Почему нагреваются кабели и провода во время работы?
Электромонтажные работы отличаются высокими рисками. Именно поэтому необходимо знать и учитывать все важные факторы, влияющие на безопасность. В их число входит сильный нагрев проводов при эксплуатации. Данная особенность присуща всем проводам и кабелям. Кроме того, от нее зависит определение правил монтажа электропроводки и дальнейшее подключение потребителей энергии к сети. Нагрев кабеля также влияет на выбор определенной марки кабельно-проводниковой продукции и на предельную величину подключаемой нагрузки. Для того, чтобы узнать степень нагрева проводов, необходимо разобраться в причине данного явления .
Главная причина нагрева кабельно-проводниковой продукции – природа электрического тока. Ведь движение заряженных электронов по проводнику осуществляется под действием электрического поля. Кроме того, передвигаясь, электронам необходимо преодолеть кристаллическую решетку металлов, отличающуюся очень прочными молекулярными соединениями. Именно поэтому и выделяется довольно большое количество тепла, ведь происходит преобразование электрической энергии в тепловую.
Преобразование электроэнергии в тепло – явление двустороннее, то есть, с одной стороны, данный эффект нежелателен, а с другой, очень полезен.
Положительная сторона заключается в возможности применения электрической энергии для нагрева в абсолютно любом оборудовании (от простого бытового чайника до промышленных печей). По такому же принципу происходит работа любой светотехники.
Главный минус данного явления заключается в повышенном уровне опасности, поскольку сильный нагрев нередко приводит к серьезным последствиям. Помимо этого, сильное повышение температуры обмоток трансформаторов, электрических двигателей и иной техники приводит к снижению эффективности использования. В случае превышения максимального показателя нагрева происходит сбой в функционировании оборудования и в дальнейшем его выход из строя.
Самые опасные ситуации возникают тогда, когда сильно превышается температура тех кабелей и проводов, что применяются для подключения к электросети различных потребителей (проводка в жилом помещении, кабельно-проводниковая продукция для присоединения к сети производственной техники). Значительное превышение температуры нагрева изолированного кабеля чревато возгоранием изоляционного материала либо его оплавлением, которое в дальнейшем станет причиной коротких замыканий. В подобных ситуациях вероятность воспламенения напрямую зависит от применяемых защитных устройств.
Следовательно, явление нагревания кабельно-проводниковой продукции является одним из основных факторов возникновения пожаров. То есть, короткие замыкания — это главная причина львиной доли всех случающихся в жилых и административных зданиях воспламенений.
Стоит отметить, что нагревание в течение долгого времени изменяет механические свойства металла. Именно поэтому случаются такие ситуации, например, как обрыв проводов ЛЭП, что приводит и к большим финансовым потерям, и к возникновению серьезной опасности для жизни человека.
При эксплуатации той или иной кабельно-проводниковой продукции стоит помнить о предельно допустимой температуре нагрева, соответствующей конкретной марке. Данный температурный показатель напрямую связан со свойствами материала, из которого изготавливается изоляция. Например, провод с резиновой изоляцией не должен нагреваться выше 50-65 0 С , с изоляцией из бумаги – максимум 80 0 С , а с изоляцией из высокотехнологичных новейших полимеров температура нагрева достигает 100 0 С . Точные свойства каждого кабеля или провода указываются непосредственно компанией-производителем.
Избежать перегрева и дальнейшего воспламенения поможет только правильный выбор кабеля для конкретной ситуации с учетом всех ее особенностей и нюансов. Для осуществления правильного выбора важно учитывать все факторы, которые влияют на степень нагрева того или иного кабеля. В этом помогут простые формулы, известные всем еще со школьных уроков физики:
Q= I 2 Rt – главная формула, описывающая процесс преобразования электроэнергии в тепло (закон Джоуля-Ленца), где Q – количество тепла, которое выделяется в процессе прохождения тока по проводнику, I – сила тока, R – сопротивление проводника, t – время, за которое электрический ток идет по проводнику.
Исходя из формулы, видно, что нагрев провода увеличивается одновременно с возрастанием нагрузки и показателя сопротивления. Стоит отметить, что количество выделяемой теплоты прямо пропорционально времени прохождения электрического тока. А скорость нагрева напрямую зависима от действующей электрической мощности. Последняя, в свою очередь, определяется произведением напряжения и силы тока, т.е. P=UI . Таким образом, мощность подключенных к кабелю потребителей напрямую влияет на силу и интенсивность его нагрева.
Данные формулы, а именно Q= I 2 Rt и P=U I , помогают узнать точные параметры, которые возможно изменять, управляя величиной и скоростью нагрева проводов.
Необходимо знать, что величина силы тока зависима от номинального показателя мощности подсоединенных проводников в совокупности. Данное значение служит основой при важных расчетах. Главным изменяющимся параметром является сопротивление, величина которого определяется свойствами металла проводника и сечением кабеля. Следовательно, сечение должно определяться на основе мощности. Именно это способно уменьшить электрическое сопротивление кабелей и, следовательно, снизить температуру нагрева до допустимой.
Выбирая сечение кабельно-проводниковой продукции необходимо помнить не только о безопасности работы электрической сети, а также об экономии. Таким образом, кабели и провода с наибольшим сечением требуют больших неоправданных расходов. Но в ситуации возможного подключения к сети дополнительных приборов в будущем желательно, чтобы кабель был с наибольшим сечением.
Для правильного определения необходимого сечения нужно рассчитать максимальный показатель потребляемого тока следующим путем: нужно разделить общую номинальную мощность всех потребителей на показатель напряжения.
Т орговая сеть «Планета Электрика» обладает очень широким ассортиментом кабельно-проводниковой продукци и , с которым Вы можете более подробно ознакомиться на нашем сайте .
Источник
Нагревание и охлаждение кабеля
При изменении тока нагрузки или условий охлаждения кабеля температура его изменяется. Весь процесс нагревания происходит в три стадии. Первая стадия — переходный режим, при котором зависимость температуры от времени выражается суммой экспоненциальных функций. Этот режим длится, как правило, всего несколько десятков секунд. Вторая стадия — регулярный режим, наступающий через несколько минут после начала процесса. При нагреве или охлаждении кабеля экспоненты высших порядков становятся весьма малыми и уравнение нагрева выражается простой экспоненциальной функцией
где tуст — установившаяся температура, °С; τ — βремя нагрева °С; Г — постоянная времени — время, необходимое для нагрева кабеля до максимально допустимой температуры, соответствующей нормальному току нагрузки цри отсутствии отдачи тепла в окружающую среду.
Нагрев кабеля происходит тем медленнее, чем больше постоянная времени Т, и наоборот. Постоянная времени для кабелей, прокладываемых в воздухе,
а для кабелей, прокладываемых в земле,
где сж, сиз, сиз и спокр — удельные теплоемкости жилы, изоляции, оболочки и защитных покровов (табл. 4-1).
При одинаковой теплоотдаче с поверхности токопроводящей жилы нагрев происходит тем медленнее, чем больше теплоемкость кабеля. Поэтому кабель, имеющий малую теплоемкость, нагревается быстрее, чем кабель, обладающий большой теплоемкостью, при одинаковых условиях теплоотдачи.
Третья стадия — стационарное состояние (установившийся режим) кабеля, при котором температура во всех точках его со временем не изменяется. Однако во время работы нагрузка может периодически изменяться. Если генерируемое в кабеле тепло больше отводимого, то кабель нагревается и его температура повышается. Если же потери в окружающую среду превышают выделение тепла, то кабель охлаждается и его температура понижается.
Изменение температуры кабеля, проложенного в земле, иногда продолжается в течение нескольких недель после включения кабеля под нагрузку. Если продолжительность нагрева невелика, то можно применять приближенные методы расчета, основанные на предположении, что температура оболочки равна температуре грунта. Если это время достаточно велико, то скорость нагревания кабеля определяется в основном тепловой инерцией грунта, а теплоемкость кабеля играет несущественную роль. При прерывистой нагрузке, когда кабель подвергается охлаждению, максимальная температура нагрева достигается при более высокой нагрузке.
Повышение температуры выше допустимых значений ведет к химическому разложению бумажной изоляции и резкому снижению ее механической прочности. Разложение непропитанной кабельной бумаги в воздухе начинается при температуре выше 130°С. Разложение пропиточного масло-канифольного состава в воздухе начинается при температуре 175°С, а возгорание его паров происходит при температуре 325°С. При длительном нахождении кабеля при повышенной температуре изоляция кабеля становится хрупкой. На величину пробивного напряжения это увеличение хрупкости не влияет, но при перегибах или передвижении кабеля хрупкая изоляция легко повреждается, в результате чего может произойти ее пробой.
Пластмассы и резина при повышении температуры выше рабочей размягчаются, а при дальнейшем ее повышении плавятся. С увеличением температуры диэлектрические потери в изоляции возрастают примерно по экспоненциальной зависимости. Поэтому в кабелях на напряжение 110 кв и выше диэлектрические потери не только ограничивают допустимый ток нагрузки, но могут привести к тепловому пробою. Диаграмма тепловой неустойчивости одножильного кабеля представлена на рис. 4-6. По оси абсцисс отложена температура оболочкой кабеля Тоб, а по оси ординат — суммарные потери в жиле, изоляции, оболочке и броне, а также потери, отводимые от оболочки в окружающую среду р. Кривая на рис. 4-6 соответствует зависимости суммарных потерь в кабеле от температуры. Точка а на кривой соответствует устойчивому тепловому режиму нагревания оболочки до температуры Т1. При случайном увеличении температуры оболочки кабеля теплоотдача возрастает быстрее, чем происходит выделение тепла, и температура оболочки возвращается в исходное состояние (Т). Ори случайном уменьшении температуры оболочки выделение тепла возрастает сильнее теплоотдачи и температура оболочки принимает исходное значение.
Точка б (нагревание оболочки до температуры Т2) соответствует неустойчивому тепловому режиму. Если прямая 2 касается кривой T, то точка в является точкой неустойчивого равновесия, и такое расположение является критерием возможного перехода кабеля к тепловому пробою. Наступает это из-за увеличения внешнего теплового сопротивления по сравнению с расчетным до величины, соответствующей тепловому пробою (на рис. 4-6 увеличивается tgα), увеличения температуры окружающей среды Го сравнительно с расчетной (прямая 2 смещается вправо) и увеличения тока нагрузки сравнительно с нормальным (кривая смещается вверх). Для построения Диаграммы тепловой неустойчивости кабеля задаются несколькими значениями температуры жилы при заданной нагрузке кабеля и, разделив изоляцию на п слоев, строят кривую тепловыделения в кабеле в зависимости от температуры оболочки.
Источник
Горячий кабель — хорошо или плохо?
Спросить любого электрика — что самое главное в кабеле? — он ответит, что это его способность проводить электрический ток. И чем больше нужно провести тока, тем толще должен быть кабель. Кабель обычно состоит из нескольких проводов, внутри которых проложена токопроводящая жила. Но есть кабели, главное свойство которых — не проводить ток к нагрузке, а самому работать как нагрузка. О таких кабелях и их свойствах пойдет речь в статье.
Когда по проводам протекает слишком большой ток, они начинают греться, что провоцирует множество проблем: от ускоренного старения кабеля и уменьшения срока службы оборудования до полных отказов и пожаров. Поэтому любой нормальный электрик вам скажет, что когда кабель греется — это плохо, и происходить этого не должно.
Однако нагрев кабеля может служить на пользу, если взять его под контроль и поставить на службу. Для этого изготавливают специальные греющие кабели, нагрев которых является основным потребительским свойством. Итак, давайте вместе вспомним элементарную физику и посмотрим, как она применима к греющим кабелям.
Сопротивление медного провода
Исходный параметр, на основе которого производят все расчеты с проводниками, — удельное сопротивление провода ρ, которое имеет размерность Ом·мм 2 /м. Для медного сплава, который применяется в обычных электромонтажных проводах, ρ=0,0175 Ом·мм 2 /м. Но это теоретическое значение, реально оно может быть больше — 0,018 или 0,019. Это значение зависит от состава сплава и от добросовестности производителя.
Что означает число ρ? Приведу пример. Возьмем одиночный провод сечением S=1,5 мм 2 , длиной L=1 км. Его сопротивление можно вычислить по формуле:
R=(ρ L)/S = 11,6 Ом
Сопротивление обычных типов проводников регламентировано ГОСТ 22483-2012. Кроме того, в этом ГОСТе нормируется изменение сопротивления проводов в зависимости от температуры. Но это изменение так мало, что в большинстве случаев им пренебрегают.
Как и у обычного провода, сопротивление греющего проводника — также очень важный параметр. Ведь он определяет другой параметр, характеризующий его нагревательные свойства — погонную мощность (Вт/м). Зная ее из документации или расчетов, можно по закону Джоуля-Ленца посчитать количество тепловой энергии, используя такую формулу:
Q=I2Rt=UIt (Дж)
В природе существуют принципиально два вида греющих кабелей, о них я и расскажу далее, обязательно будут примеры.
Резистивные кабели постоянной мощности
Провод в таком кабеле имеет жилу из специального сплава. Этот сплав обладает определенным сопротивлением, которое больше, чем сопротивление меди. Сопротивление метра такого кабеля — от единиц до десятков Ом, в зависимости от требуемой температуры и сферы применения.
Примеры промышленных марок таких кабелей и проводов — МНТ, СНФ, ПНСВ и другие. Буква «Н» в названии кабеля обозначает «нагревательный».
Пример резистивного кабеля для теплого пола с одной жилой
Резистивные греющие кабели принципиально бывают двух видов по способу подключения — с одной или с двумя жилами. Если жила одна, то нужно уложить кабель так, чтобы оба конца сходились в одном месте.
Когда в кабеле две жилы — это упрощает монтаж. Начало кабеля подводится к клеммам питания, а на конце монтируется соединительная концевая муфта.
Изоляция греющих кабелей рассчитана на высокие рабочие температуры (до 100 °С) и обычно выполняется из фторопласта. Кроме изоляции обычно имеется оплетка (экран), которая выполняет роль дополнительной защиты.
Двужильный резистивный греющий кабель
На фото — двужильный резистивный греющий кабель. Видно два рабочих провода, провод заземления, экран, и внешнюю оболочку.
С точки зрения физики кабель устроен так же, как любой нагревательный элемент — например, паяльник или утюг. И так же, как и паяльник, некоторые резистивные кабели рассчитаны на то, что будут включены постоянно. Например, это актуально на зимний период при использовании греющего кабеля для обогрева крыш.
В других случаях так же, как с утюгом, нужно регулировать температуру греющего кабеля. Для этого используют термостаты (регуляторы температуры) — как правило, электронные, с датчиком обратной связи.
Яркий пример применения греющего кабеля, который радует наши замерзшие ноги зимой, — электрический теплый пол
Производятся греющие резистивные кабели на определенную мощность и напряжение и имеют фиксированную длину, резать их нельзя.
Датчик и регулятор температуры для теплого пола
Между нами говоря, такой кабель можно разрезать или удлинить, но для получения той же мощности нужно будет другое напряжение. Либо температура нагрева будет иной, что может сыграть злую шутку.
При повышенном выделении тепла (если сопротивление или напряжение слишком высокое), произойдет то же самое, что и с обычным кабелем — изоляция начнет плавиться, а срок службы — сокращаться.
Законы, открытые более 150 лет назад, никто пока не отменял!
В промышленности и быту греющий кабель применяется, например, для обогрева трубопроводов. В строительстве — для прогрева бетона в случае его заливки при низких температурах. Греющий кабель в этом случае прокладывают в арматуре, а после заливки бетона подают напряжение на несколько дней.
Стоит отметить, что резистивный кабель греется по всей длине, и при его монтаже нужно предусмотреть участки на трассе, которые прокладываются обычным проводом. Иначе нагрев будет происходить там, где он не нужен — например, внутри электрощита.
Двужильный кабель теплого пола
Резистивные кабели — яркий пример
Для примера — укладка теплого пола под плитку. Ничего сложного тут нет, главное — все уложить и подключить по инструкции. Основа теплого пола в примере — нагревательный мат фирмы HEM.
Кабель имеет две зоны — греющую (основную) и холодную, изготовленную из обычного медного провода. Граница между зонами отмечена, это важно знать при монтаже.
В инструкции сказано, что греющий кабель теплого пола имеет мощность 150 Вт, максимальную температуру 80 °С и сопротивление 347 Ом. Проверим мощность по формуле:
P =U2/R=140 Вт,
это почти как в инструкции.
Надо сказать, что при такой мощности очень важно уложить под пол теплоизоляцию, иначе нагрев будет неэффективен — большая часть тепловой энергии будет уходить на ненужный прогрев нижней части пола (или потолка соседей снизу, если это квартира).
Пол потребляет немного, но и ему нужен термостат — для экономии электричества и для тех случаев, когда «слишком хорошо — это плохо».
Сверху вниз: 2 провода питания, 2 провода теплого пола, 2 провода датчика температуры
Датчик дает информацию на термостат, а он, в свою очередь, по мере прогрева дает команду на выключение, а при остывании — на подачу питания на кабель теплого пола.
Разница между значениями включения/выключения термостата называется шириной петли гистерезиса и измеряется в °С.
Саморегулирующиеся нагревательные кабели
Эти кабели тоже имеют определенное сопротивление, но оно не постоянное, а зависит от температуры. А температура, в свою очередь, зависит от тока и сопротивления, как в обычном нагревательном кабеле.
Главное отличие таких кабелей — не обязательно ставить датчики и заботиться о перегреве, кабель сам установит оптимальную температуру, изменяя свое сопротивление.
Такой кабель состоит из соединенных параллельно отрезков (проводящих матриц), каждый из которых — самостоятельный нагревательный элемент, который можно подключить и смонтировать отдельно. Пример — нагревательные элементы Unimat, которые также называют стержневым теплым полом. Стержни могут быть выполнены и в пленочном исполнении.
Другой вариант конструкции — двужильный кабель определенной длины, который исключает любой разрез и монтируется целиком на прогреваемую конструкцию. Пример — саморегулирующийся кабель КДБС.
Каждый коричневый отрезок — самостоятельный нагревательный элемент
Из принципа саморегуляции следует интересное свойство — пока нагреваемый объект холодный, кабель работает на полную мощность. По мере прогрева сопротивление увеличивается, мощность уменьшается, температура стабилизируется на оптимальном уровне.
Тут же вытекает еще плюс саморегулирующегося кабеля — экономия энергии, причем этот процесс происходит автоматически.
Стоит сказать, что с саморегулирующимися кабелями также используют датчики и терморегуляторы, когда нет необходимости прогревать объект на максимальной мощности. Например, при использовании в теплых полах.
Теплый пол с саморегуляцией
Приведу пример теплого пола, в котором применяется саморегулирующийся кабель.
Пол уложен на кухне, на черновую стяжку, и закреплен дюбель-хомутами.
После работы электриков заливается чистовая стяжка и укладывается плитка
В инструкции сказано, что погонный метр такого теплого пола в холодном состоянии потребляет 116 Вт, а при 60 °С — 77 Вт. То есть при повышении температуры сопротивление греющих элементов повышается, мощность уменьшается и температура устанавливается на некотором оптимальном значении. Для точной настройки температуры (если не нужно, чтобы пол грел слишком сильно) используется датчик с регулятором, такой же, как и для резистивного пола.
Таким образом, нагрев проводов — это не всегда плохое явление, если поставить его на службу!
Источник: Александр Ярошенко, автор блога «СамЭлектрик.ру» Опубликовано в журнале «Электротехнический рынок» № 1 2020 год.
Источник