Как передать оптоволоконный кабель

Принцип преобразования и передачи информации по оптоволокну

Современные линии связи, предназначенные для передачи информации на большие расстояния, часто представляют собой именно волоконно-оптические линии, в силу достаточно высокой эффективности данной технологии, которую она на протяжении многих лет успешно демонстрирует, например — в качестве средства обеспечения широкополосного доступа в Интернет.

Само волокно состоит из стеклянной сердцевины, окруженной оболочкой с меньшим чем у сердцевины показателем преломления. Световой луч, отвечающий за передачу информации по линии, распространяется по сердцевине волокна, отражается на своем пути от оболочки, и таким образом не выходит за пределы передающей линии.

Источником света для формирования луча обычно служит диодный или полупроводниковый лазер, тогда как само волокно, в зависимости от диаметра сердцевины и распределения показателя преломления, может быть одномодовым или многомодовым.

Оптическое волокно в линиях связи превосходит электронные средства связи, позволяя с высокой скоростью и без потерь транслировать цифровые данные на огромные расстояния.

Принципиально оптоволоконные линии могут образовывать самостоятельную сеть, либо служить для объединения уже существующих сетей — участков магистралей оптических волокон, объединенных физически на уровне световода, либо логически — на уровне протоколов передачи данных.

Читайте также:  Провод или кабель пугв

Скорость передачи данных по ВОЛС может измеряться сотнями гигабит в секунду, как например стандарт 10 Гбит Ethernet, используемый на протяжении многих лет в современных телекоммуникационных структурах.

Годом изобретения оптоволокна считается 1970-й, когда Питер Шульц, Дональд Кек и Роберт Маурер — ученые из компании Corning — изобрели оптическое волокно с низким уровнем потерь, открывшее возможность дублировать проводную передающую систему телефонного сигнала без использования ретрансляторов. Разработчики создали проводник, позволяющий сохранить 1% мощности оптического сигнала на расстоянии 1 километра от источника.

Для технологии это был переломный момент. Изначально линии были рассчитаны на одновременную передачу сотен световых фаз, позже было разработано однофазное волокно большей производительности, способное сохранять сигнал целостным на большем расстоянии. Однофазное волокно с нулевым смещением длины волны, с 1983 года и по сей день, является наиболее востребованным типом оптоволокна.

Для передачи данных через оптоволокно, сигнал должен быть сначала преобразован из электрического вида в оптический, затем передан по линии, а после — преобразован в приемнике обратно в электрический. Все устройство называется приемопередатчиком, и включает в себя не только оптические, но и электронные компоненты.

Итак, первый элемент волоконно-оптической линии — оптический передатчик. Он преобразует последовательность данных, подаваемых в электрической форме — в оптический поток. В передатчик входят: параллельно-последовательный преобразователь с синтезатором синхроимпульсов, драйвер и источник оптического сигнала.

Источником оптического сигнала может выступать лазерный диод или светодиод. В системах телесвязи обычные светодиоды не используются. Ток смещения и модулирующий ток для прямого модулирования лазерного диода подается с лазерного формирователя. Далее уже свет подается через оптический соединитель — в волокно оптического кабеля.

На другой стороне линии сигнал и синхросигнал обнаруживаются оптическим приемником (прежде всего — фотодиодным датчиком), где они преобразуются в электрический сигнал, который усиливается, а затем восстанавливается форма переданного сигнала. В частности, поток последовательных данных может быть преобразован в параллельный.

За преобразование асимметричного тока с фотодиодного датчика в напряжение, за его последующее усиление и преобразование в дифференциальный сигнал, — отвечает предусилитель. Микросхема синхронизации и восстановления данных восстанавливает синхросигналы и их тактирование из принимаемого потока данных.

Мультиплексор с разделением времени позволяет достичь скорости передачи данных до 10 Гб/сек. Так, сегодня существуют следующие стандарты скорости передачи данных по оптоволоконным системам:

Еще больше повысить плотность передачи данных позволяют спектральное уплотнение и мультиплексное разделение длины волны, когда несколько мультиплексных потоков данных посылаются по одному каналу, но каждый поток на своей длине волны.

Одномодовое волокно отличается достаточно малым внешним диаметром сердечника — около 8 мкм. Такое волокно позволяет распространять через себя один единственный луч конкретной частоты, соответствующей характеристикам данного волокна. Когда луч идет один, исчезает проблема межмодовой дисперсии, в результате повышается производительность линии.

Плотность распределения материала может быть градиентной или ступенчатой. Градиентное распределение позволяет добиться более высокой производительности. Одномодовая технология тоньше и дороже многомодовой, но именно одномодовая технология применяется в настоящее время в телекоммуникациях.

Многомодовое волокно позволяет одновременно распространять несколько лучей, вводимых в него для передачи под разными углами. Диаметр сердцевины обычно составляет 50 или 62,5 мкм, так что ввод оптического излучения облегчается. Стоимость приемо-передатчиков ниже чем для одномодовых.

Именно многомодовое оптоволокно хорошо подходит для небольших домашних и локальных сетей. Явление межмодовой дисперсии считается главным недостатком многомодового оптоволокна, так что для снижения этого вредного явления специально были разработаны волокна с градиентным показателем преломления, чтобы лучи распространялись по параболическим траекториям, и разность их оптических путей была меньше. Так или иначе, пропускная способность у одномодовой технологии все равно остается выше.

Источник

Принцип передачи света по оптоволокну

1.1 Оптическая связь

Принцип системы оптической связи заключается в передаче сигнала через оптоволокно к удаленному приёмнику. Электрический сигнал преобразуется в оптический и в таком виде передаётся на расстояние. В приёмном устройстве он обратно переходит в исходную электрическую форму. У волоконно-оптической связи есть множество преимуществ перед другими типами передачи информации, такими как медные жилы и системы радиосвязи.

• Сигнал может быть передан без регенерации на большое расстояние (200 км).

• Оптоволоконная передача не чувствительна к электромагнитным помехам. Кроме того, волокно не проводит электричество и фактически нечувствительно к радиочастотной интерференции.

• Оптические системы обеспечивают большее количество каналов чем физические цепи.

• Оптический кабель намного легче и тоньше чем кабель с металлическими жилами и волокна занимают в нём небольшой объём. Например, один оптоволоконный кабель может содержать 144 волокна.

• Оптическое волокно очень надёжно.

• У оптического волокна срок эксплуатации больше 25-и лет (по сравнению с 10 годами систем спутниковой связи).

• Рабочие температуры для оптического волокна изменяются, но они обычно они лежат в диапазоне от -40° до +80°C

Группа факторов ухудшают пропускание света в оптической системе связи:

1. Затухание: Поскольку световой сигнал перемещается через волокно, он теряет мощность из-за поглощения, рассеивания, и других потерь. С некоторым расстоянием мощность сигнала может уменьшиться до уровня собственных шумов приёмника.

2. Пропускная способность: Оптоволокно имеет ограниченный частотную полосу пропускания и если световой сигнал использует несколько частот, то это явление уменьшает информационную пропускную способность.

3. Дисперсия: Импульсы света распространяющиеся в волокне расширяются и тем ограничивают информационную пропускную способность на высоких скоростях передачи или укорачивается её расстояние.

1.2 Строение оптоволокна

Оптический волновод это тонкая стеклянная нить, окруженная пластиковым защитным покрытием. Нить оптоволокна состоит из двух частей: внутренняя сердцевина и наружная оболочка. Свет, введенный в стеклянную сердцевину проходит в ней многократно отражаясь от её границы с оболочкой.


Строение оптического волокна

1.3 Принципы передачи

Луч света вводится в волокно под малым углом α. Возможность оптоволокна принять свет в сердцевину (максимальное приемлемое значение угла) определяется его числовой апертурой (NA)

Где α0 — максимальный угол ввода (то есть, предельный угол между осью и углом полного отражения сердцевины), n1 показатель преломления сердцевины и n2; показатель преломления оболочки.
Ввод света в оптоволокно

Полный приемный конус оптического волокна определяется как 2α0

1.3.1 Распространение света в оптоволокне

Распространение луча света в оптическом волокне происходит по закону Снелла-Декарта. Часть света вводится через полный приемный конус оптоволокна.

1.3.1.1 Преломление

Явление преломления выражается в изменении угла прохождения луча света через границу двух сред. Если α > α0, то луч полностью преломляется и выходит из сердцевины.


Преломление света

1.3.1.2 Отражение

Отражение является изменением направления светового луча на границе между двумя средами. В этом случае, световой луч возвращается в сердцевину, из которой он произошел.

1.3.2 Скорость

Скорость с которой свет перемещается через среду передачи определяется показателем преломления этой среды. Показатель преломления среды (n) является коэффициентом отношения скорости света в вакууме к скорости света в этой среде.

Где n является показателем преломления среды передачи, с скорость света в вакууме (2.99792458 · 10 8 м\с), и v скорость света в среде передачи.

Типичные значения n для стекла используемого в качестве оптоволокна лежит между 1.45 и 1.55. Как правило, чем выше показатель преломления, тем меньше скорость в среде передачи.


Сравнение скорости прохождения света через различные среды

Значения типичного показателя преломления разных производителей и различных типов оптоволокна:

• Corning® LEAF®
n = 1.468 в 1550 нм
n = 1.469 в 1625 нм

• OFS TrueWave® REACH
n = 1.471 в 1310 нм
n = 1.470 в 1550 нм

1.3.3 Пропускная способность

Пропускная способность зависит от ширины частотного диапазона, на котором способно работать оптическое волокно. Пропускную способность волокна определяет максимальная информационная емкость канала, который может быть передан вдоль волокна по данному расстоянию. Пропускная способность вырается в МГц o км. В многомодовом оптоволокне пропускная способность, главным образом, ограниченна модовой дисперсией; тогда как такое ограничение отсутствует для одномодовых волокон.


Пропускная способность оптической линии в зависимости от типа волокна

Неофициальный перевод книги Reference Guide to Fiber Optic Testing. Second edition. 2011 J. Laferriere, G. Lietaert, R. Taws, S. Wolszczak. Англоязычный вариант книги доступен в сети Интернет и состоит из трёх частей: две части — основной материал и третья часть — глоссарий. На данный момент книга переведена не вся и материал будет дополняться в процессе. Заранее извиняюсь за ошибки перевода. Со страниц сайта доступны главы:

Источник

Оптический выход на телевизоре: что это

История возникновения системы

Ещё недавно оптоволоконный кабель не воспринимался как инструмент для качественной передачи звука. Известно, что на быструю передачу данных возможен только свет. Впервые оптические технологии были применены в фотофоне, разработанным Александром Беллом.

Оптическая телефонная связь доказала возможность передачи сигнала по воздуху, но сама идея изобретателя не прижилась. Наработки физика стали использоваться для общения между судами, но не более.

Широкое использование оптоволоконных технологий началось лишь в середине 20 века, а серьёзный прорыв, позволивший принести диджитал аудио аут в массы, случился в 1980 году с изобретением стекловолоконного провода, который был способен передавать световой сигнал.

Несмотря на то, что оптический вход отпраздновал 40-летие, он до сих пор считается лучшим по качеству передачи аналогового звука, с которым не могут сравниться «тюльпан», HDMI-кабель, появившиеся значительно позже.

Основный принцип работы


Оптический кабель, подключаемый в digital audio out, состоит из оболочки и сердцевины

Принятые стандарты для тв-входа, одинаковые для Samsung, LG, других производителей, заключаются в нескольких этапах транспортировки информации:

  • генерация светового сигнала из электрического;
  • его ретрансляция с выхода на вход без потери силы, искажений;
  • приём входящим устройством сигнала;
  • обратная трансформация сигнала в электрический.

Оптический кабель, подключаемый в digital audio out, состоит из оболочки и сердцевины. Внимание при производстве отводится сложности соединения коннекторов, при помощи которых можно подключить два устройства между собой.

Нарушение технологии существенно портит качество передаваемого звука, делая использование оптических соединений бесполезным. Именно поэтому, меломаны приобретают кабеля промышленной нарезки определённой длины.

Преимущества оптического выхода

Главное преимущество оптоволоконных линий пересылки аудиосигнала – это практически полное отсутствие искажения звука от электромагнитных полей, которые с избытком присутствуют в среде обитания человека. Здесь кабели с металлическими жилами-проводниками могут заметно проигрывать оптоволоконным системам в качественной передаче аудиосигнала. В результате акустическая система будет воспроизводить звук с искажением.

Кроме того, при использовании оптического канала передачи достигается полная гальваническая развязка между передающим и приемным устройствами. Это также положительно влияет на качество передачи аудиосигнала. Паразитные наводки по плохим шинам «земли» (Ground) – бич звуковой аппаратуры. Сами оптические системы не создают электромагнитные помехи.

Типы оптоволоконного кабеля

Для пересылки аудиосигнала по оптическому каналу звук вначале преобразуют в цифровую форму, затем с помощью светодиода или твердотельного лазера отправляют по оптическому аудио кабелю получателю сигнала – фотоприемнику.

Оптоволоконные проводники делятся на два основных вида:

В мультимодовых световые потоки могут иметь разброс в длинах волн и траекториях, что на больших длинах проводников может приводить к искажениям сигнала. Светоизлучателями в таких каналах передачи звука являются светодиоды, недорогие и долговечные полупроводниковые приборы. Длина соединителей не превышает 5 метров. Диаметр центрального светопроводящего волокна – 62,5 мкм. Внешняя оболочка световода имеет размер 125 мкм.

К сведению. Основное достоинство мультимодового кабеля – относительная дешевизна, поэтому он получил широкое распространение.

В мономодовом проводнике лучи света движутся прямолинейно, затухание и искажение сигнала минимально. Диаметр светового волокна равен 1,3 мкм, длина волны сигнала – тоже 1,3 мкм. Такой соединитель может иметь большую длину, чем мультимодовый. Источником света в этом случае является полупроводниковый лазер, излучающий сигналы с жестко регламентированной длиной волны. Однако лазер – устройство более дорогое и менее долговечное, чем светодиод. В результате система становится более дорогой, чем мультимодовая, хотя и имеет лучшие параметры, в частности, длина проводника может составлять десятки метров.

Типовая конструкция оптоволоконного кабеля

Оптическое волокно может быть изготовлено из:

Полимерное волокно, как правило, более стойкое к механическим воздействиям, более дешевое. Однако со временем может терять прозрачность, что отрицательно сказывается на долговечности изделия.

Стеклянные световоды имеют лучшие оптические характеристики, но более дороги и хрупки.

Сравнение с HDMI

Современные производители предоставляют широкий выбор при подключении звуковых устройств через домашний кинотеатр. В результате можно получить потрясающий результат.
Самым популярным методом на данный момент – соединение через HDMI кабель. Так можно передавать не только аудио, но и видеосигнал передается в высоком разрешении.

Когда на рынке появилось оборудование с таким интерфейсом, оптоволокно и его аудиовыход ушло на второй план, поскольку провод может передавать только аудиосигнал, и необходима отдельная коммутация для видеоизображения.

Но, несмотря на то, что стандарт соединения используется уже 30 лет, он актуален и по сей день. Оптический провод по-прежнему используют для коммутации до 7,1 каналов высокого разрешения аудио.

Провод применяют из-за использования привычных ресиверов, обладающих высоким качеством и оптическим входом на порту. Если человек любит хорошее звучание на телевизоре, ему не имеет смысла заменять эти устройства на новые. Стоит отметить, что в большинстве плееров или HDTV а также игровых консолях, всё ещё используют оптический порт.

При включении радиооборудования или телевизора, могут возникнуть помехи из-за плохого заземления или полного его отсутствия. В таких ситуациях начинается гул в акустической системе.

Нужно изолировать аппаратуру с помощью оптического провода. С этой задачей не может справиться привычный многим HDMI. Акустика с оптическим входом надежнее. Раньше таким способом подключали аппаратуру к музыкальному центру через оптический кабель.

Благодаря своим уникальным параметрам, качество звука между оптопроводом и HDMI очень хорошее.

Поэтому старый кабель для телевизора не потерял своей значимости и в современные дни. Можно легко подключать домашний кинотеатр к телевизору модели 2018 года. Качество изображения и звука будет очень высоким.

Итак, какой же тип подключения выбрать?

Ответ зависит от имеющейся у вас системы. Если необходимо сделать выбор строго между коаксиальным и оптическим подключениями, выбирайте первый вариант. По нашему опыту, коаксиальное подключение за счет большей детальности и повышенной динамики обычно обеспечивает более высокое качество звучания, чем оптическое.

Однако мы живем в эпоху, ориентированную на максимальное удобство. HDMI сегодня стал стандартом для любых аудио- и видеоустройств, и кажется разумным использовать именно его, если все компоненты системы им располагают.

Функциональность HDMI, пригодность к обновлению и возможность одновременной передачи аудио- и видеосигналов дают счастливую возможность забыть о нагромождениях кабелей вокруг устройств. А главное – при этом не придется жертвовать качеством.

Оптическое цифровое подключение

При оптическом цифровом подключении данные передаются по оптоволоконному кабелю (волокна которого могут быть изготовлены из пластмассы, стекла или кварца) посредством света. В таком случае шум из источника на контур ЦАП не переносится, как это может произойти с коаксиальным, поэтому его разумно использовать при подключении устройства напрямую к ЦАП саундбара или AV-ресивера.

Традиционно в системах ДК оптические кабели используются для передачи сжатого многоканального звука в форматах Dolby Digital и DTS. Те, что с разъемом Toslink (Toshiba Link), подключаются к соответствующим портам источника и AV-ресивера. Неплохим начальным вариантом будет кабель QED Performance Graphite Optical.

Многие производители перешли на HDMI в качестве основного типа разъемов, однако оптические выходы все еще регулярно встречаются у таких устройств, как игровые консоли, Blu-ray-проигрыватели, ТВ-приставки и телевизоры. Соответствующие входы можно обнаружить на стороне усилителя или ЦАП – например, в саундбарах или AV-ресиверах.

Как и в случае с коаксиальным подключением, одной из проблем оптического оказывается недостаток пропускной способности для передачи аудиоформатов без потерь – например, Dolby TrueHD или DTS-HD Master Audio, в которых записаны большинство саундтреков на Blu-ray-дисках. Кроме того, оптическое подключение не способно передавать сигналы более двух каналов несжатого потока в PCM. И, наконец, оптический кабель можно повредить, если слишком сильно согнуть его.

Как выглядит оптический выход на телевизоре

На телевизоре есть большое количество разъемов. Один из них – для передачи сигнала оптического. Этот порт легко узнать благодаря трапецевидной заглушки, которая подписана Optical Audio, Digital Audio Out, или Toslink.

При включении устройства, заработает индикатор с красным свечением вокруг порта чтобы пользователи знали, как подключить устройство. Поэтому подключение оптического кабеля телевизору – дело простое.

Параметры оптического кабеля для качественного соединения

Чтобы подключить к устройству оптический провод, при этом сохранив высокие показатели звука, нужно руководствоваться следующими правилами:

  1. Длина провод не должна превышать 10 метров. Самый оптимальный вариант – 5 метров. В таком случае качество передачи сигнала останется неизменным. Также некоторые производители выпускают тридцатиметровые кабели, которые передают сигнал без перебоя. Но качество будет зависеть от принимающего устройства.
  2. Чем толще кабель, тем дольше он прослужит.
  3. Самые качественные варианты дополнительно оснащают оболочкой, изготовленной из нейлоновой ткани.
  4. Важно обращать внимание на тип сердечника. Подходящие варианты – кремнеземные или стеклянные. Они значительно превышают пластиковые по качеству.
  5. Пропускная способность должна быть высокой. Хороший кабель имеет от 9 до 11 МГц. Такой показатель нужно выбирать, если дома установлена многоканальная звуковая система, со значительной частотой дискретизации.

Как подключить кабель

Само подключение акустики к телевизору, другой техники через оптический вход не должно вызвать сложностей, но существует ряд моментов.

Прямое подключение через разъем

Коммуникационный оптический порт, как правило, закрыт защитной крышкой, которая исключает попадание пыли. Достаточно слегка нажать на неё коннектором, и она откроется, осуществив подключение. Если сигнал не пошёл, стоит проверить в настройках активные аудиовыходы, а также уровень громкости на подключённых устройствах.

Подключение через приставку или конвертер

Часто система домашнего кинотеатра собиралась поэтапно, в разные годы. Встречаются ситуации, когда у ресивера нет оптического входа.

В таком случае, чтобы добиться идеального звучания, используя оптоволокно, потребуется покупка специальной приставки, позволяющей осуществить подключение через оптику.

В такой приставке присутствует два разъёма для оптического и коаксиального кабеля. Для подключения системы следует:

  • вставить оптоволокно в выход телевизора, другого устройства;
  • соединить кабель с разъёмом на приставке;
  • через коаксиальный вход подключить аудиосистему.

Это простейший вариант преобразования аудиосигнала.

Продвинутым считается использование активного конвертера, превращающего цифровой сигнал формата 5.1 в аналоговый. Такой переходник обеспечивает ряд дополнительных опций, например, подключение других типов кабелей, наушников, игровой консоли.

Источник