- Кабель алюминиевый с секторными жилами
- Таблицы определения сечения секторных жил
- Расчёт сечения жилы из площади сектора
- Расчёт сечения по объёму
- Форма расчёта сечения по длине и весу
- Марки алюминиевых проводов и кабелей и области их применения
- Преимущества и недостатки алюминия
- Марки алюминиевых проводов
- Марки алюминиевого кабеля
Кабель алюминиевый с секторными жилами
В силовых кабелях большого сечения жилы, как правило, используют не круглого, а секторного сечения. В зависимости от назначения кабеля он может содержать 3 или 4 жилы. В которых 3 жилы содержит кабель 6 — 10 кВ (фазы А, В, С), а 4 жилы кабель до 1 кВ (те же А, В, С и нейтраль N). Соответственно, для эффективного заполнения объёма кабеля геометрия секторных жил для высоковольтных и низковольтных кабелей разная.
Секторные жилы (высоковольтный — 3, низковольтный — 4)
Определить геометрическое сечение секторной жилы можно разными способами: по таблицам, из площади сектора, из объёма отрезка жилы и по весу.
Таблицы определения сечения секторных жил
В настоящее время в Интернет распространены две таблицы соотношений сечений и геометрических размеров кабельных жил. Во многом они похожи, но есть и расхождения. Вероятнее всего эти таблицы составлены путём непосредственных измерений ширины и толщины.
Таблица 1
Назначение и конструкция кабеля | Высота h ширина b | Высота и ширина сектора, для жил сечением, мм² | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
35 | 50 | 70 | 95 | 120 | 150 | 185 | 240 | |||
Трехжильные однопроволочные, 1-10 кВ | h, мм | 5,5 | 6,4 | 7,6 | 9 | 10,1 | 11,3 | 12,5 | 14,4 | |
b, мм | 9,2 | 10,5 | 12,5 | 15 | 16,6 | 18,4 | 20,7 | 23,8 | ||
Трехжильные многопроволочные, 1-10 кВ | h, мм | 6 | 7 | 9 | 10 | 11 | 12 | 13,2 | 15,2 | |
b, мм | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 25 | ||
Четырехжильные однопроволочные, 1 кВ | h, мм | — | 7 | 8,2 | 9,6 | 10,8 | 12 | 13,2 | — | |
b, мм | — | 10 | 12 | 14,1 | 16 | 18 | 18 | — |
Таблица 2
Секторные жилы для 3-х жильных кабелей | Секторные жилы для 4-х жильных кабелей | ||||||||
---|---|---|---|---|---|---|---|---|---|
Номинальное сечение S, мм² | Однопровол. | Многопровол. | Номинальное сечение S, мм² | Однопровол. | Многопровол. | ||||
h, мм | b, мм | h, мм | b, мм | h, мм | b, мм | h, мм | b, мм | ||
25 | 4,6 | 7,7 | • | • | 25 | 5,2 | 7,2 | • | • |
35 | 5,5 | 9,0 | • | • | 35 | 6,1 | 8,4 | • | • |
50 | 6,4 | 10,5 | • | • | 50 | 7,1 | 9,8 | • | • |
70 | 7,6 | 12,5 | 8,3 | 13,0 | 70 | 8,7 | 12,0 | 9,2 | 12,0 |
95 | 9,0 | 14,8 | 9,8 | 15,5 | 95 | 10,1 | 14,1 | 11,0 | 14,6 |
120 | 10,1 | 16,6 | 11,0 | 17,5 | 120 | 11,4 | 15,8 | 12,3 | 16,3 |
150 | 11,2 | 18,4 | 12,6 | 20,1 | 150 | 12,8 | 17,7 | 13,7 | 18,3 |
185 | 12,6 | 20,7 | 14,0 | 22,9 | 185 | 14,2 | 19,7 | 15,4 | 20,7 |
240 | 14,4 | 23,9 | 16,0 | 26,5 | 240 | • | • | 17,4 | 24,3 |
Относится к этим данным как к обязательным нельзя, так как геометрия секторных жил, как впрочем, и реальное сечение не нормируется. Нормируется электрическое сопротивление (ГОСТ 22483-2012)
Замеряем толщину жилы по высоте и ширине. Полученные значения в 18,3 и 11,2 мм ищем по таблицам. Жила однопроволочная от трёхжильного (высоковольтного) кабеля. Наиболее близки в таблице 2 значения 11,2; 18,4 мм. Это соответствует сечению в 150 мм².
Расчёт сечения жилы из площади сектора
Метод расчёта площади сечения жилы по площади сектора основан на том, что сечение комплекта секторных жил сложенных вместе представляет собой круг. Соответственно толщина одной жилы r является радиусом этого круга. Остаётся только разделить площадь круга на количество жил или на отношение угла сектора α к 360°.
где π – 3.14… α – угол сектора круга n – количество жил в сердечнике кабеля
Точность этого метода сомнительна, так как реальный срез секторной жилы не совсем гометрический сектор. Все углы проводника закруглены, и толщина жилы меньше радиуса круга. Чтобы убедится в неточности метода расчёта через сектор можно сравнить площади сечения, полученные с его помощью, и табличные данные (таблицы 3 и 4 ↓ ↓ ↓).
Таблица 3
Толщина кабельной жилы, мм | 5,5 | 6,4 | 7,6 | 9 | 10,1 | 11,3 | 12,5 | 14,4 |
31,7 | 42,9 | 60,5 | 84,8 | 106,8 | 133,7 | 163,6 | 217,1 | |
---|---|---|---|---|---|---|---|---|
Площидь сечения по таблице 1, мм² | 35 | 50 | 70 | 95 | 120 | 150 | 185 | 240 |
Отношение табличного значения к расчётному | 1,10 | 1,17 | 1,16 | 1,12 | 1,12 | 1,12 | 1,13 | 1,11 |
Средняя поправка к формуле 2 ( | 1,13 |
Таблица 4
Толщина кабельной жилы, мм | 7 | 8,2 | 9,6 | 10,8 | 12 | 13,2 |
38,5 | 52,8 | 72,4 | 91,6 | 113,1 | 136,8 | |
---|---|---|---|---|---|---|
Площидь сечения по таблице 1, мм² | 50 | 70 | 95 | 120 | 150 | 185 |
Отношение табличного значения к расчётному | 1,3 | 1,33 | 1,31 | 1,31 | 1,33 | 1,35 |
Средняя поправка к формуле 2 ( | 1,32 |
Не смотря на серьезные отклонения в значениях метод можно использовать. Для того, что бы получить адекватные результаты достаточно умножить значение полученные в формуле 1 на коэффициент полученный в таблицах 3 и 4. Итоговая формула будет выглядеть так:
где: k – коэффициент из таблиц 3 или 4 («1,13» для трёхжильного и «1,32» для четырёхжильного кабеля); r – толщина жилы; n – количество жил в сердечнике
Способ расчёта хорош для более редких кабелей с секторными жилами на 2, 5 или 6 проводников. Для двухжильного кабеля в расчёте площади сечения , так как радиус тут определить довольно точно. Для 5-ти и 6-ти -жильных кабелей коэффициент .
Расчёт сечения по объёму
В основе метода закон Архимеда. Этот метод позволяет измерить площадь сечения любого профиля: швеллера, уголка, жилы кабеля и т.п. Для измерений нужен сосуд с делениями в миллилитрах достаточного объёма (мензурка, мерный стакан) и линейка.
Исследуемый отрезок жилы помещается в мерный стакан и заливается водой до полного погружения образца. По шкале на стакане определяется объём V1. Предположим, 200 миллилитров. Отрезок кабельной жилы вынимается из воды. Воде с него дают стечь обратно в стакан. Проверяется объём жидкости без образца. Предположим, уровень V2 = 185 миллилитров. То есть наш образец имеет объём или в переводе на кубические миллиметры 15000 мм³.
Измерение L
Далее линейкой или штангенциркулем измеряем длину исследуемой жилы в миллиметрах (L). Для примера L = 60 мм. Формула расчёта . То есть S = 15000 / 60 = 250 (мм²)
Можно измерить объём в другой последовательности. Сначала залить воду и измерить её объём V1. Затем погрузить в неё жилу и замерить V2. Такая последовательность будет более точной, так как будет отсутствовать погрешность от воды, остающейся на мокром металле в первом варианте.
Метод может давать ошибку в многопроволочных жилах, так как между отдельными проволоками, вероятно, останутся воздушные пузыри. В таком случае лучше разобрать проводник на отдельные проволоки и погрузить их в воду россыпью.
И в первом и во втором случае воздушные пузыри в воде нужно стряхивать.
Форма расчёта сечения по длине и весу
Потребуются достаточно точные весы и рулетка.
Метод основан на расчёте сечения из длины, массы и табличной плотности металла жилы. Формула плотности Замерив массу и зная табличное значение плотности можно узнать объём образца .
Измерив длину жилы из объёма () можно рассчитать её сечение . Итоговая формула:
Измерение L
Источник
Марки алюминиевых проводов и кабелей и области их применения
Преимущества и недостатки проводников из алюминия. Какие бывают марки алюминиевых проводов и кабелей, и какая область применения каждого.
Алюминиевые провода и кабели запрещены для использования в качестве проводки в квартирах и жилых домах. Но разрешено их использование только для подключения электроустановок при сечении кабеля свыше 16 кв. мм или для подключения инженерного оборудования (насосов, климатических устройств и т.д.) проводом от 2,5 кв. мм. Это прописано в ПУЭ издания после 2002 года. Однако, спрос на кабель с жилами из алюминия различных сечений остается высоким – это вызвано двумя банальными причинами: банальной экономией и ситуациями, когда нужно заменить часть старой проводки, а финансов на прокладку новых медных жил нет, а также в ситуациях описанных выше. В этой статье мы рассмотрим плюсы и минусы, а также, какими бывают марки алюминиевых проводов и кабелей. Содержание:
- Преимущества и недостатки алюминия
- Марки алюминиевых проводов
- Марки алюминиевого кабеля
Преимущества и недостатки алюминия
У алюминиевой кабельной продукции есть свои преимущества и недостатки, на основании которых происходит выбор материала для конкретных задач.
- Цена. Стоимость кабеля играет решающую роль при больших объёмах производства. Однако следует учитывать, что если алюминиевый кабель ощутимо дешевле медного аналогичным сечением, то при сравнении меди и алюминия с разными сечениями, но сопоставимой допустимой токовой нагрузкой разница в стоимости не столь существенна.
- Вес. Алюминиевый кабель весит примерно в два раза меньше медного, поэтому при прокладке алюминия по воздушным линиям нужно вдвое меньше опор. Это сокращает расходы на строительство линий.
- Текучесть. Алюминиевые кабели и провода в большинстве своем делаются из мягких сплавов, а это пагубно сказывается на качестве контакта. При эксплуатации контакты с алюминием ухудшаются (особенно на скрутках и винтовых зажимах) и их нужно периодически протягивать. Это связано с его текучестью.
- Окисление. При работе алюминиевого проводника во влажной среде и на воздухе происходит его окисление. В этом процессе поверхность жилы покрывается оксидной пленкой, после чего окислительные процессы останавливаются. Потому что образовавшаяся пленка препятствует их развитию. С одной стороны таким образом алюминий сам себя защищает от полного сгнивания, а с другой – оксидная пленка не проводит ток. Следовательно, контакт сначала начинает усиленно греться, по мере возрастания переходного сопротивления, а затем и вовсе исчезает.
- Хрупкость. Большая часть проводов из алюминия ломаются, стоит их несколько раз согнуть. Это приводит к проблемам, как на этапе монтажа электроустановки, так и в процессе обслуживания, например при замене розеток и другого электрооборудования.
Однако некоторые из недостатков, например, текучесть, зависят от конкретного производителя и марки продукции, т.к. в этой сфере применяются различные сплавы.
Марки алюминиевых проводов
СИП – самонесущий изолированный провод. Используется в воздушных линиях электропередач напряжением вплоть до 35 кВ. Количество жил – от 1 до 4. Маркировка выглядит подобно этой: «СИП 1, СИП 2» и так далее. Если после цифры присутствует буква «А», значит нулевая жила изолирована, если нет – то ноль без изоляции. Жилы покрыты устойчивым к УФ-излучению полиэтиленом. От маркировки может изменяться количество жил и их конструкция. Отличительная особенность у марки СИП 3 – это то, что он одножильный сталеалюминевый провод.
АПВ – провод алюминиевый с монолитной изолированной жилой, производится в диапазоне сечений от 2,5 до 16 кв. мм. Используется для сборки электрических схем, щитов и шкафов, можно применять для сборки арматуры осветительных приборов. Продукция этой марки прокладывается в стенах, трубах, лотках. Рассчитан на напряжение до 1000 В 50 Гц. Материал изоляции – ПВХ-пластикат.
А – неизолированный провод, используется на воздушных линиях электропередач. Провода состоят из тонких проволок, скрученных в так называемый повив. Диапазон сечением 16-750 кв. мм.
АС – неизолированный провод, отличается от предыдущего только наличием стального сердечника, что делает его более жестким и устойчивым к механическим воздействиям.
Марки алюминиевого кабеля
АВВГ – с алюминиевыми жилами и двойной виниловой изоляцией. Пожалуй, один из наиболее распространенных типов кабелей. Используется в сетях 0,66/1 кВ с частотой переменного тока 50 Гц. Выпускается в диапазоне сечений от 2,5 до 240 кв. мм. С количеством жил от 2 до 4. Его используют для стационарного подключения электрооборудования к питающей сети, может использоваться и в помещениях со сложными условиями, например, частично затопленные, с повышенной влажностью или взрывоопасные. Его можно использовать в качестве проводника на силовую проводку фактически активно используется в сетях 0,4 кВ. Используется и для проводки в жилых домах, подходит для подключения розеток и на производстве.
АВБбШв – с алюминиевыми жилами и ленточной броней изоляцией ПВХ каждой жилы и слоя опоясывающей изоляции, а вернее сказать снаружи ПВХ-шланг. Количество жил от 1 до 5, а их сечение от 2,5 кв. мм до 240 кв. мм. Номинальные напряжения – 0,66-1 кВ и 50 Гц частота переменного тока. Он может применяться для прокладки проводки и подключения электроустановок к питающей сети в сложных условиях, а также при возможностях механических повреждений, во взрыво- и пожароопасных помещениях. В том числе и для наружной прокладки и под землей, например для ввода в дом питающего кабеля. Броня из двух лент позволяет прокладывать линию без дополнительной защиты от грызунов. При сечениях свыше 6 кв. мм. изоляция усиливается слоем сшитого полиэтилена и покровом из битума.
АСБл – бронированный стальными лентами, а также в свинцовой оболочке. Количество жил от 1 до 4, их сечение лежит в диапазоне 16-800 кв. мм. Используется для работы в электроустановках напряжением до 10 кВ. В зависимости от класса гибкости и площади поперечного сечения токопроводящие жилы могут быть как однопроволочными (монолитными, в каталогах могут обозначаться сокращенно «ОЖ»), так и многопроволочными. Жилы покрыты бумажной изоляцией, заключены в экран из электропроводящей бумаги. Они заключены в свинцовую оболочку, а подушка выполнена из битума, крепированной бумаги и ПВХ-пленки. Можно использовать для прокладки в грунте с малой и средней коррозийной активностью.
АПвПуг – бронированный для линий напряжением до 6-10 кВ частотой 50 Гц. Тип брони – стальная ленточная. Изоляция – сшитый полиэтилен. Предназначен для прокладки в земле: траншеях и грунте независимо от степени коррозийной активностью. Поэтому герметичен, защищен от проникновения влаги. Возможно использование для воздушных линий, а в случае обеспечения должной противопожарной защиты (нанесения огнезащитных покрытий) и в сооружениях. Диапазон сечений – от 50 до 800 кв. мм, жилы многопроволочные. Кроме того на кабеле присутствует экран из медной проволоки сечением 16-35 кв. мм скрепленных медной лентой. Материалы позволяют прокладывать его даже в водоемах судоходных и несудоходных, при условии исключения вероятности механических повреждений кабеля.
ААБл – бронированный, для прокладки в сетях 1-10 кВ. Жилы могут быть однопроволочными или многопроволочными, изолированы пропитанной бумагой, поверх которой размещена поясная изоляция из полупроводящей бумаги. Это все заключено в алюминиевую оболочку и броню из двух стальных лент. Допустимые напряжения указываются в маркировке, например ААБл 1 – 1 кВ, ААБл 6 – 6 кВ, ААБл 10 – 10 кВ соответственно. Диапазон сечений 50-240 кв. мм. Может использовать в любой местности от умеренного до холодного климата. Для прокладки вертикальных участков линий нельзя использовать этот вид кабеля, есть специальный с нестекающей пропиткой ЦААБл-10. В грунте можно прокладывать данную марку при невысокой коррозионной активности.
ААШв – с бумажной изоляцией алюминиевых жил покрытых слоем общей виниловой изоляции. Используется в сетях до 10 кВ (или до 6 кВ в зависимости от конкретного варианта изделия). Жилы могут быть одножильными (маркировка «ОЖ» или «ОК») и многопроволочными (маркировка «мк», «мс», «мж»). При прокладке одного кабеля изоляция не распространяет горение. Пропитка бумажной изоляции выполняется таким вязким составом, что он не вытекает, а при соединении кабеля в муфтах не образуется воздушных включений. Экран выполнен из электропроводящей бумаги. Количество жил от 1 до 4, а диапазон их сечений лежит в пределах 50-800 кв. мм.
В заключение хотелось бы отметить, что в последнее время все чаще говорят том, что алюминий вернется в бытовую электропроводку. Реальную причину этому назвать сложно. Производители позиционируют новые кабели, изготовленные из нетекучих жестких сплавов, а также разработку алюминиевых кабелей, покрытых слоем меди. Скептики утверждают, что это попытки компании «Русал» увеличить доход от сбыта своей продукции. В любом случае виды и марки алюминиевых проводов и кабелей нужно знать, чтобы их правильно использовать.
Источник