- Испытание кабелей всех напряжений
- Высоковольтные испытания
- Установки для высоковольтных испытаний
- Переменный, постоянный и сверхнизкий
- Токи утечки и коэффициенты асимметрии для силовых кабелей
- ПУЭ-7 п.1.8.40 Нормы приемо-сдаточных испытаний. Силовые кабельные линии
- Таблица 1.8.39 Испытательное напряжение выпрямленного тока для силовых кабелей
- Таблица 1.8.40 Токи утечки и коэффициенты асимметрии для силовых кабелей
- Таблица 1.8.41 Нормы на показатели качества масел марок С-220, МН-3 и МН-4 и изоляционной жидкости марки ПМС
- Таблица 1.8.42 Тангенс угла диэлектрических потерь масла и изоляционной жидкости (при 100, %, не более, для кабелей на напряжение, кВ)
Испытание кабелей всех напряжений
При схожести конструкции подход к измерениям и поиску повреждений силовых кабелей сильно отличается от тех же работ с кабелями связными. Обусловлено это тем, что силовые кабели способны провести большой ток и распределительные устройства этот ток ограничивают не мгновенно. То есть в случае пробоя кабельной линии произойдёт не тихое умирание системы, а взрыв с дополнительными повреждениями. Способность проводить приличный ток даёт возможность использовать более простые и наглядные способы поиска места пробоя.
Высоковольтные испытания
Кабельная линия, включающаяся в электрическую сеть, должна быть испытана повышенным напряжением постоянного тока. Низковольтные кабели (до 1000 В) испытываются мегаомметром с напряжением 2500 В. Для высоковольтных (выше 1000 в) всё сложнее – испытательное напряжение зависит от вида изоляции кабеля и номинального напряжения кабельной линии.
Нормы на испытательные напряжения отражены в ПУЭ и прочих нормативных документах. Протоколы на эти испытания содержат ссылки на пункты нормативных документов, величину испытательного напряжения и токи утечки, сопротивление изоляции.
Причина такого серьёзного подхода для новичков не всегда очевидна, поэтому далее небольшое отступление.
Мощность, передаваемая по силовым, а особенно высоковольтным кабелям очень велика. Средний по номинальному току высоковольтный выключатель имеет Iном. = 630 А. Если напряжение высоковольтной сети 6 кВ, то такой выключатель передаёт в нормальном режиме 630 * 6000 = 3 780 000 Вт = 3,78 МВт мощности. Это номинал, но отключится он при гораздо большем токе и не сразу. В случае пробоя эта мощность выделится на небольшом участке, металл и пластик быстро переходят в газообразное состояние — происходит серьёзный взрыв. Если рядом оказываются люди, то даже без поражения электрическим током возможны возгорания одежды и кожи открытых частей тела.
Зачастую такие аварии имеют цепную реакцию из-за того, что автоматика не всегда сразу отсекает повреждённый участок или токоведущие шины подстанций не выдерживают превышающий номинал ток – загореться может что-то ещё, и обесточится большой и важный участок энергохозяйства.
В электросетях любят показывать молодым обгоревшие остовы высоковольтных ячеек. Представьте себе стальной шкаф метр на метр на полтора сквозными дырками и весь покрытый сажей и окалиной.
Поэтому у электриков-высоковольтников ни одна кабельная линия не должна включаться в сеть без испытаний повышенным напряжением. Установки для испытаний подают в кабельную линию напряжение превышающее номинальное в несколько раз, тем самым испытывая её изоляцию. При этом они способны быстро отключиться в случае пробоя без тяжёлых последствий.
Установки для высоковольтных испытаний
Аппарат для высоковольтных
испытаний АИИ-70
Аппараты для высоковольтных испытаний можно условно разделить на переносные и используемые в составе передвижной лаборатории высоковольтных испытаний (далее ЛВИ).
Наиболее распространённые переносные приборы на следующих фотографиях: это старичок АИИ-70 и более новый АИД-70. (70 — максимальное напряжение в киловольтах). Плюс сейчас в эксплуатации всё чаще появляются приборы импортного происхождения.
АИД-70
То, что устанавливается в передвижные лаборатории высоковольтных испытаний (ЛВИ) более разнообразно и, как правило, выполнено в виде стоечного блока и отдельного трансформатора. Испытательный блок завязывается на общую для всей машины систему кабелей и заземления. Тем не менее, поверяются эти блоки отдельно от всей ЛВИ, и даже в протоколе указывается испытательный блок, а не весь комплекс.
Говоря о передвижных лабораториях стоит заметить, что собираются они блочно. То есть у вас желание иметь в составе дополнительный блок – ставьте, не хватает денег — не ставьте. Имея автомобиль с просторным салоном можно собрать высоковольтную лабораторию в хорошо оборудованном гараже. Привинтить трансформатор, закрепить катушки с испытательным кабелем, придумать безопасный переключатель, блокировку и заземление. То есть выполнить требования ПУЭ, а они в свою очередь не так уж и сложны, то есть под силу некоторым «Кулибиным».
Переменный, постоянный и сверхнизкий
Оборудование высоковольтных подстанций испытывается разными типами тока. Шины, секции, трансформаторы и тому подобные устройства испытываются повышенным напряжением переменного тока.
Испытать же кабели переменным напряжением не получится из-за большой электрической ёмкости кабельных жил. Для подобного испытания пришлось бы делать установку довольно большой мощности и именно поэтому кабели испытывают постоянным током. Соответственно с возможностью переключения «постоянный ток – переменный ток» производятся и испытательные установки. То есть в них либо предусмотрен переключатель, либо может быть подключен выпрямляющий блок. Электрическая схема выпрямителя для таких испытаний, как правило, состоит из одного высоковольтного диода.
В связи с распространением кабелей с изоляцией из сшитого полиэтилена (буквы «Пв» в маркировке) всё больше появляется испытательных установок способных выдавать напряжение со сверхнизкой частотой – 0,1 Гц. Такой аппарат меняет полярность выдаваемого напряжения с периодом в 10 секунд. Из-за такой медленной смены полярности электрическая ёмкость кабеля уже не создаёт больших токов при испытании повышенным напряжением. В то же время это уже не постоянный ток и поляризации в сшитом полиэтилене не происходит.
Стоит заметить, что в нормативных документах предусмотрено много исключений типа «если отсутствует установка переменного тока, то допускается испытание постоянным…» или «допускается испытание оборудование секций совместно с кабельными линиями по напряжению для …»
Силовые кабели напряжением выше 1 кВ испытываются повышенным напряжением выпрямленного тока. Величины испытательных напряжений и длительность приложения нормированного испытательного напряжения приведены в таблице 1.8.39 (ПУЭ п. 1.8.40)
Изоляция и марка кабеля | Испытательное напряжение, кВ, для кабелей на рабочее напряжение, кВ | Продолжительность испытания, мин | |||
---|---|---|---|---|---|
2 | 3 | 6 | 10 | ||
Бумажная | 12 | 18 | 36 | 60 | 10 |
Резиновая марок ГТШ, КШЭ, КШВГ, КШВГЛ, КШБГД | — | 6 | 12 | 20 | 5 |
Пластмассовая | — | 15 | 36 | 60 | 10 |
Токи утечки и коэффициенты асимметрии для силовых кабелей
При испытаниях отмечают характер изменения тока утечки. Кабель считается прошедшим испытания при отсутствии пробоя изоляции, скользящих разрядов и толчков (или нарастания) тока утечки после того, как испытательное напряжение достигнет нормативного значения. (Табл 1.8.40 ПУЭ п. 1.8.40) После испытания исправный кабель необходимо разрядить.
Кабели напряжением, кВ | Испытательное напряжение, кВ | Допустимые значения токов утечки, мА | Допустимые значения коэффициента асимметрии (Imax/Imin) |
---|---|---|---|
6 | 36 | 0,2 | 8 |
10 | 60 | 0,5 | 8 |
Абсолютное значение тока утечки не является браковочным показателем. Кабельные линии с удовлетворительной изоляцией должны иметь стабильные значения токов утечки. При проведении испытания ток утечки должен уменьшаться. Если не происходит уменьшения значения тока утечки, а также при его увеличении или нестабильности тока испытание производить до выявления дефекта, но не более чем 15 мин.
Измерение распределения тока по одножильным кабелям проводится на линиях всех напряжений. Неравномерность распределения тока на кабеле не должна превышать 10 %.
Источник
ПУЭ-7 п.1.8.40 Нормы приемо-сдаточных испытаний. Силовые кабельные линии
Силовые кабельные линии
Силовые кабельные линии напряжением до 1 кВ испытываются по пп.1, 2, 7, 13, напряжением выше 1 кВ и до 35 кВ — по пп.1-3, 6, 7, 11, 13, напряжением 110 кВ и выше — в полном объеме, предусмотренном настоящим параграфом.
1. Проверка целостности и фазировки жил кабеля. Проверяются целостность и совпадение обозначений фаз подключаемых жил кабеля.
2. Измерение сопротивления изоляции. Производится мегаомметром на напряжение 2,5 кВ. Для силовых кабелей до 1 кВ сопротивление изоляции должно быть не менее 0,5 МОм. Для силовых кабелей выше 1 кВ сопротивление изоляции не нормируется. Измерение следует производить до и после испытания кабеля повышенным напряжением.
3. Испытание повышенным напряжением выпрямленного тока.
Испытательное напряжение принимается в соответствии с табл.1.8.39.
Таблица 1.8.39 Испытательное напряжение выпрямленного тока для силовых кабелей
Кабели с бумажной изоляцией на напряжение, кВ
Кабели с пластмассовой изоляцией на напряжение, кВ
Кабели с резиновой изоляцией на напряжение, кВ
* Испытания выпрямленным напряжением одножильных кабелей с пластмассовой изоляцией без брони (экранов), проложенных на воздухе, не производятся.
Для кабелей на напряжение до 35 кВ с бумажной и пластмассовой изоляцией длительность приложения полного испытательного напряжения составляет 10 мин.
Для кабелей с резиновой изоляцией на напряжение 3-10 кВ длительность приложения полного испытательного напряжения составляет 5 мин. Кабели с резиновой изоляцией на напряжение до 1 кВ испытаниям повышенным напряжением не подвергаются.
Для кабелей на напряжение 110-500 кВ длительность приложения полного испытательного напряжения составляет 15 мин.
Допустимые токи утечки в зависимости от испытательного напряжения и допустимые значения коэффициента асимметрии при измерении тока утечки приведены в табл.1.8.40. Абсолютное значение тока утечки не является браковочным показателем. Кабельные линии с удовлетворительной изоляцией должны иметь стабильные значения токов утечки. При проведении испытания ток утечки должен уменьшаться. Если не происходит уменьшения значения тока утечки, а также при его увеличении или нестабильности тока испытание производить до выявления дефекта, но не более чем 15 мин.
Таблица 1.8.40 Токи утечки и коэффициенты асимметрии для силовых кабелей
Кабели напряжением, кВ | Испытательное напряжение, кВ | Допустимые значения токов утечки, мА | Допустимые значения коэффициента асимметрии ( |
6 | 36 | 0.2 | 8 |
10 | 60 | 0.5 | 8 |
20 | 100 | 1.5 | 10 |
35 | 175 | 2.5 | 10 |
110 | 285 | Не нормируется | Не нормируется |
150 | 347 | То же | То же |
220 | 610 | « | « |
330 | 670 | « | « |
500 | 865 | « | « |
При смешанной прокладке кабелей в качестве испытательного напряжения для всей кабельной линии принимать наименьшее из испытательных напряжений по табл.1.8.39.
4. Испытание напряжением переменного тока частоты 50 Гц.
Такое испытание допускается для кабельных линий на напряжение 110-500 кВ взамен испытания выпрямленным напряжением.
Испытание производится напряжением (1,00-1,73). Допускается производить испытания путем включения кабельной линии на номинальное напряжение
. Длительность испытания — согласно указаниям завода-изготовителя.
5. Определение активного сопротивления жил. Производится для линий 20 кВ и выше. Активное сопротивление жил кабельной линии постоянному току, приведенное к 1 мм сечения, 1 м длины и температуре +20 °С, должно быть не более 0,0179 Ом для медной жилы и не более 0,0294 Ом для алюминиевой жилы. Измеренное сопротивление (приведенное к удельному значению) может отличаться от указанных значений не более чем на 5%.
6. Определение электрической рабочей емкости жил.
Производится для линий 20 кВ и выше. Измеренная емкость не должна отличаться от результатов заводских испытаний более чем на 5%.
7. Проверка защиты от блуждающих токов.
Производится проверка действия установленных катодных защит.
8. Испытание на наличие нерастворенного воздуха (пропиточное испытание).
Производится для маслонаполненных кабельных линий 110-500 кВ. Содержание нерастворенного воздуха в масле должно быть не более 0,1%.
9. Испытание подпитывающих агрегатов и автоматического подогрева концевых муфт.
Производится для маслонаполненных кабельных линий 110-500 кВ.
10. Проверка антикоррозийных защит.
При приемке линий в эксплуатацию и в процессе эксплуатации проверяется работа антикоррозионных защит для:
— кабелей с металлической оболочкой, проложенных в грунтах со средней и низкой коррозионной активностью (удельное сопротивление грунта выше 20 Ом/м), при среднесуточной плотности тока утечки в землю выше 0,15 мА/дм;
— кабелей с металлической оболочкой, проложенных в грунтах с высокой коррозионной активностью (удельное сопротивление грунта менее 20 Ом/м) при любой среднесуточной плотности тока в землю;
— кабелей с незащищенной оболочкой и разрушенными броней и защитными покровами;
— стального трубопровода кабелей высокого давления независимо от агрессивности грунта и видов изоляционных покрытий.
При проверке измеряются потенциалы и токи в оболочках кабелей и параметры электрозащиты (ток и напряжение катодной станции, ток дренажа) в соответствии с руководящими указаниями по электрохимической защите подземных энергетических сооружений от коррозии.
Оценку коррозионной активности грунтов и естественных вод следует производить в соответствии с требованиями ГОСТ 9.602-89.
11. Определение характеристик масла и изоляционной жидкости.
Определение производится для всех элементов маслонаполненных кабельных линий на напряжение 110-500 кВ и для концевых муфт (вводов в трансформаторы и КРУЭ) кабелей с пластмассовой изоляцией на напряжение 110 кВ.
Пробы масел марок С-220, МН-3 и МН-4 и изоляционной жидкости марки ПМС должны удовлетворять требованиям норм табл.1.8.41 и 1.8.42.
Таблица 1.8.41 Нормы на показатели качества масел марок С-220, МН-3 и МН-4 и изоляционной жидкости марки ПМС
Для вновь вводимой линии
Пробивное напряжение в стандартном сосуде, кВ, не менее
Степень дегазации (растворенный газ), не более
Примечание. Испытания масел, не указанных в табл.1.8.39, производить в соответствии с требованием изготовителя.
Таблица 1.8.42 Тангенс угла диэлектрических потерь масла и изоляционной жидкости (при 100, %, не более, для кабелей на напряжение, кВ)
110 | 150-220 | 330-500 |
0,5/0,8* | 0,5/0,8* | 0,5/- |
* В числителе указано значение для масел марок С-220, в знаменателе — для МН-3, МН-4 и ПМС
Если значения электрической прочности и степени дегазации масла МН-4 соответствуют нормам, а значения tg δ, измеренные по методике ГОСТ 6581-75, превышают указанные в табл.1.8.42, пробу масла дополнительно выдерживают при температуре 100 °С в течение 2 ч, периодически измеряя . При уменьшении значения tg δ проба масла выдерживается при температуре 100 °С до получения установившегося значения, которое принимается за контрольное значение.
12. Измерение сопротивления заземления.
Производится на линиях всех напряжений для концевых заделок, а на линиях 110-500 кВ, кроме того, для металлических конструкций кабельных колодцев и подпиточных пунктов.
Источник