 | 505 395 | 575 450 | 660 515 | 750 595 | 845 680 | 955 785 | 1060 875 | 1185 970 | 1340 1100 |
Технические характеристики СПЭ-кабеля напряжением 110 кВ
Сечгние | мм2 | 185 | 240 | 300 | 350 | 400 | 500 | 630 | 800 | ||||||||
Толщина изоляции | мм | 16,0 | 16,0 | 16,0 | 16,0 | 15,0 | 15,0 | 15,0 | 15,0 | ||||||||
Толщина оболочки | мм; | 3,0 | 3,2 | 3,4 | 3,4 | 3,4 | 3,4 | 3,6 | 3,8 | ||||||||
Внгшний диаметр | мм | 64 | 66 | 69 | 70 | 70 | 74 | 77 | 81 | ||||||||
Весприбл. алюм. жила мед жила | кг/км | 3400 4560 | 3700 5180 | 4000 5870 | 4230 6390 | 4290 6760 | 4830 7930 | 5410 9310 | 6140 11090 | ||||||||
Мин радиус изгиба | см | 96 | 99 | 104 | 105 | 105 | 111 | 116 | 122 | ||||||||
Допустимые усилия тяжеяия меди, жила алюм жила | кН | 5,55 9,25 | 7,20 12,00 | 9,00 15,00 | 10,5 17,5 | 12,0 20,00 | 15,0 25,0 | 18,9 31,5 | 24,0 40,0 | ||||||||
Сопротивление постоянному току алюм. жила меда жила | Ом/км | 0,0991 0,1640 | 0,0754 0.1250 | 0,0601 0,1000 | 0,0543 0,0890 | 0,0470 0,0778 | 0,0366 0,0605 | 0,028 0,0464 | 0,0221 0,0367 | ||||||||
Длит, допустимый ток в земле оо алюм. | А | 500 395 | 575 455 | 650 515 | 715 560 | 755 600 | 840 675 | 935 760 | 1030 850 | ||||||||
Длит, допустимый ток в земле алюм. | А | 451 366 | 507 416 | 557 461 | 581 486 | 611 514 | 667 572 | 724 631 | 777 690 | ||||||||
Длит, допустимый ток в воздухе алюм. | А | 600 480 | 690 555 | 775 630 | 835 680 | 895 825 | 1115 935 | 1245 1060 | |||||||||
Длит, допустимый ток в воздухе алюм. | А | 624 494 | 725 576 | 820 656 | 871 702 | 938 758 | 1065 872 | 1204 999 | 1352 1139 |
Линии напряжением 6—10—20 кВ подлежат проверке на максимальную потерю напряжения от ЦП до удаленной трансформаторной ПС (ТП) 6-10-20 кВ.
Опыт проектирования линий 6—10—20 кВ показывает, что достаточно анализировать только режимы крайних ТП: ближайшей к ЦП и наиболее удаленной.
Средние значения потерь напряжения в КЛ 6—10—20 кВ составляют 5—7 %, при этом меньшие значения соответствуют длинным, а большие — коротким линиям 0,4 кВ, отходящим от ТП 6—10—20/0,4 кВ. Линии 6—10 кВ, идущие к электроприемникам этого напряжения, проверяются на допустимые отклонения напряжения, регламентируемые ГОСТ 13109-97.
Кабельные линии (кроме защищаемых плавкими предохранителями) подлежат проверке по термической стойкости при токах КЗ. Температура нагрева проверяемых проводников при КЗ должна быть не выше следующих предельно допустимых значений, С:
Кабели до 10 кВ включительно с изоляцией: | |
бумажно-пропитанной | 200 |
поливинилхлоридной или резиновой | 150 |
полиэтиленовой | 120 |
Кабели 20-220 кВ | 125 |
Предельные значения установившегося тока КЗ, соответствующего термической стойкости кабелей 10 кВ с медной и алюминиевой жилой и бумажной изоляцией, приведены на рис. 3.4.
Наибольшее развитие в России получили сети 6 кВ, на их долю приходится около 50 % протяженности сетей среднего напряжения. Одним из направлений развития сетей среднего напряжения является перевод сети 6 кВ на 10 кВ. Это наиболее сложно осуществить в городских сетях, где сеть 6 кВ выполнена кабелем.
Влияние повышенного напряжения на срок службы кабелей, переведенных с 6 на 10 кВ, определяет следующую последовательность принятия решений.
Целесообразность использования кабелей 6 кВ на напряжении 10 кВ или их замены при переводе КЛ 6 кВ на напряжение 10 кВ следует определять исходя из технико-экономического анализа с учетом местных условий. При этом следует учитывать, что сроки работы кабелей 6 кВ, переведенных на напряжение 10 кВ, в зависимости от их состояния на момент перевода и с учетом режимов работы линий распределительной и питающей городской сети (до и после перевода), а также предшествующего срока работы кабелей на номинальном напряжении могут быть приняты равными:
20 годам—для кабельных линий городской распределитель-
ной сети со сроком эксплуатации кабелей до перевода не более 15 лет;
15 годам — для кабельных линий городской распределительной сети со сроком эксплуатации кабелей до перевода более 15 лет и для кабельных линий, токовая нагрузка которых после перевода в течение ближайших пяти лет может превысить 0,5 длительно допустимой;
8—12 годам — для линий городской питающей сети и для кабельных линий, токовая нагрузка которых после перевода будет превышать 0,5 длительно допустимой.
Следует считать, что указанные сроки работы кабельных линий после их перевода с 6 кВ на напряжение 10 кВ не являются предельными и могут быть увеличены с учетом технического состояния кабельных линий и степени старения и износа изоляции кабелей.
По истечении указанных сроков эксплуатации кабельных линий, переведенных с 6 кВ на напряжение 10 кВ, степень старения и износа изоляции рекомендуется устанавливать путем измерения электрических характеристик (сопротивления изоляции, тангенса угла диэлектрических потерь), вскрытия и разборки трех образцов кабелей одного итого же года прокладки и перевода на повышенное напряжение и определения значения эквивалентного напряжения пробоя.
Потери электроэнергии в кабеле складываются из потерь в токоведущей части и изоляции кабеля. Потери в токоведущей части определяются в зависимости от номинального напряжения, материала жилы и загрузки КЛ, а в изоляции кабелей — от напряжения и тангенса угла диэлектрических потерь. Для эксплуатируемых в настоящее время кабелей годовые потери электроэнергии в изоляции составляют:
6-10 кВ | 0,9-1,5 тыс. кВт·ч/км |
20-35 кВ | 2,5-5,5 тыс. кВт·ч/км |
110 кВ | 30-60 тыс. кВт·ч/км |
Меньшие значения относятся к кабелям малых сечений.
Источник