Как подключить розетку со светодиодом

Содержание
  1. Как подключить светодиод к осветительной сети

    Прочитав этот заголовок, кто-то, возможно, спросит: «А зачем?» Да, если просто воткнуть светодиод в розетку, даже включив его по определенной схеме, практического значения это не имеет, никакой полезной информации не принесет. А вот если тот же светодиод подключить параллельно нагревательному элементу, управляемому от терморегулятора, то можно визуально контролировать работу всего прибора. Иногда такая индикация позволяет избавиться от множества мелких проблем и неприятностей. В свете того, что уже было сказано о включении светодиодов в предыдущих статьях, задача кажется тривиальной: просто поставил ограничительный резистор нужного номинала, и вопрос решен. Но все это хорошо, если питать светодиод выпрямленным постоянным напряжением: как подключили светодиод в прямом направлении, так он и остался. При работе на переменном напряжении все не так просто. Дело в том, что на светодиод, кроме прямого напряжения, будет воздействовать еще и напряжение обратной полярности, ведь каждый полупериод синусоида меняет знак на противоположный. Это обратное напряжение не будет засвечивать светодиод, но привести его в негодность может очень быстро. Поэтому приходится принимать меры по защите от этого «вредного» напряжения. В случае сетевого напряжения расчет гасящего резистора следует вести исходя из величины напряжения 310В. Почему? Здесь все очень просто: 220В это действующее напряжение, амплитудное же значение составит 220*1,41=310В. Амплитудное напряжение в корень из двух (1,41) раз больше действующего, и об этом забывать нельзя. Вот такое прямое и обратное напряжение приложится к светодиоду. Именно из величины 310В и следует рассчитывать сопротивление гасящего резистора, и именно от этого напряжения, только обратной полярности, защищать светодиод. Как защитить светодиод от обратного напряжения Почти для всех светодиодов обратное напряжение не превышает 20В, ведь никто не собирался делать на них высоковольтный выпрямитель. Как же избавиться от такой напасти, как защитить светодиод от этого обратного напряжения? Оказывается, все очень просто. Первый способ – последовательно со светодиодом включить обычный выпрямительный диод с высоким обратным напряжением (не ниже 400В), например, 1N4007 – обратное напряжение 1000В, прямой ток 1А. Именно он не пропустит высокое напряжение отрицательной полярности к светодиоду. Схема такой защиты показана на рис.1а. Второй способ, не менее эффективный, — просто зашунтировать светодиод другим диодом, включенным встречно – параллельно, рис.1б. При таком способе защитный диод даже не должен быть с высоким обратным напряжением, достаточно любого маломощного диода, например, КД521. Более того, можно просто включить встречно — параллельно два светодиода: поочередно открываясь, они сами защитят друг друга, да еще и оба будут излучать свет, как показано на рисунке 1в. Это уже получается третий способ защиты. Все три схемы защиты показаны на рисунке 1. Рисунок 1. Схемы защиты светодиодов от обратного напряжения Ограничительный резистор на этих схемах имеет сопротивление 24КОм, что при действующем напряжении 220В обеспечивает ток порядка 220/24=9,16мА, можно округлить до 9. Тогда мощность гасящего резистора составит 9*9*24=1944мВт, почти два ватта. Это притом, что ток через светодиод ограничен на уровне 9мА. Но длительное использование резистора на предельной мощности ни к чему хорошему не приведет: сначала он почернеет, а потом совсем сгорит. Чтобы этого не произошло, рекомендуется ставить последовательно два резистора по 12КОм мощностью по 2Вт каждый. Если задаться уровнем тока в 20мА, то мощность резистора составит еще больше — 20*20*12=4800мВт, без малого 5Вт! Естественно, что печку такой мощности для отопления помещения никто себе позволить не сможет. Это из расчета на один светодиод, а что если будет целая светодиодная гирлянда? Конденсатор – безваттное сопротивление Схема, показанная на рисунке 1а, защитным диодом D1 «срезает» отрицательный полупериод переменного напряжения, поэтому и мощность гасящего резистора снижается вдвое. Но, все равно, мощность остается весьма значительной. Поэтому, часто в качестве ограничительного резистора применяют балластный конденсатор: ток он ограничит ничуть не хуже резистора, а вот тепла выделять не будет. Ведь недаром часто конденсатор называют безваттным сопротивлением. Этот способ включения показан на рисунке 2. Рисунок 2. Схема включения светодиода через баластный конденсатор Здесь вроде бы все хорошо, даже есть защитный диод VD1. Но не предусмотрены две детали. Во-первых, конденсатор C1 после выключения схемы может остаться в заряженном состоянии и хранить заряд до тех пор, пока кто-нибудь не разрядит его своей рукой. А это, поверьте, обязательно когда-нибудь произойдет. Удар током получается, конечно, не смертельный, но достаточно чувствительный, неожиданный и неприятный. Поэтому, во избежание такой неприятности, эти гасящие конденсаторы шунтируются резистором с сопротивлением 200…1000КОм. Такая же защита устанавливается и в бестрансформаторных блоках питания с гасящим конденсатором, в оптронных развязках и некоторых других схемах. На рисунке 3 этот резистор обозначен как R1. Рисунок 3. Схема подключения светодиода к осветительной сети Кроме резистора R1, на схеме появляется еще резистор R2. Его назначение ограничить бросок тока через конденсатор при подаче напряжения, что помогает защитить не только диоды, но и сам конденсатор. Из практики известно, что при отсутствии такого резистора конденсатор иногда обрывается, емкость его становится намного меньше номинальной. Излишне говорить, что конденсатор должен быть керамический на рабочее напряжение не менее 400В или специальный для работы в цепях переменного тока на напряжение 250В. На резистор R2 возлагается еще одна немаловажная роль: в случае пробоя конденсатора он срабатывает как предохранитель. Конечно, светодиоды придется тоже заменить, но, по крайней мере, соединительные провода останутся целыми. По сути дела именно так срабатывает плавкий предохранитель в любом импульсном блоке питания, — транзисторы сгорели, а печатная плата осталась почти нетронутой. На схеме, показанной на рисунке 3, изображен всего один светодиод, хотя на самом деле их можно включить последовательно несколько штук. Защитный диод вполне справится со своей задачей один, но емкость балластного конденсатора придется, хотя бы приблизительно, но все, же рассчитать. Как рассчитать емкость гасящего конденсатора Для того, чтобы рассчитать сопротивление гасящего резистора, надо из напряжения питания вычесть падение напряжения на светодиоде. Если соединено последовательно несколько светодиодов, то просто сложить их напряжения, и также вычесть из напряжения питания. Зная этот остаток напряжения и требуемый ток, по закону Ома рассчитать сопротивление резистора очень просто: R=(U-Uд)/I*0,75. Здесь U – напряжение питания, Uд — падение напряжения на светодиодах (если светодиоды включены последовательно, то Uд есть сумма падений напряжения на всех светодиодах), I – ток через светодиоды, R — сопротивление гасящего резистора. Здесь как всегда, — напряжение в Вольтах, ток в Амперах, результат в Омах, 0,75 — коэффициент для повышения надежности. Эта формула уже приводилась в статье «Об использовании светодиодов». Величина прямого падения напряжения для светодиодов разных цветов разная. При токе 20мА у красных светодиодов 1,6…2,03В, желтых 2,1…2,2В, зеленых 2,2…3,5В, синих 2,5…3,7В. Самым высоким падением напряжения обладают белые светодиоды, обладающие широким спектром излучения 3,0…3,7В. Нетрудно видеть, что разброс этого параметра достаточно широкий. Здесь приведены падения напряжения лишь нескольких типов светодиодов, просто по цветам. На самом деле этих цветов намного больше, а точное значение можно узнать лишь в техдокументации на конкретный светодиод. Но зачастую этого и не требуется: чтобы получить приемлемый для практики результат, достаточно подставить в формулу какое-то среднее значение (обычно 2В), конечно, если это не гирлянда из сотни светодиодов. Для расчета емкости гасящего конденсатора применяется эмпирическая формула C=(4,45*I)/(U-Uд), где C — емкость конденсатора в микрофарадах, I — ток в миллиамперах, U — амплитудное напряжение сети в вольтах. При использовании цепочки из трех последовательно соединенных белых светодиодов Uд примерно около 12В, U амплитудное напряжение сети 310В, для ограничения тока на уровне 20мА понадобится конденсатор емкостью C=(4,45*I)/(U-Uд)= C=(4,45*20)/(310-12)= 0,29865мкФ, почти 0,3мкФ. Ближайшее стандартное значение емкости конденсатора 0,15мкФ, поэтому, для использования в данной схеме придется применить два параллельно соединенных конденсатора. Здесь надо сделать замечание: формула действительна только для частоты переменного напряжения 50Гц. Для других частот результаты будут неверны. Конденсатор сначала надо проверить Перед тем, как использовать конденсатор, его необходимо проверить. Для начала просто включить в сеть 220В, лучше через предохранитель 3…5А, и минут через 15 проверить на ощупь, а нет ли заметного нагрева? Если конденсатор холодный, то можно его использовать. В противном случае обязательно взять другой, и тоже предварительно проверить. Ведь все-таки 220В это уже не 12, тут все несколько иначе! Если эта проверка прошла успешно, конденсатор не нагрелся, то можно проверить, не случилась ли ошибка в расчетах, той ли емкости конденсатор. Для этого надо включить конденсатор как в предыдущем случае в сеть, только через амперметр. Естественно, что амперметр должен быть переменного тока. Это напоминание о том, что не все современные цифровые мультиметры могут измерять переменный ток: простые дешевые приборы, например, очень популярные у радиолюбителей серии DT838, способны измерять только постоянный ток, что покажет такой амперметр при измерении переменного тока никому не ведомо. Скорей всего это будет цена на дрова или температура на Луне, но только не переменный ток через конденсатор. Если измеренный ток будет примерно таким, как получилось при расчете по формуле, то можно смело подключать светодиоды. Если же вместо ожидаемых 20…30мА получилось 2…3А, то тут, либо ошибка в расчетах, либо неправильно прочитана маркировка конденсатора. Выключатели с подсветкой Здесь можно заострить внимание еще на одном способе включения светодиода в осветительную сеть, используемого в выключателях с подсветкой. Если такой выключатель разобрать, то можно обнаружить, что никаких защитных диодов там нет. Так что же, все что написано чуть выше — бред? Совсем нет, просто надо внимательно приглядеться к разобранному выключателю, точнее к номиналу резистора. Как правило, его номинал не менее 200КОм, может даже несколько больше. При этом, очевидно, что ток через светодиод ограничится на уровне около 1мА. Схема выключателя с подсветкой показана на рисунке 4. Рисунок 4. Схема подключения светодиода в выключателе с подсветкой Здесь одним резистором убивают сразу несколько «зайцев». Конечно, ток через светодиод будет мал, светиться он будет слабо, но вполне ярко, чтобы разглядеть это свечение темной ночью в комнате. А ведь днем это свечение вовсе не нужно! Так что пусть себе светится незаметно. При этом слабым будет и обратный ток, настолько слабым, что никоим образом не сможет спалить светодиод. Отсюда экономия ровно на один защитный диод, о котором было рассказано выше. При выпуске миллионов, а может даже миллиардов, выключателей в год экономия получается немалая. Казалось бы, что после прочтения статей о светодиодах, все вопросы об их применении ясны и понятны. Но существует еще немало тонкостей и нюансов при включении светодиодов в различные схемы. Например, параллельное и последовательное соединение или, по-другому, хорошие и плохие схемы. Иногда хочется собрать гирлянду из нескольких десятков светодиодов, но как ее рассчитать? Сколько можно включить последовательно светодиодов, если есть блок питания с напряжением 12 или 24В? Эти и другие вопросы будут рассмотрены в следующей статье, которую так и назовем «Хорошие и плохие схемы включения светодиодов». Источник Почему так сложно сделать питание светодиодов от 220В своими руками? Потому что нужно грамотно решить сразу две задачи: Ограничить прямой ток через светодиод, чтобы он не сгорел. Обеспечить защиту светодиода от пробоя обратным током. Если проигнорировать любой из этих пунктов, светодиод моментально накроется медным тазом. В самом простейшем случае ограничить ток через светодиод можно резистором и/или конденсатором. А предотвратить пробой от обратного напряжения можно с помощью обычного диода или еще одного светодиода. Поэтому самая простая схема подключения светодиода к 220В состоит всего из нескольких элементов: Защитный диод может быть практически любым, т.к. его обратное напряжение никогда не будет превышать прямого напряжения на светодиоде, а ток ограничен резистором. Сопротивление и мощность ограничительного (балластного) резистора зависит от рабочего тока светодиода и рассчитывается по закону Ома: А мощность рассеивания резистора рассчитывается так: P = (Uвх — ULED) 2 / R где Uвх = 220 В, ULED — прямое (рабочее) напряжение светодиода. Обычно оно лежит в пределах 1.5-3.5 В. Для одного-двух светодиодов им можно пренебречь и, соответственно, упростить формулу до R=Uвх/I, I — ток светодиода. Для обычных индикаторных светодиодов ток будет 5-20 мА. Пример расчета балластного резистора Допустим, нам нужно получить средний ток через светодиод = 20 мА, следовательно, резистор должен быть: R = 220В/0.020А = 11000 Ом (берем два резистора: 10 + 1 кОм) P = (220В) 2 /11000 = 4.4 Вт (берём с запасом: 5 Вт) Необходимое сопротивление резистора можно взять из таблицы ниже. Таблица 1. Зависимость тока светодиода от сопротивления балластного резистора. Сопротивление резистора, кОм Амплитудное значение тока через светодиод, мА Средний ток светодиода, мА Средний ток резистора, мА Мощность резистора, Вт 43 7.2 2.5 5 1.1 24 13 4.5 9 2 22 14 5 10 2.2 12 26 9 18 4 10 31 11 22 4.8 7.5 41 15 29 6.5 4.3 72 25 51 11.3 2.2 141 50 100 22 Другие варианты подключения В предыдущих схемах защитный диод был включен встречно-параллельно, однако его можно разместить и так: Это вторая схема включения светодиодов на 220 вольт без драйвера. В этой схеме ток через резистор будет в 2 раза меньше, чем в первом варианте. А, следовательно, на нем будет выделяться в 4 раза меньше мощности. Это несомненный плюс. Но есть и минус: к защитному диоду прикладывается полное (амплитудное) напряжение сети, поэтому любой диод здесь не прокатит. Придется подобрать что-нибудь с обратным напряжением 400 В и выше. Но в наши дни это вообще не проблема. Отлично подойдет, например, вездесущий диод на 1000 вольт — 1N4007 (КД258). Не смотря на распространенное заблуждение, в отрицательные полупериоды сетевого напряжения, светодиод все-таки будет находиться в состоянии электрического пробоя. Но благодаря тому, что сопротивление обратносмещенного p-n-перехода защитного диода очень велико, ток пробоя будет недостаточен для вывода светодиода из строя. Для уменьшения величины тока прикосновения нужно располовинить резистор на две части, чтобы получилось как показано на картинках: Благодаря такому решению, даже поменяв местами фазу и ноль, ток через человека на «землю» (при случайном прикосновении) никак не сможет превысить 220/12000=0.018А. А это уже не так опасно. Как быть с пульсациями? В обеих схемах светодиод будет светиться только в положительный полупериод сетевого напряжения. То есть он будет мерцать с частой 50 Гц или 50 раз в секунду, причём размах пульсаций будет равен 100% (10 мс горит, 10 мс не горит и так далее). Это будет заметно глазу. К тому же, при подсветке мерцающими светодиодами каких-либо движущихся объектов, например, лопастей вентилятора, колес велосипеда и т.п., неизбежно будет возникать стробоскопический эффект. В некоторых случаях данный эффект может быть неприемлем или даже опасен. Например, при работе за станком может показаться, что фреза неподвижна, а на самом деле она вращается с бешенной скоростью и только и ждет, чтобы вы сунули туда пальцы. Чтобы сделать пульсации менее заметными, можно удвоить частоту включения светодиода с помощью двухполупериодного выпрямителя (диодного моста): Обратите внимание, что по сравнению со схемой #2 при том же самом сопротивлении резисторов, мы получили в два раза больший средний ток. И, соответственно, в четыре раза большую мощность рассеивания резисторов. К диодному мосту при этом не предъявляется каких-либо особых требований, главное, чтобы диоды, из которых он состоит, выдерживали половину рабочего тока светодиода. Обратное напряжение на каждом из диодов будет совсем ничтожным. Еще, как вариант, можно организовать встречно-параллельное включение двух светодиодов. Тогда один из них будет гореть во время положительной полуволны, а второй — во время отрицательной. Фишка в том, что при таком включении максимальное обратное напряжение на каждом из светодиодов будет равно прямому напряжению другого светодиода (несколько вольт максимум), поэтому каждый из светодиодов будет надежно защищен от пробоя. Светодиоды следует разместить как можно ближе друг к другу. В идеале — попытаться найти сдвоенный светодиод, где оба кристалла размещены в одном корпусе и у каждого свои выводы (хотя я таких ни разу не видел). Вообще говоря, для светодиодов, выполняющих индикаторную функцию, величина пульсаций не очень-то и важна. Для них самое главное — это максимально заметная разница между включенным и выключенным состоянием (индикация вкл/выкл, воспроизведение/запись, заряд/разряд, норма/авария и т.п.) А вот при создании светильников, всегда нужно стараться свести пульсации к минимуму. И не столько из-за опасностей стробоскопического эффекта, сколько из-за их вредного влияния на организм. Какие пульсации считаются допустимыми? Все зависит от частоты: чем она ниже, тем заметнее пульсации. На частотах выше 300 Гц пульсации становятся совершенно невидимыми и вообще никак не нормируются, то есть даже 100%-ные считаются нормой. Не смотря на то, что пульсации освещенности на частотах 60-80 Гц и выше визуально не воспринимаются, тем не менее, они способны вызывать повышенную усталость глаз, общую утомляемость, тревожность, снижение производительности зрительной работы и даже головные боли. Для предотвращения вышеперечисленных последствий, международный стандарт IEEE 1789-2015 рекомендует максимальный уровень пульсаций яркости для частоты 100 Гц — 8% (гарантированно безопасный уровень — 3%). Для частоты 50 Гц — это будут 1.25% и 0.5% соответственно. Но это для перфекционистов. На самом деле, для того, чтобы пульсации яркости светодиода перестали хоть как-то досаждать, достаточно, чтобы они не превышали 15-20%. Именно таков уровень мерцания ламп накаливания средней мощности, а ведь на них никто и никогда не жаловался. Да и наш российский СНиП 23-05-95 допускает мерцание света в 20% (и только для особо кропотливых и ответственных работ требование повышено до 10%). В соответствии с ГОСТ 33393-2015 «Здания и сооружения. Методы измерения коэффициента пульсации освещенности» для оценки величины пульсаций вводится специальный показатель — коэффициент пульсаций (Кп). Коэфф. пульсаций в общем рассчитывается по сложной формуле с применением интегральной функции, но для гармонических колебаний формула упрощается до следующей: где Емах — максимальное значение освещенности (амплитудное), а Емин — минимальное. Мы будем использовать эту формулу для расчета емкости сглаживающего конденсатора. Очень точно определить пульсации любого источника света можно при помощи солнечной панели и осциллографа: Как уменьшить пульсации? Посмотрим, как включить светодиод в сеть 220 вольт, чтобы снизить пульсации. Для этого проще всего подпаять параллельно светодиоду накопительный (сглаживающий) конденсатор: Из-за нелинейного сопротивления светодиодов, расчет емкости этого конденсатора является довольно нетривиальной задачей. Однако, эту задачу можно упростить, если сделать несколько допущений. Во-первых, представить светодиод в виде эквивалентного постоянного резистора: А во-вторых, сделать вид, что яркость светодиода (а, следовательно, и освещенность) имеет линейную зависимость от тока. Давайте попробуем приблизительно рассчитать емкость конденсатора на конкретном примере. Расчет емкости сглаживающего конденсатора Допустим, мы хотим получить коэфф. пульсаций 2.5% при токе через светодиод 20 мА. И пусть в нашем распоряжении оказался светодиод, на котором при токе в 20 мА падает 2 В. Частота сети, как обычно, 50 Гц. Так как мы решили, что яркость линейно зависит от тока через светодиод, а сам светодиод мы представили в виде простого резистора, то освещенность в формуле расчета коэффициента пульсаций можем спокойно заменить на напряжение на конденсаторе: Подставляем исходные данные и вычисляем Umin: 2.5% = (2В — Umin) / (2В + Umin) ⋅ 100% => Umin = 1.9В Период колебаний напряжения в сети равен 0.02 с (1/50). Таким образом, осциллограмма напряжения на конденсаторе (а значит и на нашем упрощенном светодиоде) будет выглядеть примерно вот так: Вспоминаем тригонометрию и считаем время заряда конденсатора (для простоты не будем учитывать сопротивление балластного резистора): tзар = arccos(Umin/Umax) / 2πf = arccos(1.9/2) / (2⋅3.1415⋅50) = 0.0010108 с Весь остальной остаток периода кондер будет разряжаться. Причем, период в данном случае нужно сократить в два раза, т.к. у нас используется двухполупериодный выпрямитель: tразр = Т — tзар = 0.02/2 — 0.0010108 = 0.008989 с Осталось вычислить емкость: C = ILED ⋅ dt/dU = 0.02 ⋅ 0.008989/(2-1.9) = 0.0018 Ф (или 1800 мкФ) На практике вряд ли кто-то будет ставить такой большой кондер ради одного маленького светодиодика. Хотя, если стоит задача получить пульсации в 10%, то нужно всего 440 мкФ. Повышаем КПД Обратили внимание, насколько большая мощность выделяется на гасящем резисторе? Мощность, которая тратится впустую. Нельзя ли ее как-нибудь уменьшить? Оказывается, еще как можно! Достаточно вместо активного сопротивления (резистора) взять реактивное (конденсатор или дроссель). Дроссель мы, пожалуй, сразу откинем из-за его громоздкости и возможных проблем с ЭДС самоиндукции. А насчет конденсаторов можно подумать. Как известно, конденсатор любой емкости обладает бесконечным сопротивлением для постоянного тока. А вот сопротивление переменному току рассчитывается по этой формуле: Rc = 1 / 2πfC то есть, чем больше емкость C и чем выше частота тока f — тем ниже сопротивление. Прелесть в том, что на реактивном сопротивлении и мощность тоже реактивная, то есть ненастоящая. Она как бы есть, но ее как бы и нет. На самом деле эта мощность не совершает никакой работы, а просто возвращается назад к источнику питания (в розетку). Бытовые счетчики ее не учитывают, поэтому платить за нее не придется. Да, она создает дополнительную нагрузку на сеть, но вас, как конечного потребителя, это вряд ли сильно обеспокоит =) Таким образом, наша схема питания светодиодов от 220В своими руками приобретает следующий вид: Но! Именно в таком виде ее лучше не использовать, так как в этой схеме светодиод уязвим для импульсных помех. Включение или выключение распложенных на одной с вами линии мощной индуктивной нагрузки (двигатель кондиционера, компрессор холодильника, сварочный аппарат и т.п.) приводит к появлению в сети очень коротких выбросов напряжения. Конденсатор С1 представляет для них практически нулевое сопротивление, следовательно мощный импульс направится прямиком к С2 и VD5. К сожалению, электролитические конденсаторы, из-за своей большой паразитной индуктивности, плохо справляются с ВЧ-помехами, поэтому большая часть энергии импульса пойдет через p-n-переход светодиода. Еще один опасный момент возникает в случае включения схемы в момент пучности напряжения в сети (т.е. в тот самый момент, когда напряжение в розетке находится на пике своего значения). Т.к. С1 в этот момент полностью разряжен, то возникает слишком большой бросок тока через светодиод. Все это со временем это приводит к прогрессирующей деградации кристалла и падению яркости свечения. Во избежание таких печальных последствий, схему нужно дополнить небольшим гасящим резистором на 47-100 Ом и мощностью 1 Вт. Кроме того, резистор R1 будет выступать в роли предохранителя на случай пробоя конденсатора С1. Получается, что схема включения светодиода в сеть 220 вольт должна быть такой: И остается еще один маленький нюанс: если выдернуть эту схему из розетки, то на конденсаторе С1 останется какой-то заряд. Остаточное напряжение будет зависеть от того, в какой момент была разорвана цепь питания и в отдельных случаях может превышать 300 вольт. А так как конденсатору некуда разряжаться, кроме как через свое внутреннее сопротивление, то заряд может сохраняться очень долго (сутки и более). И все это время кондер будет ждать вас или вашего ребенка, через которого можно будет как следует разрядиться. Причем, для того, чтобы получить удар током, не нужно лезть в недра схемы, достаточно просто прикоснуться к обоим контактам штепсельной вилки. Чтобы помочь кондеру избавиться от ненужного заряда, подключим параллельно ему любой высокоомный резистор (например, на 1 МОм). Этот резистор не будет оказывать никакого влияния на расчетный режим работы схемы. Он даже греться не будет. Таким образом, законченная схема подключения светодиода к сети 220В (с учетом всех нюансов и доработок) будет выглядеть так: Значение емкости конденсатора C1 для получения нужного тока через светодиод можно сразу взять из Таблицы 2, а можно рассчитать самостоятельно. Расчет гасящего конденсатора для светодиода Не буду приводить утомляющие математические выкладки, дам сразу готовую формулу емкости (в Фарадах): C = I / (2πf√(U 2 вх — U 2 LED)) [Ф], где I — ток через светодиод, f — частота тока (50 Гц), Uвх — действующее значение напряжения сети (220В), ULED — напряжение на светодиоде. Если расчет ведется для небольшого числа последовательно включенных светодиодов, то выражение √(U 2 вх — U 2 LED) приблизительно равно Uвх, следовательно формулу можно упростить: C ≈ 3183 ⋅ ILED / Uвх [мкФ] а, раз уж мы делаем расчеты под Uвх = 220 вольт, то: C ≈ 15 ⋅ ILED [мкФ] Таким образом, при включении светодиода на напряжение 220 В, на каждые 100 мА тока потребуется примерно 1.5 мкФ (1500 нФ) емкости. Кто не в ладах с математикой, заранее посчитанные значения можно взять из таблицы ниже. Таблица 2. Зависимость тока через светодиоды от емкости балластного конденсатора. C1 15 nF 68 nF 100 nF 150 nF 330 nF 680 nF 1000 nF ILED 1 mA 4.5 mA 6.7 mA 10 mA 22 mA 45 mA 67 mA Немного о самих конденсаторах В качестве гасящих рекомендуется применять помехоподавляющие конденсаторы класса Y1, Y2, X1 или X2 на напряжение не менее 250 В. Они имеют прямоугольный корпус с многочисленными обозначениями сертификатов на нем. Выглядят так: Если вкратце, то: X1 – используются в промышленных устройствах, подключаемых к трехфазной сети. Эти конденсаторы гарантированно выдерживают всплеск напряжения в 4 кВ; X2 – самые распространенные. Используются в бытовых приборах с номинальным напряжением сети до 250 В, выдерживают скачек до 2.5 кВ; Y1 – работают при номинальном сетевом напряжении до 250 В и выдерживают импульсное напряжение до 8 кВ; Y2 – довольно-таки распространенный тип, может быть использован при сетевом напряжении до 250 В и выдерживает импульсы в 5 кВ. Допустимо применять отечественные пленочные конденсаторы К73-17 на 400 В (а лучше — на 630 В). Сегодня широкое распространение получили китайские «шоколадки» (CL21), но в виду их крайне низкой надежности, очень рекомендую удержаться от соблазна применять их в своих схемах. Особенно в качестве балластных конденсаторов. Итак, мы рассмотрели, как подключать светодиод к 220В (схемы и их расчет). Все приведенные в данной статье примеры хорошо подходят для одного или нескольких маломощных светодиодов, но совершенно нецелесообразны для мощных светильников, например, ламп или прожекторов — для них лучше использовать полноценные схемы, которые называются драйверами. Источник
  2. Почему так сложно сделать питание светодиодов от 220В своими руками?
  3. Пример расчета балластного резистора
  4. Другие варианты подключения
  5. Как быть с пульсациями?
  6. Какие пульсации считаются допустимыми?
  7. Как уменьшить пульсации?
  8. Расчет емкости сглаживающего конденсатора
  9. Повышаем КПД
  10. Расчет гасящего конденсатора для светодиода
  11. Немного о самих конденсаторах
Читайте также:  Розетка для индукционной варочной панели бош

Как подключить светодиод к осветительной сети

Прочитав этот заголовок, кто-то, возможно, спросит: «А зачем?» Да, если просто воткнуть светодиод в розетку, даже включив его по определенной схеме, практического значения это не имеет, никакой полезной информации не принесет. А вот если тот же светодиод подключить параллельно нагревательному элементу, управляемому от терморегулятора, то можно визуально контролировать работу всего прибора. Иногда такая индикация позволяет избавиться от множества мелких проблем и неприятностей.

В свете того, что уже было сказано о включении светодиодов в предыдущих статьях, задача кажется тривиальной: просто поставил ограничительный резистор нужного номинала, и вопрос решен. Но все это хорошо, если питать светодиод выпрямленным постоянным напряжением: как подключили светодиод в прямом направлении, так он и остался.

При работе на переменном напряжении все не так просто. Дело в том, что на светодиод, кроме прямого напряжения, будет воздействовать еще и напряжение обратной полярности, ведь каждый полупериод синусоида меняет знак на противоположный. Это обратное напряжение не будет засвечивать светодиод, но привести его в негодность может очень быстро. Поэтому приходится принимать меры по защите от этого «вредного» напряжения.

В случае сетевого напряжения расчет гасящего резистора следует вести исходя из величины напряжения 310В. Почему? Здесь все очень просто: 220В это действующее напряжение, амплитудное же значение составит 220*1,41=310В. Амплитудное напряжение в корень из двух (1,41) раз больше действующего, и об этом забывать нельзя. Вот такое прямое и обратное напряжение приложится к светодиоду. Именно из величины 310В и следует рассчитывать сопротивление гасящего резистора, и именно от этого напряжения, только обратной полярности, защищать светодиод.

Как защитить светодиод от обратного напряжения

Почти для всех светодиодов обратное напряжение не превышает 20В, ведь никто не собирался делать на них высоковольтный выпрямитель. Как же избавиться от такой напасти, как защитить светодиод от этого обратного напряжения?

Оказывается, все очень просто. Первый способ – последовательно со светодиодом включить обычный выпрямительный диод с высоким обратным напряжением (не ниже 400В), например, 1N4007 – обратное напряжение 1000В, прямой ток 1А. Именно он не пропустит высокое напряжение отрицательной полярности к светодиоду. Схема такой защиты показана на рис.1а.

Второй способ, не менее эффективный, — просто зашунтировать светодиод другим диодом, включенным встречно – параллельно, рис.1б. При таком способе защитный диод даже не должен быть с высоким обратным напряжением, достаточно любого маломощного диода, например, КД521.

Более того, можно просто включить встречно — параллельно два светодиода: поочередно открываясь, они сами защитят друг друга, да еще и оба будут излучать свет, как показано на рисунке 1в. Это уже получается третий способ защиты. Все три схемы защиты показаны на рисунке 1.

Рисунок 1. Схемы защиты светодиодов от обратного напряжения

Ограничительный резистор на этих схемах имеет сопротивление 24КОм, что при действующем напряжении 220В обеспечивает ток порядка 220/24=9,16мА, можно округлить до 9. Тогда мощность гасящего резистора составит 9*9*24=1944мВт, почти два ватта. Это притом, что ток через светодиод ограничен на уровне 9мА. Но длительное использование резистора на предельной мощности ни к чему хорошему не приведет: сначала он почернеет, а потом совсем сгорит. Чтобы этого не произошло, рекомендуется ставить последовательно два резистора по 12КОм мощностью по 2Вт каждый.

Если задаться уровнем тока в 20мА, то мощность резистора составит еще больше — 20*20*12=4800мВт, без малого 5Вт! Естественно, что печку такой мощности для отопления помещения никто себе позволить не сможет. Это из расчета на один светодиод, а что если будет целая светодиодная гирлянда?

Конденсатор – безваттное сопротивление

Схема, показанная на рисунке 1а, защитным диодом D1 «срезает» отрицательный полупериод переменного напряжения, поэтому и мощность гасящего резистора снижается вдвое. Но, все равно, мощность остается весьма значительной. Поэтому, часто в качестве ограничительного резистора применяют балластный конденсатор: ток он ограничит ничуть не хуже резистора, а вот тепла выделять не будет. Ведь недаром часто конденсатор называют безваттным сопротивлением. Этот способ включения показан на рисунке 2.

Рисунок 2. Схема включения светодиода через баластный конденсатор

Здесь вроде бы все хорошо, даже есть защитный диод VD1. Но не предусмотрены две детали. Во-первых, конденсатор C1 после выключения схемы может остаться в заряженном состоянии и хранить заряд до тех пор, пока кто-нибудь не разрядит его своей рукой. А это, поверьте, обязательно когда-нибудь произойдет. Удар током получается, конечно, не смертельный, но достаточно чувствительный, неожиданный и неприятный.

Поэтому, во избежание такой неприятности, эти гасящие конденсаторы шунтируются резистором с сопротивлением 200…1000КОм. Такая же защита устанавливается и в бестрансформаторных блоках питания с гасящим конденсатором, в оптронных развязках и некоторых других схемах. На рисунке 3 этот резистор обозначен как R1.

Рисунок 3. Схема подключения светодиода к осветительной сети

Кроме резистора R1, на схеме появляется еще резистор R2. Его назначение ограничить бросок тока через конденсатор при подаче напряжения, что помогает защитить не только диоды, но и сам конденсатор. Из практики известно, что при отсутствии такого резистора конденсатор иногда обрывается, емкость его становится намного меньше номинальной. Излишне говорить, что конденсатор должен быть керамический на рабочее напряжение не менее 400В или специальный для работы в цепях переменного тока на напряжение 250В.

На резистор R2 возлагается еще одна немаловажная роль: в случае пробоя конденсатора он срабатывает как предохранитель. Конечно, светодиоды придется тоже заменить, но, по крайней мере, соединительные провода останутся целыми. По сути дела именно так срабатывает плавкий предохранитель в любом импульсном блоке питания, — транзисторы сгорели, а печатная плата осталась почти нетронутой.

На схеме, показанной на рисунке 3, изображен всего один светодиод, хотя на самом деле их можно включить последовательно несколько штук. Защитный диод вполне справится со своей задачей один, но емкость балластного конденсатора придется, хотя бы приблизительно, но все, же рассчитать.

Как рассчитать емкость гасящего конденсатора

Для того, чтобы рассчитать сопротивление гасящего резистора, надо из напряжения питания вычесть падение напряжения на светодиоде. Если соединено последовательно несколько светодиодов, то просто сложить их напряжения, и также вычесть из напряжения питания. Зная этот остаток напряжения и требуемый ток, по закону Ома рассчитать сопротивление резистора очень просто: R=(U-Uд)/I*0,75.

Здесь U – напряжение питания, Uд — падение напряжения на светодиодах (если светодиоды включены последовательно, то Uд есть сумма падений напряжения на всех светодиодах), I – ток через светодиоды, R — сопротивление гасящего резистора. Здесь как всегда, — напряжение в Вольтах, ток в Амперах, результат в Омах, 0,75 — коэффициент для повышения надежности. Эта формула уже приводилась в статье «Об использовании светодиодов».

Величина прямого падения напряжения для светодиодов разных цветов разная. При токе 20мА у красных светодиодов 1,6…2,03В, желтых 2,1…2,2В, зеленых 2,2…3,5В, синих 2,5…3,7В. Самым высоким падением напряжения обладают белые светодиоды, обладающие широким спектром излучения 3,0…3,7В. Нетрудно видеть, что разброс этого параметра достаточно широкий.

Здесь приведены падения напряжения лишь нескольких типов светодиодов, просто по цветам. На самом деле этих цветов намного больше, а точное значение можно узнать лишь в техдокументации на конкретный светодиод. Но зачастую этого и не требуется: чтобы получить приемлемый для практики результат, достаточно подставить в формулу какое-то среднее значение (обычно 2В), конечно, если это не гирлянда из сотни светодиодов.

Для расчета емкости гасящего конденсатора применяется эмпирическая формула C=(4,45*I)/(U-Uд),

где C — емкость конденсатора в микрофарадах, I — ток в миллиамперах, U — амплитудное напряжение сети в вольтах. При использовании цепочки из трех последовательно соединенных белых светодиодов Uд примерно около 12В, U амплитудное напряжение сети 310В, для ограничения тока на уровне 20мА понадобится конденсатор емкостью

C=(4,45*I)/(U-Uд)= C=(4,45*20)/(310-12)= 0,29865мкФ, почти 0,3мкФ.

Ближайшее стандартное значение емкости конденсатора 0,15мкФ, поэтому, для использования в данной схеме придется применить два параллельно соединенных конденсатора. Здесь надо сделать замечание: формула действительна только для частоты переменного напряжения 50Гц. Для других частот результаты будут неверны.

Конденсатор сначала надо проверить

Перед тем, как использовать конденсатор, его необходимо проверить. Для начала просто включить в сеть 220В, лучше через предохранитель 3…5А, и минут через 15 проверить на ощупь, а нет ли заметного нагрева? Если конденсатор холодный, то можно его использовать. В противном случае обязательно взять другой, и тоже предварительно проверить. Ведь все-таки 220В это уже не 12, тут все несколько иначе!

Если эта проверка прошла успешно, конденсатор не нагрелся, то можно проверить, не случилась ли ошибка в расчетах, той ли емкости конденсатор. Для этого надо включить конденсатор как в предыдущем случае в сеть, только через амперметр. Естественно, что амперметр должен быть переменного тока.

Это напоминание о том, что не все современные цифровые мультиметры могут измерять переменный ток: простые дешевые приборы, например, очень популярные у радиолюбителей серии DT838, способны измерять только постоянный ток, что покажет такой амперметр при измерении переменного тока никому не ведомо. Скорей всего это будет цена на дрова или температура на Луне, но только не переменный ток через конденсатор.

Если измеренный ток будет примерно таким, как получилось при расчете по формуле, то можно смело подключать светодиоды. Если же вместо ожидаемых 20…30мА получилось 2…3А, то тут, либо ошибка в расчетах, либо неправильно прочитана маркировка конденсатора.

Выключатели с подсветкой

Здесь можно заострить внимание еще на одном способе включения светодиода в осветительную сеть, используемого в выключателях с подсветкой. Если такой выключатель разобрать, то можно обнаружить, что никаких защитных диодов там нет. Так что же, все что написано чуть выше — бред? Совсем нет, просто надо внимательно приглядеться к разобранному выключателю, точнее к номиналу резистора. Как правило, его номинал не менее 200КОм, может даже несколько больше. При этом, очевидно, что ток через светодиод ограничится на уровне около 1мА. Схема выключателя с подсветкой показана на рисунке 4.

Рисунок 4. Схема подключения светодиода в выключателе с подсветкой

Здесь одним резистором убивают сразу несколько «зайцев». Конечно, ток через светодиод будет мал, светиться он будет слабо, но вполне ярко, чтобы разглядеть это свечение темной ночью в комнате. А ведь днем это свечение вовсе не нужно! Так что пусть себе светится незаметно.

При этом слабым будет и обратный ток, настолько слабым, что никоим образом не сможет спалить светодиод. Отсюда экономия ровно на один защитный диод, о котором было рассказано выше. При выпуске миллионов, а может даже миллиардов, выключателей в год экономия получается немалая.

Казалось бы, что после прочтения статей о светодиодах, все вопросы об их применении ясны и понятны. Но существует еще немало тонкостей и нюансов при включении светодиодов в различные схемы. Например, параллельное и последовательное соединение или, по-другому, хорошие и плохие схемы.

Иногда хочется собрать гирлянду из нескольких десятков светодиодов, но как ее рассчитать? Сколько можно включить последовательно светодиодов, если есть блок питания с напряжением 12 или 24В? Эти и другие вопросы будут рассмотрены в следующей статье, которую так и назовем «Хорошие и плохие схемы включения светодиодов».

Источник

Почему так сложно сделать питание светодиодов от 220В своими руками?

Потому что нужно грамотно решить сразу две задачи:

  1. Ограничить прямой ток через светодиод, чтобы он не сгорел.
  2. Обеспечить защиту светодиода от пробоя обратным током.

Если проигнорировать любой из этих пунктов, светодиод моментально накроется медным тазом.

В самом простейшем случае ограничить ток через светодиод можно резистором и/или конденсатором. А предотвратить пробой от обратного напряжения можно с помощью обычного диода или еще одного светодиода.

Поэтому самая простая схема подключения светодиода к 220В состоит всего из нескольких элементов:

Защитный диод может быть практически любым, т.к. его обратное напряжение никогда не будет превышать прямого напряжения на светодиоде, а ток ограничен резистором.

Сопротивление и мощность ограничительного (балластного) резистора зависит от рабочего тока светодиода и рассчитывается по закону Ома:

А мощность рассеивания резистора рассчитывается так:

P = (Uвх — ULED) 2 / R

где Uвх = 220 В,
ULED — прямое (рабочее) напряжение светодиода. Обычно оно лежит в пределах 1.5-3.5 В. Для одного-двух светодиодов им можно пренебречь и, соответственно, упростить формулу до R=Uвх/I,
I — ток светодиода. Для обычных индикаторных светодиодов ток будет 5-20 мА.

Пример расчета балластного резистора

Допустим, нам нужно получить средний ток через светодиод = 20 мА, следовательно, резистор должен быть:

R = 220В/0.020А = 11000 Ом (берем два резистора: 10 + 1 кОм)

P = (220В) 2 /11000 = 4.4 Вт (берём с запасом: 5 Вт)

Необходимое сопротивление резистора можно взять из таблицы ниже.

Таблица 1. Зависимость тока светодиода от сопротивления балластного резистора.

Сопротивление резистора, кОм Амплитудное значение тока через светодиод, мА Средний ток светодиода, мА Средний ток резистора, мА Мощность резистора, Вт
43 7.2 2.5 5 1.1
24 13 4.5 9 2
22 14 5 10 2.2
12 26 9 18 4
10 31 11 22 4.8
7.5 41 15 29 6.5
4.3 72 25 51 11.3
2.2 141 50 100 22

Другие варианты подключения

В предыдущих схемах защитный диод был включен встречно-параллельно, однако его можно разместить и так:

Это вторая схема включения светодиодов на 220 вольт без драйвера. В этой схеме ток через резистор будет в 2 раза меньше, чем в первом варианте. А, следовательно, на нем будет выделяться в 4 раза меньше мощности. Это несомненный плюс.

Но есть и минус: к защитному диоду прикладывается полное (амплитудное) напряжение сети, поэтому любой диод здесь не прокатит. Придется подобрать что-нибудь с обратным напряжением 400 В и выше. Но в наши дни это вообще не проблема. Отлично подойдет, например, вездесущий диод на 1000 вольт — 1N4007 (КД258).

Не смотря на распространенное заблуждение, в отрицательные полупериоды сетевого напряжения, светодиод все-таки будет находиться в состоянии электрического пробоя. Но благодаря тому, что сопротивление обратносмещенного p-n-перехода защитного диода очень велико, ток пробоя будет недостаточен для вывода светодиода из строя.

Для уменьшения величины тока прикосновения нужно располовинить резистор на две части, чтобы получилось как показано на картинках:

Благодаря такому решению, даже поменяв местами фазу и ноль, ток через человека на «землю» (при случайном прикосновении) никак не сможет превысить 220/12000=0.018А. А это уже не так опасно.

Как быть с пульсациями?

В обеих схемах светодиод будет светиться только в положительный полупериод сетевого напряжения. То есть он будет мерцать с частой 50 Гц или 50 раз в секунду, причём размах пульсаций будет равен 100% (10 мс горит, 10 мс не горит и так далее). Это будет заметно глазу.

К тому же, при подсветке мерцающими светодиодами каких-либо движущихся объектов, например, лопастей вентилятора, колес велосипеда и т.п., неизбежно будет возникать стробоскопический эффект. В некоторых случаях данный эффект может быть неприемлем или даже опасен. Например, при работе за станком может показаться, что фреза неподвижна, а на самом деле она вращается с бешенной скоростью и только и ждет, чтобы вы сунули туда пальцы.

Чтобы сделать пульсации менее заметными, можно удвоить частоту включения светодиода с помощью двухполупериодного выпрямителя (диодного моста):

Обратите внимание, что по сравнению со схемой #2 при том же самом сопротивлении резисторов, мы получили в два раза больший средний ток. И, соответственно, в четыре раза большую мощность рассеивания резисторов.

К диодному мосту при этом не предъявляется каких-либо особых требований, главное, чтобы диоды, из которых он состоит, выдерживали половину рабочего тока светодиода. Обратное напряжение на каждом из диодов будет совсем ничтожным.

Еще, как вариант, можно организовать встречно-параллельное включение двух светодиодов. Тогда один из них будет гореть во время положительной полуволны, а второй — во время отрицательной.

Фишка в том, что при таком включении максимальное обратное напряжение на каждом из светодиодов будет равно прямому напряжению другого светодиода (несколько вольт максимум), поэтому каждый из светодиодов будет надежно защищен от пробоя.

Светодиоды следует разместить как можно ближе друг к другу. В идеале — попытаться найти сдвоенный светодиод, где оба кристалла размещены в одном корпусе и у каждого свои выводы (хотя я таких ни разу не видел).

Вообще говоря, для светодиодов, выполняющих индикаторную функцию, величина пульсаций не очень-то и важна. Для них самое главное — это максимально заметная разница между включенным и выключенным состоянием (индикация вкл/выкл, воспроизведение/запись, заряд/разряд, норма/авария и т.п.)

А вот при создании светильников, всегда нужно стараться свести пульсации к минимуму. И не столько из-за опасностей стробоскопического эффекта, сколько из-за их вредного влияния на организм.

Какие пульсации считаются допустимыми?

Все зависит от частоты: чем она ниже, тем заметнее пульсации. На частотах выше 300 Гц пульсации становятся совершенно невидимыми и вообще никак не нормируются, то есть даже 100%-ные считаются нормой.

Не смотря на то, что пульсации освещенности на частотах 60-80 Гц и выше визуально не воспринимаются, тем не менее, они способны вызывать повышенную усталость глаз, общую утомляемость, тревожность, снижение производительности зрительной работы и даже головные боли.

Для предотвращения вышеперечисленных последствий, международный стандарт IEEE 1789-2015 рекомендует максимальный уровень пульсаций яркости для частоты 100 Гц — 8% (гарантированно безопасный уровень — 3%). Для частоты 50 Гц — это будут 1.25% и 0.5% соответственно. Но это для перфекционистов.

На самом деле, для того, чтобы пульсации яркости светодиода перестали хоть как-то досаждать, достаточно, чтобы они не превышали 15-20%. Именно таков уровень мерцания ламп накаливания средней мощности, а ведь на них никто и никогда не жаловался. Да и наш российский СНиП 23-05-95 допускает мерцание света в 20% (и только для особо кропотливых и ответственных работ требование повышено до 10%).

В соответствии с ГОСТ 33393-2015 «Здания и сооружения. Методы измерения коэффициента пульсации освещенности» для оценки величины пульсаций вводится специальный показатель — коэффициент пульсаций (Кп).

Коэфф. пульсаций в общем рассчитывается по сложной формуле с применением интегральной функции, но для гармонических колебаний формула упрощается до следующей:

где Емах — максимальное значение освещенности (амплитудное), а Емин — минимальное.

Мы будем использовать эту формулу для расчета емкости сглаживающего конденсатора.

Очень точно определить пульсации любого источника света можно при помощи солнечной панели и осциллографа:

Как уменьшить пульсации?

Посмотрим, как включить светодиод в сеть 220 вольт, чтобы снизить пульсации. Для этого проще всего подпаять параллельно светодиоду накопительный (сглаживающий) конденсатор:

Из-за нелинейного сопротивления светодиодов, расчет емкости этого конденсатора является довольно нетривиальной задачей.

Однако, эту задачу можно упростить, если сделать несколько допущений. Во-первых, представить светодиод в виде эквивалентного постоянного резистора:

А во-вторых, сделать вид, что яркость светодиода (а, следовательно, и освещенность) имеет линейную зависимость от тока.

Давайте попробуем приблизительно рассчитать емкость конденсатора на конкретном примере.

Расчет емкости сглаживающего конденсатора

Допустим, мы хотим получить коэфф. пульсаций 2.5% при токе через светодиод 20 мА. И пусть в нашем распоряжении оказался светодиод, на котором при токе в 20 мА падает 2 В. Частота сети, как обычно, 50 Гц.

Так как мы решили, что яркость линейно зависит от тока через светодиод, а сам светодиод мы представили в виде простого резистора, то освещенность в формуле расчета коэффициента пульсаций можем спокойно заменить на напряжение на конденсаторе:

Подставляем исходные данные и вычисляем Umin:

2.5% = (2В — Umin) / (2В + Umin) 100% => Umin = 1.9В

Период колебаний напряжения в сети равен 0.02 с (1/50).

Таким образом, осциллограмма напряжения на конденсаторе (а значит и на нашем упрощенном светодиоде) будет выглядеть примерно вот так:

Вспоминаем тригонометрию и считаем время заряда конденсатора (для простоты не будем учитывать сопротивление балластного резистора):

tзар = arccos(Umin/Umax) / 2πf = arccos(1.9/2) / (23.141550) = 0.0010108 с

Весь остальной остаток периода кондер будет разряжаться. Причем, период в данном случае нужно сократить в два раза, т.к. у нас используется двухполупериодный выпрямитель:

tразр = Т — tзар = 0.02/2 — 0.0010108 = 0.008989 с

Осталось вычислить емкость:

C = ILED dt/dU = 0.02 0.008989/(2-1.9) = 0.0018 Ф (или 1800 мкФ)

На практике вряд ли кто-то будет ставить такой большой кондер ради одного маленького светодиодика. Хотя, если стоит задача получить пульсации в 10%, то нужно всего 440 мкФ.

Повышаем КПД

Обратили внимание, насколько большая мощность выделяется на гасящем резисторе? Мощность, которая тратится впустую. Нельзя ли ее как-нибудь уменьшить?

Оказывается, еще как можно! Достаточно вместо активного сопротивления (резистора) взять реактивное (конденсатор или дроссель).

Дроссель мы, пожалуй, сразу откинем из-за его громоздкости и возможных проблем с ЭДС самоиндукции. А насчет конденсаторов можно подумать.

Как известно, конденсатор любой емкости обладает бесконечным сопротивлением для постоянного тока. А вот сопротивление переменному току рассчитывается по этой формуле:

Rc = 1 / 2πfC

то есть, чем больше емкость C и чем выше частота тока f — тем ниже сопротивление.

Прелесть в том, что на реактивном сопротивлении и мощность тоже реактивная, то есть ненастоящая. Она как бы есть, но ее как бы и нет. На самом деле эта мощность не совершает никакой работы, а просто возвращается назад к источнику питания (в розетку). Бытовые счетчики ее не учитывают, поэтому платить за нее не придется. Да, она создает дополнительную нагрузку на сеть, но вас, как конечного потребителя, это вряд ли сильно обеспокоит =)

Таким образом, наша схема питания светодиодов от 220В своими руками приобретает следующий вид:

Но! Именно в таком виде ее лучше не использовать, так как в этой схеме светодиод уязвим для импульсных помех.

Включение или выключение распложенных на одной с вами линии мощной индуктивной нагрузки (двигатель кондиционера, компрессор холодильника, сварочный аппарат и т.п.) приводит к появлению в сети очень коротких выбросов напряжения. Конденсатор С1 представляет для них практически нулевое сопротивление, следовательно мощный импульс направится прямиком к С2 и VD5.

К сожалению, электролитические конденсаторы, из-за своей большой паразитной индуктивности, плохо справляются с ВЧ-помехами, поэтому большая часть энергии импульса пойдет через p-n-переход светодиода.

Еще один опасный момент возникает в случае включения схемы в момент пучности напряжения в сети (т.е. в тот самый момент, когда напряжение в розетке находится на пике своего значения). Т.к. С1 в этот момент полностью разряжен, то возникает слишком большой бросок тока через светодиод.

Все это со временем это приводит к прогрессирующей деградации кристалла и падению яркости свечения.

Во избежание таких печальных последствий, схему нужно дополнить небольшим гасящим резистором на 47-100 Ом и мощностью 1 Вт. Кроме того, резистор R1 будет выступать в роли предохранителя на случай пробоя конденсатора С1.

Получается, что схема включения светодиода в сеть 220 вольт должна быть такой:

И остается еще один маленький нюанс: если выдернуть эту схему из розетки, то на конденсаторе С1 останется какой-то заряд. Остаточное напряжение будет зависеть от того, в какой момент была разорвана цепь питания и в отдельных случаях может превышать 300 вольт.

А так как конденсатору некуда разряжаться, кроме как через свое внутреннее сопротивление, то заряд может сохраняться очень долго (сутки и более). И все это время кондер будет ждать вас или вашего ребенка, через которого можно будет как следует разрядиться. Причем, для того, чтобы получить удар током, не нужно лезть в недра схемы, достаточно просто прикоснуться к обоим контактам штепсельной вилки.

Чтобы помочь кондеру избавиться от ненужного заряда, подключим параллельно ему любой высокоомный резистор (например, на 1 МОм). Этот резистор не будет оказывать никакого влияния на расчетный режим работы схемы. Он даже греться не будет.

Таким образом, законченная схема подключения светодиода к сети 220В (с учетом всех нюансов и доработок) будет выглядеть так:

Значение емкости конденсатора C1 для получения нужного тока через светодиод можно сразу взять из Таблицы 2, а можно рассчитать самостоятельно.

Расчет гасящего конденсатора для светодиода

Не буду приводить утомляющие математические выкладки, дам сразу готовую формулу емкости (в Фарадах):

C = I / (2πf√(U 2 вх — U 2 LED)) [Ф],

где I — ток через светодиод, f — частота тока (50 Гц), Uвх — действующее значение напряжения сети (220В), ULED — напряжение на светодиоде.

Если расчет ведется для небольшого числа последовательно включенных светодиодов, то выражение √(U 2 вх — U 2 LED) приблизительно равно Uвх, следовательно формулу можно упростить:

C ≈ 3183 ⋅ ILED / Uвх [мкФ]

а, раз уж мы делаем расчеты под Uвх = 220 вольт, то:

C ≈ 15 ⋅ ILED [мкФ]

Таким образом, при включении светодиода на напряжение 220 В, на каждые 100 мА тока потребуется примерно 1.5 мкФ (1500 нФ) емкости.

Кто не в ладах с математикой, заранее посчитанные значения можно взять из таблицы ниже.

Таблица 2. Зависимость тока через светодиоды от емкости балластного конденсатора.

C1 15 nF 68 nF 100 nF 150 nF 330 nF 680 nF 1000 nF
ILED 1 mA 4.5 mA 6.7 mA 10 mA 22 mA 45 mA 67 mA

Немного о самих конденсаторах

В качестве гасящих рекомендуется применять помехоподавляющие конденсаторы класса Y1, Y2, X1 или X2 на напряжение не менее 250 В. Они имеют прямоугольный корпус с многочисленными обозначениями сертификатов на нем. Выглядят так:

Если вкратце, то:

  • X1 – используются в промышленных устройствах, подключаемых к трехфазной сети. Эти конденсаторы гарантированно выдерживают всплеск напряжения в 4 кВ;
  • X2 – самые распространенные. Используются в бытовых приборах с номинальным напряжением сети до 250 В, выдерживают скачек до 2.5 кВ;
  • Y1 – работают при номинальном сетевом напряжении до 250 В и выдерживают импульсное напряжение до 8 кВ;
  • Y2 – довольно-таки распространенный тип, может быть использован при сетевом напряжении до 250 В и выдерживает импульсы в 5 кВ.

Допустимо применять отечественные пленочные конденсаторы К73-17 на 400 В (а лучше — на 630 В).

Сегодня широкое распространение получили китайские «шоколадки» (CL21), но в виду их крайне низкой надежности, очень рекомендую удержаться от соблазна применять их в своих схемах. Особенно в качестве балластных конденсаторов.

Итак, мы рассмотрели, как подключать светодиод к 220В (схемы и их расчет). Все приведенные в данной статье примеры хорошо подходят для одного или нескольких маломощных светодиодов, но совершенно нецелесообразны для мощных светильников, например, ламп или прожекторов — для них лучше использовать полноценные схемы, которые называются драйверами.

Источник