- Измерительные трансформаторы тока — назначение, устройство, виды конструкций
- Назначение и устройство ИТТ
- Перечень основных параметров
- Виды конструкций измерительных трансформаторов
- Расшифровка маркировки
- Схемы подключения
- Выбор
- Обслуживание
- Трансформатор тока для детектирования включений нагрузки в сети 220В
- Принцип работы трансформатора тока
- Конструкция трансформатора тока
- От теории к практике
- Схема подключения к микроконтроллеру
- Код для микроконтроллера
- Заключение
Измерительные трансформаторы тока — назначение, устройство, виды конструкций
Мощные электротехнические установки могут работать с напряжением несколько сот киловольт, при этом величина тока в них может достигать более десятка килоампер. Естественно, что для измерения величин такого порядка не представляется возможным использовать обычные приборы. Даже если бы таковые удалось создать, они получились бы довольно громоздкими и дорогими.
Помимо этого, при непосредственном подключении к высоковольтной сети переменного тока повышается риск поражения электротоком при обслуживании приборов. Избавиться от перечисленных проблем позволило применение измерительных трансформаторов тока (далее ИТТ), благодаря которым удалось расширить возможности измерительных устройств и обеспечить гальваническую развязку.
Назначение и устройство ИТТ
Функции данного типа трансформаторов заключаются в снижении первичного тока до приемлемого уровня, что делает возможным подключение унифицированных измерительных устройств (например, амперметров или электронных электросчетчиков), защитных систем и т.д. Помимо этого, трансформатор тока обеспечивают гальваническую развязку между высоким и низким напряжением, обеспечивая тем самым безопасность обслуживающего персонала. Это краткое описание позволяет понять, зачем нужны данные устройства. Упрощенная конструкция ИТТ представлена ниже.
Конструкция измерительного трансформатора тока
Обозначения:
- Первичная обмотка с определенным количеством витков (W1).
- Замкнутый сердечник, для изготовления которого используется электротехническая сталь.
- Вторичная обмотка (W2 — число витков).
Как видно из рисунка, катушка 1 с выводами L1 и L2 подключена последовательно в цепь, где производится измерение тока I1. К катушке 2 подключается приборы, позволяющие установить значение тока I2, релейная защита, система автоматики и т.д.
Основная область применения ТТ — учет расхода электроэнергии и организация систем защиты для различных электроустановок.
В измерительном трансформаторе тока обязательно наличие изоляции как между катушками, витками провода в них и магнитопроводом. Помимо этого по нормам ПУЭ и требованиям техники безопасности, необходимо заземлять вторичные цепи, что обеспечивает защиту в случае КЗ между катушками.
Получить более подробную информацию о принципе действия ТТ и их классификации, можно на нашем сайте.
Перечень основных параметров
Технические характеристики трансформатора тока описываются следующими параметрами:
- Номинальным напряжением, как правило, в паспорте к прибору оно указано в киловольтах. Эта величина может быть от 0,66 до 1150 кВ. получит полную информацию о шкале напряжений можно в справочной литературе.
- Номинальным током первичной катушки (I1), также указывается в паспорте. В зависимости от исполнения, данный параметр может быть в диапазоне от 1,0 до 40000,0 А.
- Током на вторичной катушке (I2), его значение может быть 1,0 А (для ИТТ с I1 не более 4000,0 А) или 5,0 А. Под заказ могут изготавливаться устройства с I2 равным 2,0 А или 2,50 А.
- Коэффициентом трансформации (КТ), он показывает отношение тока между первичной и вторичной катушками, что можно представить в виде формулы: КТ = I1/I2. Коэффициент, определяемый по данной формуле, принято называть действительным. Но для расчетов еще используется номинальный КТ, в этом случае формула будет иметь вид: IНОМ1/IНОМ2, то есть в данном случае оперируем не действительными, а номинальными значениями тока на первой и второй катушке.
Ниже, в качестве примера, приведена паспортная таблица модели ТТ-В.
Перечень основных параметров измерительного трансформатора тока ТТ-В
Виды конструкций измерительных трансформаторов
В зависимости от исполнения, данные устройства делятся на следующие виды:
- Катушечные, пример такого ТТ представлен ниже.
Катушечный ИТТ
Обозначения:
- A – Клеммная колодка вторичной обмотки.
- В – Защитный корпус.
- С – Контакты первичной обмотки.
- D – Обмотка (петлевая или восьмерочная) .
- Стержневые, их также называют одновитковыми. В зависимости от исполнения они могут быть:
- Встроенными, они устанавливаются на изоляторы вводы силовых трансформаторов, как показано на рисунке 4.
Рисунок 4. Пример установки встроенного ТТ
Обозначения:
- А – встроенный ТТ.
- В – изолятор силового ввода трансформатора подстанции.
- С – место установки ТТ (представлен в разрезе) на изоляторе. То есть, в данном случае высоковольтный ввод играет роль первичной обмотки.
- Шинными, это наиболее распространенная конструкция. Ее принцип строения напоминает предыдущий тип, стой лишь разницей, что в данном исполнении в качестве первичной обмотки используется токопроводящая шина или жила, которая заводится в окно ИТТ.
Шинные ТТ производства Schneider Electric
- Разъемными. Особенность данной конструкции заключается в том, что магнитопровод ТТ может разделяться на две части, которые стягиваются между собой специальными шпильками.
Такой вариант конструкции существенно упрощает монтаж/демонтаж.
Расшифровка маркировки
Обозначение отечественных моделей интерпретируется следующим образом:
- Первая литера в названии модели указывает на вид трансформатора, в нашем случае это будет буква «Т», указывая на принадлежность к ТТ.
- Вторая литера указывает на особенность конструктивного исполнения, например, буква «Ш», говорит о том, что данное устройство шинное. Если указана литера «О», то это опорный ТТ.
- Третьей литерой шифруется исполнение изоляции.
- Цифрами указывается класс напряжения (в кВ).
- Литера, для обозначения климатического исполнения согласно ГОСТ 15150 69
- КТ, с указанием номинального тока первичной и вторичной обмотки.
Приведем пример расшифровки маркировки трансформатора тока.
Шильдик на ТТ с указанием его марки
Как видим, на рисунке изображена маркировка ТЛШ 10УЗ 5000/5А, это указывает на то, что перед нами трансформатор тока (первая литера Т) с литой изоляцией (Л) и шинной конструкцией (Ш). Данное устройство может использоваться в сети с напряжением до 10 кВ. Что касается исполнения, то литера «У», говорит о том, что аппарат создан для эксплуатации в умеренной климатической зоне. КТ 1000/5 А, указывает на величину номинального тока на первой и второй обмотке.
Схемы подключения
Обмотки трехфазных ТТ могут быть подключены «треугольником» или «звездой» (см. рис. 8). Первый вариант применяется в тех случаях, когда необходимо получить большую силу тока в цепи второй обмотки или требуется сдвинуть по фазе ток во вторичной катушке, относительно первичной. Второй способ подключения применяется, если необходимо отслеживать силу тока в каждой фазе.
При наличии изолированной нейтрали, может использоваться схема для измерения разности токов между двумя фазами (см. А на рис. 9) или подключение «неполной звездой» (B).
Рисунок 9. Схема подключения ТТ на разность двух фаз (А) и неполной звездой (В)
Когда необходимо запитать защиту от КЗ на землю, применяется схема, позволяющая суммировать токи всех фаз (см. А на рис 10.). Если к выходу такой цепи подключить реле тока, то оно не будет реагировать на КЗ между фазами, но обязательно сработает, если происходит пробой на землю.
Рис 10. Подключения: А – для суммы токов всех фаз, В и С — последовательное и параллельное включение двухобмоточных ТТ
В завершении приведем еще два примера соединения вторичных обмоток ТТ для снятия показаний с одной фазы:
Вторичные катушки включаются последовательно (В на рис. 10), благодаря этому возникает возможность измерения суммарной мощности.
Вторичные обмотки соединяются параллельно, что дает возможность понизить КТ, поскольку происходит суммирование тока в этих катушках, в то время как в линии этот показатель остается без изменений.
Выбор
При выборе трансформатора тока в первую очередь необходимо учитывать номинальное напряжение прибора было не ниже, чем в сети, где он будет установлен. Например, для трехфазной сети с напряжением 380 В можно использовать ТТ с классом напряжения 0,66 кВ, соответственно для установок более 1000 В, устанавливать такие устройства нельзя.
Помимо этого IНОМ ТТ должен быть равен или превышать максимальный ток установки, где будет эксплуатироваться прибор.
Кратко изложим и другие правила, позволяющие не ошибиться с выбором ТТ:
- Сечение кабеля, которым будет подключаться ТТ к цепи вторичной нагрузки, не должно приводить к потерям сверх допустимой нормы (например, для класса точности 0,5 потери не должны превышать 0,25%).
- Для систем коммерческого учета должны использоваться устройства с высоким классом точности и низким порогом погрешности.
- Допускается установка токовых трансформаторов с завышенным КТ, при условии, что при максимальной нагрузке ток будет до 40% от номинального.
Посмотреть нормы и правила, по которым рассчитываются измерительные трансформаторы тока (в том числе и высоковольтные) можно в ПУЭ ( п.1.5.1.). Пример расчета показан на картинке ниже.
Пример расчета трансформатора тока
Что касается выбора производителя, то мы рекомендуем использовать брендовую продукцию, достоинства которой подтверждены временем, например ABB, Schneider Electric b и т.д. В этом случае можно быть уверенным, что указанные в паспорте технические данные, а методика испытаний соответствовала нормам.
Обслуживание
Необходимо обратить внимание, что при соблюдении режима и условий эксплуатации, правильно подобранных номиналах и регулярном обслуживании ТТ будет служить 30 лет и более. Для этого необходимо:
- Обращать внимание на различные виды неисправностей, заметим, что большинство из них можно обнаружить при визуальном осмотре.
- Производить контроль нагрузки в первичных цепях и не допускать перегрузку выше установленной нормы.
- Необходимо отслеживать состояние контактов первичной цепи (если таковые имеются), на них должны отсутствовать внешние признаки повреждений.
- Не менее важен контроль состояния внешней изоляции, почти в половине случаев ее стойкость нарушается из-за скопления грязи или влаги, которые закорачивают контакты на землю.
- У масляных ТТ осуществляют проверку уровня масла, его чистоту, наличие подтеков и т.д. Обслуживание таких установок практически не сильно отличается от других силовых установок, например, емкостных трансформаторов НДЕ, разница заключается в небольших технических деталях.
- Поверка ТТ должна проводиться согласно действующих нормативов (ГОСТ 8.217 2003).
- При обнаружении неисправности производится замена прибора. Поврежденный ТТ отправляют в ремонт, который производится специализированными службами.
Источник
Трансформатор тока для детектирования включений нагрузки в сети 220В
Недавно у меня возникла необходимость определять на микроконтроллере моменты включения/выключения погружного насоса с поплавковым выключателем, запитанного от сети 220В, т.е. по сути определять наличие потребляемого тока в цепи питания насоса. Когда речь идет об измерениях в сети 220В, то в первую очередь стоит подумать о том, как обеспечить качественную гальваническую развязку, т.е. отсутствие электрического контакта между высоковольтными и низковольтными цепями.
Пожалуй самым простым и быстрым решением было бы взять готовый модуль на эффекте Холла (например на микросхеме ACS712). Однако мне такой вариант не подошёл по двум причинам. Во-первых, он требует питания 5В, а у меня всё было запитано от 3.3В. Во-вторых, он включается в разрыв измеряемой цепи, а мне было очень важно не нарушить работу насоса даже в случае ошибки проектирования или выхода из строя датчика.
Как ни странно, нагуглить готовое решение без специальных модулей для такой казалось бы простой задачи не удалось, поэтому здесь хочу поделиться опытом расчета и изготовления простейших измерительных трансформаторов тока.
Принцип работы трансформатора тока
Пожалуй каждый, кто когда-нибудь работал с аналоговой электроникой, сталкивался наводками от сети 220В. Казалось бы, если от этих наводок так сложно избавиться, то может быть и определить включение нагрузки должно быть очень легко? Однако всё оказалось не совсем так просто.
Действительно, простейший измерительный трансформатор тока можно сделать из мотка обычного двухжильного силового кабеля — по одной из жил запустить измеряемый ток, а с другой снимать полезный сигнал. Попробуем прикинуть (хотя бы по порядку величины), какое напряжение образуется на концах «сигнальной» жилы, если через «силовую» пропустить ток к целевой нагрузке? Может этого будет уже достаточно для решения поставленной задачи?
Моток кабеля в такой конфигурации по сути представляет собой трансформатор с воздушным сердечником. Ток, проходящий через витки силовой жилы, формирует переменное магнитное поле. Это поле создаёт электродвижущую силу ЭДС индукции в каждом витке сигнальной жилы. Величина ЭДС пропорциональна скорости изменения магнитного потока проходящего через окружённую витком поверхность:
Если предположить, что витки в мотке кабеля уложены достаточно плотно, а ток в измерительной жиле равен нулю, то магнитный поток через все витки будет одинаковым, и его можно будет посчитать как произведение индуктивности одного витка , числа витков
и тока в силовой жиле
. ЭДС во всех измерительных витках будет одинакова и суммарное напряжение на концах сигнальной жилы будет равно произведению числа витков на ЭДС в одном витке:
В бытовой сети переменного тока , где
— частота, равная 50 Гц, а
— амплитудное значение силы тока. Значение
можно определить исходя из мощности нагрузки
и действующего значения напряжения
, равного 230 В. В итоге для производной тока по времени получаем такую формулу:
Например, для нагрузки мощностью 1 кВт, подключённой к обычной бытовой сети с напряжением 230 В, вычисленная по этой формуле амплитуда производной тока по времени получится чуть меньше 2000 ампер в секунду.
Индуктивность одного витка посчитаем исходя из радиуса нашего мотка и радиуса проволоки, из которой сделана жила кабеля
:
Здесь — магнитная постоянная. Для мотка кабеля диаметром 10 см, имеющего жилы диаметром 2 мм, индуктивность витка получается около 0.25 мкГн. Если такой моток сделать из кабеля длиной 10 метров, то получится около 30 витков. В итоге для нашей нагрузки в 1 кВт напряжение на разомкнутой сигнальной жиле получится таким:
Значение получается вполне детектируемое, но что произойдёт в момент включения или выключения нагрузки, когда ток может изменяться в десятки или даже сотни раз быстрее, чем при нормальной работе? В этом случае вместо 450 мВ на концах сигнальной жилы может быть скачок напряжения в несколько десятков или даже сотню вольт, который вполне может повредить вход микроконтроллера.
Чтобы решить проблему с зависимостью ЭДС индукции от частоты сигнала, в трансформаторах тока используется совсем другой режим работы — вместо того, чтобы разомкнуть вторичную обмотку и измерять на ней напряжение, она замыкается накоротко и измеряется проходящий через неё ток.
Как только в сигнальной жиле появляется ток, он создаёт своё собственное магнитное поле, направленное противоположно исходному. В идеальном случае ток в сигнальной жиле мгновенно вырастет настолько, что полностью компенсирует магнитный поток силовой жилы. Для рассмотренного выше случая с одинаковым числом витков силы тока в двух жилах окажутся равны, а ЭДС индукции в сигнальной жиле будет стремиться к нулю. При разном числе витков отношение токов в силовой и сигнальной обмотках будет определяться отношением числа витков: , а суммарный магнитный поток и ЭДС индукции также будут стремиться к нулю.
Конструкция трансформатора тока
В реальном мире у сигнальной жилы есть ненулевое пассивное сопротивление и для создания в ней тока необходимо ненулевое значение ЭДС индукции, а значит магнитный поток силовой обмотки должен быть скомпенсирован не полностью. Чтобы ток в сигнальной обмотке был максимально близок к идеальному, нужно максимизировать отношение напряжения разомкнутой обмотки к реальному падению напряжения, необходимому для создания этого тока. Этого можно добиться разными способами:
снижением целевого падения напряжения на сигнальной обмотке
увеличением числа витков силовой обмотки
увеличением числа витков сигнальной обмотки
увеличением индуктивности каждого витка
Минимизировать напряжение на сигнальной обмотке можно за счёт более чувствительной схемы измерения тока. В самом простом случае ток преобразуется в напряжение на шунтирующем резисторе и падение напряжения определяется диапазоном детектируемых токов и характеристиками аналогового входа микроконтроллера.
Существенно увеличить число витков в силовой обмотке сложно, т.к. через неё подключается нагрузка, а значит у неё должно быть и сечение достаточно большое, и изоляция надёжная. А вот в сигнальной обмотке число витков можно увеличить весьма значительно, причём поскольку ток в сигнальной обмотке обратно пропорционален числу витков в ней, сечение провода также можно существенно уменьшить. Именно поэтому в токовых трансформаторах в сигнальной обмотке обычно значительно больше витков, чем в силовой.
Индуктивность каждого витка можно очень сильно увеличить с помощью ферромагнитного магнитопровода. Обычная электротехническая сталь увеличивает магнитную индукцию в несколько тысяч раз, а также концентрирует магнитное поле внутри магнитопровода, обеспечивая полноту прохождения магнитного потока через витки сигнальной обмотки. Например один виток на ферритовом кольце R36x23x15 PC40 имеет индуктивность около 3 мкГн, что в 12 раз больше, чем те 0.25 мкГн, которые у нас получились для витка в мотке кабеля намного больших размеров.
Наличие магнитопровода в конструкции трансформатора приводит и к некоторым ограничениям:
Напряжённость поля внутри сердечника ограничена эффектом магнитного насыщения, т.е. чем больше измеряемый ток — тем больше должно быть сечение сердечника, чтобы распределить магнитное поле по большей площади.
Сердечник должен успевать перемагничиваться вслед за изменением магнитного поля силовой обмотке, т.е. частота изменения измеряемого тока ограничена характеристиками материала сердечника.
При перемагничивании сердечника выделяется тепло, что ограничивает произведение частоты изменения тока на величину магнитного поля.
Все эти ограничения однако больше влияют на конструкцию силовых трансформаторов, а для измерительного трансформатора достаточно легко можно обеспечить очень большой запас по каждому из этих ограничений.
От теории к практике
Трансформаторы тока повсеместно используются для измерений в сети 220В. Можно купить готовый трансформатор и через простенькую аналоговую схему подключить его к микроконтроллеру, но возможность и желание ждать заказа есть не всегда, так что мы будем делать самодельный из подручных материалов — в надежде, что это получится и быстрее, и дешевле, и интереснее. Важно сказать, что у меня не было задачи сильно оптимизировать конструкцию — нужно было сделать быстро, просто и понятно, чтобы работало и не ломалось.
Чтобы получить достаточный запас по ЭДС индукции, но сохранить при этом небольшие габариты, я использовал в качестве магнитопровода ферритовое кольцо R36x23x15 PC40 (такое можно купить в ряде магазинов радиодеталей меньше чем за 100 рублей). Первичную обмотку я сделал обычным силовым проводом, просто пропустив его несколько раз через кольцо. А сигнальную обмотку намотал тонким монтажным проводом с сечением 30AWG — таким просто удобнее сделать нужное число витков. Плотность и аккуратность намотки в данном случае были не важны, т.к. достаточно было всего лишь обнаружить включение нагрузки, а не измерять потребляемый ток.
Чтобы оценить запас по ЭДС индукции, я посчитал ожидаемое напряжение на разомкнутой сигнальной обмотке при работающей нагрузке. Для этого сначала вычислил индуктивность одного витка провода на магнитопроводе:
Здесь — магнитная проницаемость материала (2300 для феррита PC40 ),
— внешний радиус ферритового кольца,
— внутренний радиус,
— высота. Получилось значение около 3 мкГн.
Дальше я взял паспортную мощность погружного насоса, включения которого нужно было детектировать (320 Вт), и посчитал амплитуду напряжения на разомкнутой обмотке в зависимости от числа витков в первичной и вторичной обмотках:
Самодельный трансформатор тока, подключённый в цепь с тестовой нагрузкой
Поиграв с числом витков, я решил сделать 6 витков первичной обмотки и 130 витков вторичной. Так получился запас ЭДС около 1.5 В и амплитуда тока в короткозамкнутой сигнальной обмотке чуть меньше 100 мА, что при использовании резистора на 5 Ом соответствует падению напряжения около 0.5 В. Больше витков силового кабеля было бы сложнее впихнуть в просвет кольца, да и ток в сигнальной обмотке не хотелось делать слишком большим (т.к. она сделана из довольно тонкого провода). При меньшем числе витков первичной обмотки для получения хорошего запаса по ЭДС пришлось бы сильно увеличить число витков во вторичной обмотке — а значит гораздо больше возиться с намоткой и получить для детектирования в несколько раз меньший ток.
Схема подключения к микроконтроллеру
На выходе трансформатора тока, шунтированного резистором, получается переменное напряжение, которое нужно как-то детектировать с помощью микроконтроллера. Сначала я собирался использовать для этого диодный выпрямитель, однако это оказалось не очень удачной идеей. Дело в том, что на открытом диоде присутствует довольно значительный перепад напряжения, особенно если это не диод Шоттки. Кроме того, детектировать переменный сигнал известной частоты проще в плане соотношения сигнал/шум.
В итоге я решил просто подать напряжение на шунтирующем резисторе (собранном из двух параллельно включённых резисторов R3 и R4 номиналом по 10 Ом) через токоограничивающий резистор R5 на АЦП-вход микроконтроллера A0 . А чтобы выставить уровень напряжения при отсутствии тока в обмотке, сделал простой резистивный делитель R1/R2 со стабилизирующим конденсатором C1 .
Схема подключения трансформатора тока к микроконтроллеру
Таким образом, при выключенной нагрузке на входе микроконтроллера будет напряжение, равное половине напряжения питания. А при включённой — колебания частотой 50 Гц вокруг половины напряжения питания с амплитудой, пропорциональной мощности нагрузки.
Резистор R5 не будет влиять на измерения, т.к. при нормальной работе ток через него пренебрежимо мал. Но если по каким-то причинам на выходе трансформатора возникнет скачок напряжения, превышающий половину напряжения питания, в микроконтроллере откроется защитный диод D1 или D2 , соединяющий вход с одной из линий питания. В этом случае через резистор R5 потечёт ток, и напряжение будет падать на этом резисторе, а не на диоде. Таким образом, резистор R5 защищает вход микроконтроллера от скачков напряжения.
Код для микроконтроллера
Поскольку в моём случае достаточно было детектировать сам факт включения нагрузки, код получился очень простым:
В течение одного периода колебаний измеряется максимальное и минимальное значение на АЦП и величина тока определяется по разности между ними. При включённном насосе функция возвращает значение более 200 отсчётов, а при выключенном — меньше 10.
График значений функции measureCurrent() в зависимости от времени
Заключение
В итоге получилась довольно простая, надёжная и дешёвая система детектирования включений погружного насоса. Она непрерывно работает уже 7 месяцев и пока не потребовала каких-либо вмешательств.
Сделать свой собственный трансформатор тока оказалось совсем несложно и достаточно интересно. Я постарался максимально подробно изложить здесь полученный при этом опыт. Надеюсь, эта статья позволит кому-нибудь быстрее разобраться в принципах работы трансформатора тока и реализовать свои собственные проекты с использованием этого элемента.
UPD: В комментариях подсказали очень дешёвый вариант готового трансформатора тока — ZMCT103C, судя по характеристикам его вполне можно было бы использовать для решения моей задачи.
Источник