Кабель для высоковольтного трансформатора

Кабель для высоковольтного трансформатора

Необходимость выбора марки и сечения кабеля для подключения силовых трансформаторов возникает при проектировании, строительстве, монтаже, реконструкции и ремонте электроустановок различного назначения.

Выбор марки кабеля определяется условиями его прокладки, особенностями окружающей среды, а также механическими воздействиями, которым кабель может подвергаться в процессе эксплуатации.

К основным критериям, влияющим на выбор кабеля, относятся.

  • длительно допустимое значение тока по условиям нагрева;
  • экономическая плотность тока, определяющая эффективность выбора сечения с учётом капитальных затрат и эксплуатационных потерь;
  • термическая устойчивость при протекании максимального тока КЗ в течение времени его отключения защитой;
  • величина падения напряжения в протяжённых кабельных линиях при максимальном значении рабочего тока.

Требования к кабелю для подключения трансформатора

Подключение потребителями вновь вводимых трансформаторных подстанций производится на основании Технических условий, выдаваемых электросетевыми организациями. В ТУ обычно прописывается марка питающего кабеля, условия его прокладки, сечение жил.

В случаях, когда потребитель производит установку понижающих трансформаторов в зоне своей балансовой принадлежности в рамках допустимой мощности, то выбор кабеля он выполняет самостоятельно.

Для укладки в земле применяются кабели, имеющие слой брони из стальных лент или проволок, покрытый наружной оболочкой. Если способ прокладки обеспечивает защиту кабеля от механических напряжений, применяются кабели без бронированного покрытия. Это относится к монтажу кабельных линий в защитных трубах, специально оборудованных туннелях или каналах, а также внутри помещений.

Читайте также:  Дроп кабель оптический для подвеса как крепить

Обзор марок кабелей для подключения трансформаторов

Чаще всего потребители монтируют кабель для подключения:

  • трансформаторов тока;
  • силовых трансформаторов 6 – 10 кВ;
  • понижающих трансформаторов 0,4 кВ для питания сетей освещения низкого напряжения 12, 36, 42 вольта, разогрева бетона или грунта.

Кабели высоковольтные для питания трансформаторных подстанций

ААБл. Силовой кабель с цельными или многопроволочными алюминиевыми жилами сечением от 25 до 240 мм 2 . Фазная изоляция выполнена из кабельной бумаги, пропитанной вязким изоляционным составом. В пространстве между жилами для уплотнения расположены бумажные жгуты. Поверх изолированных жил находится поясная изоляция и экран из токопроводящей бумаги, покрытый алюминиевой оболочкой. Далее следует подушка из битумной мастики, бумаги и ПВХ – плёнки, после которой намотана броня из двух стальных лент. Наружный покров выполнен из стекловолоконной или кабельной пряжи.

ААШв. Кабель с алюминиевыми жилами в фазной изоляции из пропитанной бумаги. Поверх поясной изоляции, бумажного экрана, оболочки из алюминия, подушки из битума и пластмассовых лент с бумагой — наружный покровный слой из ПВХ пластиката. Стальная броня отсутствует.

Кабели до 1 кВ для подключения понижающих трансформаторов

АВВГ. Силовой алюминиевый кабель с фазной изоляцией жил и наружной оболочной из ПВХ пластиката. Диапазон сечений токопроводящих жил — от 2,5 мм 2 до 1000 мм 2 . Количество жил от 2-х до 5-ти. Для идентификации жил применяется цветовая маркировка жильной изоляции. Укладка кабеля производится в защитных трубах, коробах, а также в местах, исключающих внешние механические воздействия, так как защитный покров отсутствует.

ВБШвнг(А)-LSLTx. Медный бронированный кабель с многопроволочными или монолитными жилами круглого или секторального сечения. ПВХ изоляция и наружная оболочка имеют повышенную пожарную безопасность. При горении выделяют малое количество дыма, не содержащего токсических веществ. Броня из двух стальных оцинкованных лент покрыта наружной шланговой ПВХ оболочкой.

Выбор сечения кабеля для питания трансформатора

Сечение питающего кабеля для силового трансформатора выбирается исходя из его номинального тока, который указан в паспорте трансформатора и на его шильдике. Данное значение принимается в качестве длительно допустимого тока, по которому определяется необходимое сечение жил по таблицам 1.3.4. – 1.3.30. Правил Устройства Электроустановок.

При выборе следует учитывать материал токопроводящих жил, способ прокладки кабеля (подземный, воздушный и т.п.), одиночный или групповой монтаж.

Очень важно произвести проверку кабеля на термическую стойкость. Расчётным режимом является 3-х фазное короткое замыкание на выводах ВН питаемого трансформатора. В этом режиме по кабелю протекает максимальный ток. Значение Iкз и время его отключения защитой запрашивается в сетевой организации, к п/ст которой подключен кабель. Если по термической стойкости кабель не проходит, сечение следует увеличить.

Источник

Кабель для высоковольтного трансформатора

Работа трансформаторов электрического тока и большинства других электрических основана на создании электромагнитного поля посредством катушек с обмоткой. Для формирования таких катушек используют специальные электрические провода, которые изолированы определенным образом. Рассмотри марки обмоточных проводов для трансформаторов и их отличие друг от друга.

Какие провода применяются для намотки трансформаторов?

Обмоточные провода изготавливаются различных модификаций, при этом они классифицируются по материалу жилы и изоляции, форме и сечению проводника.

Изолирующий материал обмоточных проводов может быть:

  • волокнистым;
  • эмалированным;
  • комбинированным.

Волокнистый тип изолятора отличается высокой механической прочностью, так как имеет большую толщину. Выполняется из натурального или искусственного шелкового волокна, а также с использованием хлопчатобумажного материала, стекловолокна, капрона, лавсана или асбеста. Волокнистая изоляция применяется для изготовления катушек масляных трансформаторов и некоторых типов электрических двигателей и маркируется следующим образом: для натурального шелка – буквой «Ш» в марке, искусственный шелк – «ИШ», капрон – «К», хлопчатобумажная – «Б», стекловолокно – «С» и асбест – «А». Такой тип изоляции наименее стоек к агрессивным средам и воздействию химических веществ.


Рис. 1 Расшифровка маркировки обмоточных проводов

Эмалированная изоляция — это специальный состав, которым покрывают проводник. При этом, такой тип изолятора имеет минимальную толщину, но отличается высокой прочностью и стойкостью к воздействию химически активных веществ и агрессивных сред, а также выдерживают высокие температуры. Изготавливается такая изоляция из теплостойкой полиэфирной (в маркировке «ЭВ»), лакостойкой («ЭЛ»), полиамиднорезольной («ЭЛР») или полиуретановой («ЭВТЛ») эмали, а также из винифлекса («ЭВ») — специального высокопрочного состава.

Комбинированный изолирующий материал – это нанесение несколько слоев изоляции различного типа. Чаще всего внутренний слой – это эмалированный состав, а наружный выполнен из волокнистого материала. При применении комбинированного изолирующего состава маркировка изоляции провода состоит из двух кодов, которые обозначают оба типа.

По материалу жил проводники для обмотки бывают:

  • медные;
  • алюминиевые;
  • с применением различных сплавов;

Алюминиевые обмоточные провода маркируются буквой «А» в наименовании и выполняют, соответственно, из алюминиевого сплава. Такие проводники применяются реже, чем другие типы, ввиду своего высокого удельного сопротивления. Но так как алюминий имеет меньшую цену, то все же такие проводники в некоторых типах оборудования оправдывают свое применение.

Медные провода не имеют в маркировке обозначения. Провода с медными жилами получили наибольшее распространение в обмотках различных трансформаторов и электродвигателей, так как имеют улучшенные электрические свойства и менее подвержены коррозии. Единственным минусом медных проводников является его более высокая цена в сравнении с алюминиевыми, но так как сечение медных проводников при одинаковых условиях обычно необходимо меньше, чем у алюминиевых, то разница в цене по итогу не слишком большая.

Провода из различных сплавов имеет узкую направленность и применяются только в специальном оборудовании. К таким изделиям можно отнести, например, нихромовые проводники. Для получения различных характеристик подбирают разнообразные сплавы, которые обычно изготавливаются на заказ и поэтому наименее распространены на рынке.

Форма сечения – это следующая характеристика, которая отличает обмоточные кабели между собой. Различают проводники с круглой и прямоугольной формой поперечного сечения.

Для прямоугольного проводника в нормативно-технической документации указывается соотношение его толщины к ширине. Толщина самых распространенных моделей варьируется от 1,30 – 6,0 мм, а ширина от 3,5 до 15,0 мм. Провод с прямоугольным сечением применяют для больших токовых нагрузок.

Круглое сечение используют при намотке на катушки при эксплуатации в условиях малых токов, но несмотря на это, круглое сечение – наиболее распространено. Прочностные характеристики у круглых кабелей выше, чем у прямоугольных. Также положительным качеством такого типа сечения является удобство его намотки на сердечник.

Обзор популярных марок медных обмоточных проводов для трансформаторов

Обмоточные провода выпускают большое количество различных типов и модификаций, маркировки которых запомнить просто невозможно. Для каждой сферы применения, условий эксплуатации и типа оборудования кабель подбирают исходя из целесообразности и эффективности использования. Рассмотрим наиболее популярные варианты обмоточных проводников.

ПЭВ – медных провод, изолированный лаком на поливинилформальэтилалевой основе ВЛ-931. Изоляция является высокопрочной. Применяется такой провод для производства катушек электрических трансформаторов и электродвигателей длительно работающих при температуре до 110 градусов Цельсия. ПЭВ-1 – имеет один слой эмали, а ПЭВ-2, соответственно, два слоя. Провод ПЭВ имеет круглое сечение с диаметром от 0,02 до 2,44 мм.

ПЭТВЛ – медный провод, имеющий изоляцию из высокопрочного эмалевого состава на основе полиуретанового лака. Отличительной особенностью данного типа провода является его обслуживание без предварительной зачистки эмали и без использования травильных компонентов для лужения). ПЭТВЛ-1 и ПЭТВЛ-2 отличают количеством слоев изолирующего материала. Данный кабель применяют в электрических машинах, работающих при температуре до 120 градусов Цельсия. Имеет круглое сечение и диаметр жилы от 0,06 до 1,56 мм.

ПЭМ – медный провод с высокопрочной изоляцией, изготовленной с применением металвинового лака. Различают ПЭМ-1, ПЭМ-2 и ПЭМ-3, которые отличаются между собой количеством слоев нанесённого лака. Может иметь круглое и прямоугольное сечение. Круглый проводник имеет диаметр от 0,06 до 2,44 мм, прямоугольный по толщине от 0,5 до 1,95 мм, по ширине от 2,1 до 8,8 мм. Такой тип провода используется при производстве катушек для электрических машин, работающих при длительной температуре до 105 градусов Цельсия.

Как выбрать диаметр провода для трансформатора?

Диаметр провода для трансформаторных катушек выбирают исходя из электрических характеристик данной машины. Главной характеристикой для катушки является ток. Рассчитать его можно по формуле:

I=P/U, где I – ток, P – потребляемая мощность, U – действующее напряжение.

Диаметр же обмоточного провода подбирается с помощью следующей формулы:

D=1,13 √(I/j), где D – диаметр, I – ток обмотки в Амперах, j – плотность тока в Ампер/кв.мм.

Плотность тока подбирается по специальной таблице исходя из конструкции и мощности трансформатора.

Для замены старого провода на катушке на новый подойдет способ измерения диаметра старого проводника. Его можно измерить при помощи микрометра или вручную. Для ручного (менее точного способа) на любой стержень плотно наматывают десяток витков провода и измеряют длину намотки, потом разделяя её на количество витков.

Источник

Пример выбора сечения кабеля на напряжение 10 кВ

Требуется выбрать сечение кабеля на напряжение 10 кВ для питания трансформаторной подстанции 2ТП-3 мощностью 2х1000 кВА для питания склада слябов на металлургическом комбинате в г. Выкса Нижегородская область. Схема электроснабжения представлена на рис.1. Длина кабельной линии от ячейки №12 составляет 800 м и от ячейки №24 составляет 650 м. Кабели будут, прокладываться в земле в трубах.

Таблица расчета электрических нагрузок по 2ТП-3

Наименование
присоединения
Нагрузка Коэффициент мощности
cos φ
Активная,
кВт
Реактивная, квар Полная,
кВА
2ТП-3
(2х1000 кВА)
955 590 1123 0,85

Трехфазный ток КЗ в максимальном режиме на шинах РУ-10 кВ составляет 8,8 кА. Время действия защиты с учетом полного отключения выключателя равно 0,345 сек. Подключение кабельной линии к РУ осуществляется через вакуумный выключатель типа VD4 (фирмы Siemens).

Рис.1 –Схема электроснабжения 10 кВ

Сечение кабельной линии на напряжение 6(10) кВ выбирают по нагреву расчетным током, проверяют по термической стойкости к токам КЗ, потерям напряжения в нормальном и послеаварийном режимах.

Выбираем кабель марки ААБлУ-10кВ, 10 кВ, трехжильный.

1. Определяем расчетный ток в нормальном режиме (оба трансформатора включены).

где:
n – количество кабелей к присоединению;

2. Определяем расчетный ток в послеаварийном режиме, с учетом, что один трансформатор отключен:

3. Определяем экономическое сечение, согласно ПУЭ раздел 1.3.25. Расчетный ток принимается для нормального режима работы, т.е. увеличение тока в послеаварийных и ремонтных режимах сети не учитывается:

Jэк =1,2 – нормированное значение экономической плотности тока (А/мм2) выбираем по ПУЭ таблица 1.3.36, с учетом что время использования максимальной нагрузки Тmax=6000 ч.

Сечение округляем до ближайшего стандартного 35 мм2.

Длительно допустимый ток для кабеля сечением 3х35мм2 по ПУЭ,7 изд. таблица 1.3.16 составляет Iд.т=115А > Iрасч.ав=64,9 А.

4. Определяем фактически допустимый ток, при этом должно выполняться условие Iф>Iрасч.ав.:

Коэффициент k1, учитывающий температуру среды отличающуюся от расчетной, выбираем по таблице 2.9 [Л1. с 55] и таблице 1.3.3 ПУЭ. Учитывая, что кабель будет прокладываться в трубах в земле. По таблице 2-9 температура среды по нормам составляет +25 °С. Температура жил кабеля составляет +65°С, в соответствии с ПУЭ, изд.7 пункт 1.3.12.

Принимаем по таблице 4.13 [Л5, с.86] среднемесячную температуру грунта для наиболее жаркого месяца (наиболее тяжелый температурный режим работы) равного +17,6 °С (г. Москва). Температуру грунта для г. Москвы, я принимаю в связи с отсутствием данных по г. Выкса, а так как данные города находятся в одном климатическом поясе — II, то погрешность в разности температур будет в допустимых пределах. Округляем выбранное значение температуры грунта до расчетной равной +20°С.

Для определения средней максимальной температуры воздуха наиболее жаркого месяца, можно воспользоваться СП 131.13330.2018 таблица 4.1.

По ПУЭ таблица 1.3.3 выбираем коэффициент k1 = 1,06.

Коэффициент k2 – учитывающий удельное сопротивление почвы (с учетом геологических изысканий), выбирается по ПУЭ 7 изд. таблица 1.3.23. В моем случае поправочный коэффициент для нормальной почвы с удельным сопротивлением 120 К/Вт составит k2=1.

Определяем коэффициент k3 по ПУЭ таблица 1.3.26 учитывающий снижение токовой нагрузки при числе работающих кабелей в одной траншее (в трубах или без труб), с учетом, что в одной траншее прокладывается один кабель. Принимаем k3 = 1.

Определив все коэффициенты, определяем фактически допустимый ток:

5. Проверяем кабель ААБлУ-10кВ сечением 3х35мм2 по термической устойчивости согласно ПУЭ пункт 1.4.17.

  • Iк.з. = 8800 А — трехфазный ток КЗ в максимальном режиме на шинах РУ-10 кВ;
  • tл = tз + tо.в =0,3 + 0,045 с = 0,345 с — время действия защиты с учетом полного отключения выключателя;
  • tз = 0,3 с – наибольшее время действия защиты, в данном примере наибольшее время срабатывания защиты это в максимально-токовой защиты;
  • tо.в = 45мс или 0,045 с — полное время отключения вакуумного выключателя типа VD4;
  • С = 95 — термический коэффициент при номинальных условиях, определяемый по табл. 2-8, для кабелей с алюминиевыми жилами.

Сечение округляем до ближайшего стандартного 70 мм2.

6. Проверяем кабель на потери напряжения:

6.1 В нормальном режиме:

где:
r и x — значения активных и реактивных сопротивлений определяем по таблице 2-5 [Л1.с 48].

Для кабеля с алюминиевыми жилами сечением 3х70мм2 активное сопротивление r = 0,447 Ом/км, реактивное сопротивление х = 0,086 Ом/км.

Определяем sinφ, зная cosφ. Вспоминаем школьный курс геометрии.

Если Вам не известен cosφ, можно определить для различных электроприемников по справочным материалам табл. 1.6-1.8 [Л3, с 13-20].

6.2 В послеаварийном режиме:

Из расчетов видно, что потери напряжения в линии незначительные, следовательно, напряжение у потребителей практически не будет отличаться от номинального.

Таким образом, при указанных исходных данных выбран кабель ААБлУ-10 3х70.

Для удобства выполнения выбора кабеля всю литературу, которую я использовал в данном примере, Вы сможете скачать в архиве.

  1. Проектирование кабельных сетей и проводок. Хромченко Г.Е. 1980 г.
  2. СНиП 23-01-99 Строительная климатология. 2003 г.
  3. Расчет и проектирование систем электроснабжения объектов и установок. Кабышев А.В, Обухов С.Г. 2006 г.
  4. Правила устройства электроустановок (ПУЭ). Седьмое издание. 2008г.
  5. Справочник работника газовой промышленности. Волков М.М. 1989 г.

Источник