Кабель связи электрические характеристики

Кабель связи электрические характеристики

Формы протоколов измерения кабеля постоянным током и протоколы измерений оптоволокна можно скачать со страницы «Формы протоколов измерений кабеля». Там же самозаполняющийся протокол

Страница, описывающая импульсный метод измерения кабеля, а так же ней таблицы значений коэффициентов укорочения, а так же проблемы, связанные.

Справочные данные о кабелях связи ТПП и КСПП. Нормы на смонтированные линии связи

Буква «С» в марке КСПП обозначает «Сельский«. О конструктивных особенностях, базовых марках этого типа кабелей на странице → Кабели сельской связи.

Многие нормы и параметры можно найти в «Руководстве по строительству линейных сооружений местных сетей связи, М., 2005». Нормы электрических параметров из этой книжки есть на одноимённой странице. Остальные нормативы можно найти в других разделах «Руководства…» оглавление которого есть на страницах Руководство I и Руководство II.

Так же на сайте размещено Руководство по эксплуатации линейно-кабельных сооружений местных сетей связи. Основная масса справочных материалов размщена в приложениях этой книжки.

Взято из ОСТ 45.83-96, хотя почти тоже самое можно найти в общей инструкции по строительству ЛС ГТС за 1978 год и в ОСТах других стран СНГ:

5 Нормы электрические для абонентских линий городских телефонных сетей

5.1 Электрическое сопротивление 1 км цепей абонентских кабельных линий постоянному току при температуре окружающей среды 20°С, в зависимости от применяемого кабеля, приведено в таблице 1.

Читайте также:  Кабель апввнг 1х95 25 10 ls гост
Марка кабеля для АЛ ГТС Диаметр
жилы, мм
Электрическое
сопротивление
1 км цепи,Ом,
не более
ТПП, ТППэп, ТППЗ, ТППэпЗ,ТППБ,
ТППэпБ, ТППЗБ, ТППБГ, ТППэпБГ,
ТППБбШп, ТППэпБбШп, ТППЗБбШп,
ТППЗэпБбШп, ТППт
0,32
0,40
0,50
0,64
0,70
458,0
296,0
192,0
116,0
96,0
ТПВ, ТПЗБГ 0,32
0,40
0,50
0,64
0,70
458,0
296,0
192,0
116,0
96,0
ТГ, ТБ, ТБГ,ТК 0,40
0,50
0,64
0,70
296,0
192,0
116,0
96,0
ТСтШп, ТАШп 0,50
0,70
192,0
96,0
ТСВ 0,40
0,50
296,0
192,0

5.2 Значение асимметрии сопротивлений жил АЛ ГТС постоянному току должно быть не более 0,5 % от сопротивления цепи.

5.3 Электрическое сопротивление изоляции 1км жил АЛ ГТС при нормальныхклиматических условиях в зависимости от марки кабеля должно соответствовать требованиям, приведенным в таблице 2.

Марка кабеля для АЛ ГТС Электрическое сопротивление изоляции 1км жил,
МОм, не менее
Срок эксплуатации линии
ввод в эксплуатацию* до 5 лет до 10 лет св.15 лет
ТПП, ТППэп, ТППБ, ТППэпБ,
ТППБГ, ТППэпБГ, ТППБбШп,
ТППэпБбШп, ТППЗэпБбШп
5000 1000 500 300
ТППЗ, ТППЗБ, ТППЗэпБ 5000 1000 800 500
ТГ, ТБ, ТБГ, ТК для жил с изоляцией:
трубчато-бумажной
пористо-бумажной
5000
4000
1000
1000
400
400
200
200
*- нормы установлены для линий без оконечных устройств

5.4 Значение затухания цепей АЛ ГТС на частоте 1000 Гц должно быть не более: 6,0 дБ — для кабелей с диаметром жил 0,4 и 0,5 мм;
5,0 дБ — для кабелей с диаметром жил 0,32 мм.

5.5 Значение переходного затухания между цепями АЛ ГТС на ближнем конце на частоте 1000 Гц должно быть не менее 69,5 дБ.
.

Приложение А (справочное)

Нормы электрические на конструктивные элементы АЛ ГТС
Таблица А.1 Электрические характеристики АЛ ГТС с учетом срока эксплуатации

Марка кабеля для АТС Сопротивление изоляции жил, МОм Рабочая емкость, нф/км
5 лет 10 лет 15 лет 5 лет 10 лет 15 лет
ТПП
ТГ
ТППЗ
1000
1000
1000
500
500
800
200
200
500
50
52
50
55
55
50
60
60
55

Изоляция с оконечными устройствами, то есть с плинтами, должна быть не менее 1000 МОм, причём независимо от длины кабеля. Эта норма есть на странице «Нормы электрические на постоянном токе на неуплотненные находящиеся в эксплуатации кабельные, воздушные и смешанные линии местных сетей связи» в таблице П.4.2 Электрическое сопротивление изоляции токопроводящих жил кабельной линии при температуре плюс 20 °С (чит. примечание) из «Правил технического обслуживания и ремонта линий кабельных, воздушных и смешанных местных сетей связи. 1996г».

В новых инструкциях её не всегда пропечатывают, но кто постаянно с этим работает, знают, если кабель не повреждён наибольшее падение изоляции на плинтах (обычно отсыревших).

• Тема измерения изоляции КЛС неформально, но с учётом опыта раскрыта на странице → Норма изоляции на кабельную линию связи
• Про причины отсыревания плинтов → Отчего отсыревают плинты в ШР, чем сушить, как повысить изоляцию
• Об оконечных устройствах использующихся в проводной на сайте есть раздел «Оконечные устройства для медных кабелей связи«, начало: → Громполоса. Оконечные устройства кросса

Взято из ОСТ 45.83-965.7 :

Нормы электрические на АЛ СТС из дночетверочных кабелей связи типа КСПЗП
5.7.1 Электрическое сопротивление 1км цепи АЛ СТС постоянному току при температуре окружающей среды 20 °С в ависимости от марки применяемого кабеля приведено в таблице 4.
Таблица 4

Марка кабеля для АЛ СТС Диаметр жилы, мм Электрическое опротивление
1км цепи.Ом
КСПЗП 0,64 116,0
КСПП, КСПЗП, КСППБ,
КСПЗПБ, КСППт, КСПЗПт,
КСПЗПК
0,90 56,8

5.7.2 Значение асимметрии сопротивлений жил постоянному току цепи кабельной АЛ СТС должна быть не более 0,5% сопротивления цепи.

5.7.3 Рабочая электрическая емкость 1 км цепи должна быть не более: 35нФ — для КСПЗП 1х4х0,64; 38 нФ — для КСПЗП (КСПП) 1х4х0,9.

5.7.4 Электрическое сопротивление изоляции 1 км жил кабельной АЛ СТО в зависимости от марки кабеля и срока эксплуатации приведены в таблице 5.

Марка кабеля
для АЛ СТС
Электрическое сопротивление
изоляции 1км цепи,
МОм,не менее
Срок эксплуатации линии
ввод в эксплу-
атацию *
до 5 лет до 10 лет до 15 лет свыше 15лет
КСПП, КСППБ, КСППЗ 10000 10000 8000 5000 3000
КСПЗП, КСПЗПБ, КСПЗПт, КТПЗБбШп 10000 10000 10000 10000 8000
* — нормы установлены для линий без оконечных устройств

5.7.5 Электрическое сопротивление изоляции (оболочки, шланга) 1 км экрана пластмассового кабеля относительно земли в течение всего срока эксплуатации должно быть не менее 1,0 МОм.

Сопротивление изоляции защитного полиэтиленового шланга (для кабелей в стальной или алюминиевой оболочке) — 5 МОм/км. [Общая инструкция по строительству ЛС ГТС 1978год]. Это значение сейчас распространяется и на изоляцию экрана ТПП и даже на броню оптоволоконного кабеля, правда появилась оговорка, что если отыскать повреждение изоляции затруднительно, то допускается значение 1 МОм/км.

Электрические характеристики кабелей связи ТПП, КСПП

Характеристики кабелей марки ТПП

Электрические характеристики кабелей на строительных длинах при температуре +20°C

Наименование характеристики Длина,м Частота,
кГц
ТПП с диаметром жил,мм
0.32 0.4 0.5 0.7
Сопротивление 2 токопроводящих
жил (шлейфа),
Ом, не более
1000 постоянный ток 432±36 278±12 180±12 90±6
Сопротивление изоляции жил
по отношению к экрану,
МОм, не менее
1000 постоянный ток 5000 5000 5000 5000
Рабочая емкость пары, нФ, не более 1000 0.8 45±8 45±8 45±8 45±8
Испытательное напряжение
для проверки прочности
изоляции в течение 2 мин.
между пучком всех жил и экраном, В
1000 0.05 1000 1000 1000 1000
Испытательное напряжение
для проверки прочности мизоляции в течение 2 мин.
между жилами рабочих пар,В
1000 0.05 1000 500 500 500
Коэффициент затухания пары,
дБ, не более
1000 0.8 1.74 1.566 1.262 0.86
250 11.12 9.22 6.35
Модуль волнового сопротивления,
Ом
0.8 1350 980 895 670
550 132 112 112

Частотные характеристики кабелей пучковой скрутки при температуре +20°C

Частота, кГц Изоляция сплошная полиэтиленовая,
диаметр жил 0.4,
четверочнаяскрутка
Изоляция сплошная полиэтиленовая,
диаметр жил 0.5,
парная скрутка
Изоляция сплошная полиэтиленовая,
диаметр жил 0.5,
четверочная скрутка
Изоляция сплошная полиэтиленовая,
диаметр жил 0.7, четверочная скрутка
Коэф. затухания, дБ/км Модуль волнового сопрот.,Ом Коэф. затухания, дБ/км Модуль волнового сопрот., Ом Коэф. затухания, дБ/км Модуль волнового сопрот., Ом Коэф. затухания, дБ/км Модуль волнового сопрот., Ом
0.8 1.44 1164 1.23 893 1.16 947 0.82 676
3.0 2.73 602 2.38 461 2.18 488 1.51 351
5 3.51 467.0 2.95 356.5 2.74 375.0 1.87 275.0
10 4.72 331.4 3.96 255.5 3.65 272.1 2.38 201.0
20 6.17 238.5 5.09 185.5 4.65 200.5 2.78 158.2
50 8.02 168.6 6.37 135.3 5.71 152.8 3.45 138.1
100 9.07 145.3 7.15 121.8 6.48 139.8 4.21 132.9
150 9.74 139.4 7.64 117.4 7.00 137.0 4.88 131.5
200 10.49 137.1 8.37 116.0 7.87 135.2 5.67 130.4
250 11.12 135.7 9.22 115.1 8.70 134.5 6.35 129.0
300 12.08 135.0 10.01 114.3 9.48 133.8 6.96 128.0
350 12.70 134.0 10.70 113.6 10.08 133.0 7.48 127.0
400 13.57 133.7 11.31 113.0 10.79 132.5 8.11 125.0
500 15.05 132.9 12.62 112.4 11.75 131.8 8.96 125.0
600 16.31 131.5 13.75 111.8 12.81 131.2 9.79 125.0
700 17.40 131.6 14.70 111.1 13.92 130.8 10.61 125.0
800 18.53 131.3 15.66 110.5 14.79 130.0 11.31 124.8
1000 20.71 130.5 17.40 109.9 16.18 129.7 12.62 124.0
1500 23.93 129.9 21.06 108.5 20.01 128.9 15.68 123.1
2000 28.58 129.5 23.88 107.2 22.62 127.0 18.28 121.5
2500 32.07 128.3 26.36 106.5 24.88 126.5 20.53 121.0

Примечание. Разброс значений коэффициента затухания во всем спектре частот ±5%, а модуля волнового сопротивления ±6%.

Параметры кабеля КСПП

Буква «С» в марке КСПП обозначает «Сельский«.

В приложениях к Руководству по эксплуатации линейно-кабельных сооружений местных сетей связи есть так же конструкционные данные на на саые распространённые кабеля связи

Источник

Кабельные линии связи. Электрические кабельные линии связи. Основные электромагнитные характеристики электрических кабелей связи. Витая пара. Коаксиальный кабель.

Кабельные линии связи

При организации компьютерных сетей широко используются кабельные линии связи.

Кабельная линия связи (КЛС) – линия связи, состоящая из кабеля, кабельной арматуры и кабельных сооружений (туннели, колодцы, распределительные шкафы, кабельные столбы).

Кабель (от голл. kabel – канат, трос) – совокупность гибких изолированных проводов, заключенных в защитную (обычно герметичную) оболочку.

Электрический (медный) кабель – кабель из электрических (медных) проводников (токопроводящих жил), применяемый для передачи на расстояние электрической энергии (силовой кабель) или электрических сигналов (кабель связи).

Волоконно-оптический кабель – кабель из оптических волокон для передачи светового потока.

Кабель связи предназначен для передачи информации электрическими или оптическими (световыми) сигналами.

Электрические кабельные линии связи

В сетях передачи данных применяются следующие типы электрических кабелей:

2) коаксиальный кабель:

Основные электромагнитные характеристики электрических кабелей связи

1. Затухание (коэффициент затухания) – уменьшение мощности сигнала (потеря амплитуды) при передаче между двумя точками:

· является одной из основных характеристик, учитываемых при проектировании ЭЛС и определении максимальной длины кабеля между узлами;

· зависит от частоты передаваемого сигнала;

· измеряется в [дБ/м].

2. Импеданс (волновое сопротивление) – полное (активное и реактивное) сопротивление электрической цепи:

· измеряется в Омах и является относительно постоянной величиной для кабельных систем (в высокоскоростных сетях зависит от частоты);

· резкие изменения импеданса по длине кабеля могут вызвать процессы внутреннего отражения, приводящие к возникновению стоячих волн, при этом станция, подключенная вблизи узла стоячей волны, не будет получать адресованные ей данные.

3. Перекрестные наводки между витыми парами на ближнем конце(NEXT– Near End Crosstalk) и на дальнем конце(FEXT– Far End Crosstalk) – результат интерференции электромагнитных сигналов:

· значения NEXT и FEXT зависят от частоты передаваемого сигнала;

· чем больше абсолютноезначение NEXT (FEXT), тем лучше, так как наводки в соседних проводниках будут меньше;

· измеряется в дБ при определённой частоте.

4. Активное сопротивление – сопротивление электрической цепи постоянному току:

· не зависит от частоты и возрастает с увеличением длины кабеля;

· измеряется в Омах на 100 м.

5. Ёмкость – свойство металлических проводников накапливать электрическую энергию:

· является нежелательной величиной и должна быть минимальной;

· высокое значение ёмкости в кабеле приводит к искажению сигнала и ограничивает полосу пропускания линии.

Витая пара

Витая пара (Twisted Pair – TP) – изолированные проводники, попарно свитые между собой минимально необходимое число раз на определенном отрезке длины (рис.2.36,а), что требуется для уменьшения перекрестных наводок между проводниками, и заключённые в изолирующую оболочку.

Витая пара – самый распространенный вид кабеля в телефонии. Скручивание применяется с целью уменьшения излучения и повышения помехозащищенности кабеля.

Несколько витых пар (обычно 4 или 8), заключённые в общую пластиковую оболочку, образуют кабель. Существует несколько категорий неэкранированной витой пары (Unshielded Twisted Pair – UTP), причём чем выше категория кабеля, тем больше его полоса пропускания. Кабели 1-й и 2-й категорий используются для передачи речи и данных на низких скоростях и не включены в стандарты для передачи данных в компьютерных сетях.

Стандарт EIA/TIA-568, разработанный American National Standards Institute (ANSI, США) определяет спецификации для 3-й, 4-й и 5-й категорий UTP и нормирует следующие характеристики:

· переходное затухание на ближнем конце и др.

Например, для кабеля 5-й категории определены следующие характеристики:

· затухание – не более 23,6 дБ на 100 м (0,236 дБ/м) при частоте 100 МГц;

· волновое сопротивление – не более 100 Ом+-15%;

· NEXT – не менее 27 дБ при частоте 100 МГц;

· активное сопротивление – не более 9,4 Ом на 100 м;

· емкость не более 5,6 нФ на 100 м.

Экранированная витая пара – кабель, содержащий одну или несколько пар скрученных медных проводов, заключенных в изолирующую оболочку. Снаружи кабель покрыт экранирующей оплеткой и еще одной изолирующей оболочкой, за счёт чего меньше излучает и лучше защищён от электромагнитных помех, чем неэкранированная витая пара. Применяется в сетях Token Ring.

Экранированная витая пара подразделяется на две разновидности:

· с экранированием каждой пары и общим экраном (Shielded Twisted Pair – STP);

· с одним общим экраном (Foiled Twisted Pair – FTP).

Для высокоскоростных сетей разработаны еще две категории медного кабеля:

· категория 6 – обеспечивает работу на частоте 250 МГц и может быть реализована как экранированный, так и неэкранированный кабель;

· категория 7 – обеспечивает работу на частоте до 600 МГц и использует экранирование каждой пары кабеля и общий экран.

Коаксиальный кабель (от лат. co – совместно и axis – ось) – кабель, в котором проводники представляют собой 2 соосных металлических цилиндра, разделенных диэлектриком. Коаксиальный кабель используется для передачи высокочастотных сигналов (до нескольких ГГц) и характеризуется высокой помехозащищенностью и малым затуханием сигналов. Это обусловлено отсутствием внешнего электромагнитного поля – вся энергия распространяется только внутри кабеля.

Коаксиальный кабель содержит:

1) внутренний проводник диаметром от 0,4 мм до 2,5 мм;

2) диэлектрик, в качестве которого обычно применяется обычный полиэтилен или физически вспененный полиэтилен с низкой плотностью, позволяющий уменьшить коэффициент затухания;

3) внешний проводник, в качестве которого обычно используется фольга;

4) медную оплетку с покрытием из олова;

5) защитную пленку;

6) внешнюю оболочку.

В ранних сетях Ethernet применялись два типа коаксиального кабеля:

· толстый (thick) диаметром около 1 см, для которого, в отличие от тонкого, характерны следующие особенности:

— более надежная защита от внешних помех;

— требует применения специального отвода (прокалывающего разъема и отводящего кабеля) для подключения компьютера или другого устройства;

· тонкий (thin) диаметром около 0,5 см, для которого, в отличие от толстого, характерны следующие особенности:

— передает данные на более короткие расстояния;

— использует более простые соединители.

Основные недостатки коаксиальных кабелей:

· сложность прокладки, а также добавления и отключения станций;

· высокая удельная стоимость.

Волоконно-оптические линии связи (ВОЛС). Оптическое волокно. Волоконно-оптический кабель. Оптические компоненты. Особенности ВОЛС. Применение ВОЛС в ЛВС. Способы сращивания оптических волокон. Перспективы ВОЛС.

Источник