Кабели для системы заземления

Какой провод использовать для заземления — подбор оптимального сечения, расчет параметров и выбор правильной марки кабеля

Чтобы защитить себя, окружающих людей и животных от воздействия электрического тока используют заземление. К примеру, в быту часто такое встречается, когда от металлического корпуса прибора «бьет» электричеством из-за оголенного проводка.

В том случае если нет заземления, то человека, который прикоснется к такому предмету, ударит смертельный разряд тока, ведь 100 мА – это летальная доза. Заземление позволяет отвести этот ток в землю.

Также заземляющий провод помогает осуществить бесперебойную подачу тока в электроустановки, электрооборудования, электролинии. Для этого используется заземляющий провод. Как определить провод заземления, что для этого необходимо делать рассмотрим в данной статье.

Содержимое обзора

Каким должен быть провод заземления

Требования, предъявляемые к заземляющему проводу, могут быть различны, все зависит от особенности почвы, цели которые ставятся перед ним, эксплуатационных характеристик, а также самих электроустановок.

Основным критерием, которому они все должны отвечать является возможность пропускать электрический ток такой же по силе как при возникновении КЗ.

Остальные критерии различны, они будут классифицироваться по следующим признакам:

  1. Количество жил у провода и его класс гибкости. Для подключения электрических установок к заземляющему проводу используются моножильные и однопроволочные провода.
  2. В том случае если дверцы щитков, в которых происходит распределение проводов, ячейки, заземляющие блоки необходимо часто открывать или закрывать, то для этого используют другие провода – мультижильные или многопроволочные. Именно они более устойчивы к частым сгибаниям-разгибаниям.
  3. Расположение. Данный провод может проходить либо как отдельная линия, либо находиться в кабельно-проводном изделии.
  4. Наличие или отсутствие изоляции. Данное условие нужно в том случае, если провод необходимо будет использовать как в открытом, так и закрытом способе.
  5. Используемый токопроводящий материал. Выбор жилы находящейся в проводе (медная, стальная, алюминиевая) зависит от физических свойств проводника и его химической стойкости.

К примеру, медь обладает наименьшим показателем удельного сопротивления и отличными антикоррозийными характеристиками в сравнении с другими веществами (алюминий, сталь).

Виды заземляющих проводов

Среди наиболее популярных маркировок проводов заземления, которые разрешено использовать для проведения заземляющего проводника выделяют следующие виды.

ВВГ. Данный вид имеет медную жилу и оснащен слоем изоляции и дополнительным наружным покрытием из полимерного ПВХ.

  • Производится как в моно-, так и мультижильном исполнении.
  • Класс гибкости данного провода – 1,2. Используется в электросети от 0,66 до 6 кВ.
  • Диапазон температур, при которой его можно использовать составляет от минус до плюс пятидесяти градусов по Цельсию.
  • Кабель с тремя – пятью жилами может быть оснащен нейтралью и заземляющим проводником.

НУМ. Провод довольно эластичный, класс гибкости от одного до пяти, в середине которого имеется медный проводник.

  • Выпускается в изоляции из ПВХ и дополнительной оболочке, между которыми находится негорючая резиновая смесь.
  • Его разрешено использовать в электрических сетях, в которых напряжение доходит до 0,66 кВ. работоспособность провода сохраняется от -50 до +50 градусов по Цельсию.
  • Имеется одно но – ему необходима защита от воздействия ультрафиолета.

Следующая группа проводов, имеющая маркировку ПВ, имеет мультипроволочную медную жилу в изоляции с двойным слоем из ПВХ, который не горит. Они рассчитаны на электрическое напряжение переменного тока до 0,45 кВ. а постоянного до одного киловатт.

Они отличаются между собой классом гибкости, который указывается в маркировке проводов и заземляющим проводником:

  • 3 класс гибкости – обладает прекрасной водостойкостью, не подвержен воздействию паров, конденсатов, плесени. Сохраняет работоспособность от минус семидесяти до плюс шестидесяти градусов по Цельсию. Именно поэтому его используют в помещениях с высоким уровнем влажности, к примеру, баня, открытое пространство;
  • 6 класс гибкости – по характеристикам схож с предыдущим видом провода, только немного пластичней;
  • С класс гибкости – довольно пластичный из данной категории соединительных изделий. Класс гибкости от двух до пяти. Он обладает медный мультипроволочный электропроводник расположенный в малогорючей изоляции из ПВХ и дополнительном покрытии. Он рассчитан на электрическое напряжение от 0,38 до 0,66 киловатт. Работоспособность сохраняется – от минус 25 до плюс 40 градусов по Цельсию.
  • ESUY – самый гибкий из всех предложенных видов кабелей. Он обладает жилой состоящей из многочисленного количества меднолуженых проволочек, расположенных в меднопроволочной оплетке, а также оболочке из прозрачного не способного к возгоранию полимерному ПВХ. Используется данный вид кабеля при температуре от -5 до + 70 градусов по Цельсию.

Он используется для заземления переносного оборудования, во время ремонтных работ и ТО, также его применяют с силовых установках с высоким вольтажем, на железнодорожном транспорте в тяговых установках и при возникновении выровнить узлы электромашин.

Помимо перечисленных категорий кабелей используют и другие марки, к примеру, МГ (без изоляции), ВБбШв (в броне), ШВВП (шнурок). Во время выбора маркировки кабеля стоит учесть требования, изложенные выше ну и, конечно же, нормы ПУЭ, СНиПы, СП.

Как выбирать тип сечения

Чтобы правильно подобрать сечение проводов заземления, необходимо ориентироваться на возможности электрической сети. Контур заземления, а также проводник не подвержен постоянным нагрузкам, в отличие от фазы и ноля.

Именно поэтому сечение заземляющего провода, согласно п. 1.7.126 ПУЭ, должно определяться таким образом:

  • Для силового кабеля 16 мм2 берется такого же сечение заземляющий;
  • Силовой кабель от 16 до 35 мм2 потребует 16мм2;
  • Для силового кабеля более 35 мм2 потребуется не менее полутора фазного.

Монтаж заземления

Перед тем как приступить к монтажу кабеля заземления следует проверить имеющуюся систему, для этого необходимо оценить, что за кабеля ответственны за «землю».

  • По имеющимся требованиям п.1.1.29 ПУЭ кабеля заземления имеют латинское обозначение – РЕ.
  • Цвета проводов заземления должны быть желтого и зеленого оттенков, хотя в этом быть точно уверенным нельзя, поэтому будет лучше, если предварительно их прозвонить.

Заземление в трехжильном проводе выполняется только лишь с помощью тех способов соединения, которые способны обеспечить оптимальный контакт, а также переходное сопротивление близкое к нолю.

Сюда можно отнести пайку, сварку, затяжку под гайко-болтовое соединение при помощи наконечника, гильзы, клеммы.

В том случае если будут соблюдены все требования ПУЭ, правила выбора сечения, способы монтажа заземляющего кабеля и контура «земли», то никаким проблем не возникнет и безопасность для человека будет полностью гарантирована, ну и конечно же сама работа электрических установок, приборов.

Источник

Системы заземления TN-S, TN-C, TNC-S, TT, IT

При проектировании, монтаже и эксплуатации электроустановок, промышленного и бытового электрооборудования, а также электрических сетей освещения, одним из основополагающих факторов обеспечения их функциональности и электробезопасности является точно спроектированное и правильно выполненное заземление. Основные требования к системам заземления содержатся в пункте 1.7 Правил устройства электроустановок (ПУЭ). В зависимости от того, каким образом, и с каким заземляющими конструкциями, устройствами или предметами соединены соответствующие провода, приборы, корпуса устройств, оборудование или определенные точки сети, различают естественное и искусственное заземление.

Естественными заземлителями являются любые металлические предметы, постоянно находящиеся в земле: сваи, трубы, арматура и другие токопроводящие изделия. Однако, ввиду того, что электрическое сопротивление растеканию в земле электротока и электрических зарядов от таких предметов плохо поддается контролю и прогнозированию, использовать естественное заземление при эксплуатации электрооборудования запрещается. В нормативной документации предусмотрено использование только искусственного заземления, при котором все подключения производятся к специально созданным для этого заземляющим устройствам.

Основным нормируемым показателем, характеризующим, насколько качественно выполнено заземление, является его сопротивление. Здесь контролируется противодействие растеканию тока, поступающего в землю через данное устройство — заземлитель. Величина сопротивления заземления зависит от типа и состояния грунта, а также особенностей конструкции и материалов, из которых изготовлено заземляющее устройство. Определяющим фактором, влияющих на величину сопротивления заземлителя, является площадь непосредственного контакта с землей составляющих его пластин, штырей, труб и других электродов.

Виды систем искусственного заземления

Основным документом, регламентирующим использование различных систем заземления в России, является ПУЭ (пункт 1.7), разработанный в соответствии с принципами, классификацией и способами устройства заземляющих систем, утвержденных специальным протоколом Международной электротехнической комиссии (МЭК). Сокращенные названия систем заземления принято обозначать сочетанием первых букв французских слов: «Terre» — земля, «Neuter» — нейтраль, «Isole» — изолировать, а также английских: «combined» и «separated» — комбинированный и раздельный.

  • T — заземление.
  • N — подключение к нейтрали.
  • I — изолирование.
  • C — объединение функций, соединение функционального и защитного нулевых проводов.
  • S — раздельное использование во всей сети функционального и защитного нулевых проводов.

В приведенных ниже названиях систем искусственного заземления по первой букве можно судить о способе заземления источника электрической энергии (генератора или трансформатора), по второй – потребителя. Принято различать TN, TT и IT системы заземления. Первая из которых, в свою очередь, используется в трех различных вариантах: TN-C, TN-S, TN-C-S. Для понимания различий и способов устройства перечисленных систем заземления следует рассмотреть каждую из них более детально.

1. Системы с глухозаземлённой нейтралью (системы заземления TN)

Это обозначение систем, в которых для подключения нулевых функциональных и защитных проводников используется общая глухозаземленная нейтраль генератора или понижающего трансформатора. При этом все корпусные электропроводящие детали и экраны потребителей следует подключить к общему нулевому проводнику, соединенному с данной нейтралью. В соответствии с ГОСТ Р50571.2-94 нулевые проводники различного типа также обозначают латинскими буквами:

  • N — функциональный «ноль»;
  • PE — защитный «ноль»;
  • PEN — совмещение функционального и защитного нулевых проводников.

Построенная с использованием глухозаземленной нейтрали, система заземления TN характеризуется подключением функционального «ноля» — проводника N (нейтрали) к контуру заземления, оборудованному рядом с трансформаторной подстанцией. Очевидно, что в данной системе заземление нейтрали посредством специального компенсаторного устройства — дугогасящего реактора не используется. На практике применяются три подвида системы TN: TN-C, TN-S, TN-C-S, которые отличаются друг от друга различными способами подключения нулевых проводников «N» и «PE».

Система заземления TN-C

Система заземления TN-C

Как следует из буквенного обозначения, для системы TN-C характерно объединение функционального и защитного нулевых проводников. Классической TN-C системой является традиционная четырехпроводная схема электроснабжения с тремя фазными и одним нулевым проводом. Основная шина заземления в данном случае – глухозаземленная нейтраль, с которой дополнительными нулевыми проводами необходимо соединить все открытые детали, корпуса и металлические части приборов, способные проводить электрический ток..

Данная система имеет несколько существенных недостатков, главный из которых – утеря защитных функций в случае обрыва или отгорания нулевого провода. При этом на неизолированных поверхностях корпусов приборов и оборудования появится опасное для жизни напряжение. Так как отдельный защитный заземляющий проводник PE в данной системе не используется, все подключенные розетки земли не имеют. Поэтому используемое электрооборудование приходится занулять – соединять корпусные детали с нулевым проводом. .

Если при таком подключении фазный провод коснется корпуса, из-за короткого замыкания сработает автоматический предохранитель, и опасность поражения электрическим током людей или возгорания искрящего оборудования будет устранена быстрым аварийным отключением. Важным ограничением при вынужденном занулении бытовых приборов, о чем следует знать всем проживающим в помещениях, запитанных по системе TN-C, является запрет использования дополнительных контуров уравнивания потенциалов в ванных комнатах.

В настоящее время данная система заземления сохранилась в домах, относящихся к старому жилому фонду, а также применяется в сетях уличного освещения, где степень риска минимальна.

Система TN-S

Система заземления TN-S

Более прогрессивная и безопасная по сравнению с TN-C система с разделенными рабочим и защитным нолями TN-S была разработана и внедрена в 30-е годы прошлого века. При высоком уровне электробезопасности людей и оборудования это решение имеет один, но достаточно очень существенный недостаток — высокую стоимость. Так как разделение рабочего (N) и защитного (PE) ноля реализовано сразу на подстанции, подача трехфазного напряжения производится по пяти проводам, однофазного — по трем. Для подключения обоих нулевых проводников на стороне источника используется глухозаземленная нейтраль генератора или трансформатора.

В ГОСТ Р50571 и обновленной редакции ПУЭ содержится предписание об устройстве на всем ответственных объектах, а также строящихся и капитально ремонтируемых зданиях энергоснабжения на основе системы TN-S, обеспечивающей высокий уровень электробезопасности. К сожалению, широкому распространению и внедрению системы TN-S препятствует высокий уровень затрат и ориентированность российской энергетики на четырехпроводные схемы трехфазного электроснабжения.

Система TN-C-S

Система заземления TN-C-S

С целью удешевления оптимальной по безопасности, но финансово емкой системы TN-S с разделенными нулевыми проводниками N и PE, было создано решение, позволяющее использовать ее преимущества с меньшим бюджетом, незначительно превышающим расходы на энергоснабжение по системе TN-C. Суть данного способа подключения состоит в том, что с подстанции осуществляется подача электричества с использованием комбинированного нуля «PEN», подключенного к глухозаземленной нейтрали. Который при входе в здание разветвляется на «PE» — ноль защитный, и еще один проводник, исполняющий на стороне потребителя функцию рабочего ноля «N».

Данная система имеет существенный недостаток — в случае повреждения или отгорания провода PEN на участке подстанция — здание, на проводнике PE, а, следовательно, и всех связанных с ним корпусных деталях электроприборов, появится опасное напряжение. Поэтому при использовании системы TN-C-S, которая достаточно распространена, нормативные документы требуют обеспечения специальных мер защиты проводника PEN от повреждения.

Система заземления TT

Система заземления TT

При подаче электроэнергии по традиционной для сельской и загородной местности воздушной линии, в случае использования здесь небезопасной системы TN-C-S трудно обеспечить надлежащую защиту проводника комбинированной земли PEN. Здесь все чаще используется система TT, которая предполагает «глухое» заземление нейтрали источника, и передачу трехфазного напряжения по четырем проводам. Четвертый является функциональным нолем «N». На стороне потребителя выполняется местный, как правило, модульно-штыревой заземлитель, к которому подключаются все проводники защитной земли PE, связанные с корпусными деталями.

Совсем недавно разрешенная к использованию на территории РФ, данная система быстро распространилась в российской глубинке для энергоснабжения частных домовладений. В городской местности TT часто используется при электрификации точек временной торговли и оказания услуг. При таком способе устройства заземления обязательным условием является наличие приборов защитного отключения, а также осуществление технических мер грозозащиты.

2. Системы с изолированной нейтралью

Во всех описанных выше системах нейтраль связана с землей, что делает их достаточно надежными, но не лишенными ряда существенных недостатков. Намного более совершенными и безопасными являются системы, в которых используется абсолютно не связанная с землей изолированная нейтраль, либо заземленная при помощи специальных приборов и устройств с большим сопротивлением. Например, как в системе IT. Такие способы подключения часто используются в медицинских учреждениях для электропитания оборудования жизнеобеспечения, на предприятиях нефтепереработки и энергетики, научных лабораториях с особо чувствительными приборами, и других ответственных объектах.

Система IT

Система заземления IT

Классическая система, основным признаком которой является изолированная нейтраль источника – «I», а также наличие на стороне потребителя контура защитного заземления – «Т». Напряжение от источника к потребителю передается по минимально возможному количеству проводов, а все токопроводящие детали корпусов оборудования потребителя должны быть надежно подключены к заземлителю. Нулевой функциональный проводник N на участке источник – потребитель в архитектуре системы IT отсутствует.

Надежное заземление — гарантия безопасности

Все существующие системы устройства заземления предназначены для обеспечения надежного и безопасного функционирования электрических приборов и оборудования, подключенных на стороне потребителя, а также исключения случаев поражения электрическим током людей, использующих это оборудование. При проектировании и устройстве систем энергоснабжения, необъемлемыми элементами которых является как функциональное, так и защитное заземление, должна быть уменьшена до минимума возможность появления на токопроводящих корпусах бытовых приборов и промышленного оборудования напряжения, опасного для жизни и здоровья людей.

Система заземления должна либо снять опасный потенциал с поверхности предмета, либо обеспечить срабатывание соответствующих защитных устройств с минимальным запаздыванием. В каждом таком случае ценой технического совершенства, или наоборот, недостаточного совершенства используемой системы заземления, может быть самое ценное — жизнь человека.

Источник

Читайте также:  Электропроводка рено меган 2 рестайлинг