Импульсный генератор для поиска повреждения кабеля

Импульсный генератор для поиска повреждения кабеля

На первой схеме самое оптимальное включение генератора для трассировки кабеля. Ток проходит по одной или нескольким жилам кабеля и возвращается через экран того же кабеля и землю.

Как вариант для кабелей без экрана обратный ток может идти и просто через заземление, и именно так чаще всего подключают к генератору кабеля связи. Однако подключение через «землю» всё же хуже и более подвержено ошибкам в трассировке из-за паразитных наводок на трубопроводы и прочие коммуникации (подробней → Подключение и использование частот генератора).

Неправильное включение генератора кабелеискателя

На следующей схеме неправильное подключение генератора. При этом ток в кабеле будет течь и индикатор прибора будет показывать его правильные значения, но кабелеискатель трассу не увидит. Связано это явление с симметричностью линии и соответственно с её защищённостью. Наводка от подключенной жилы кабеля будет равна и противоположна по знаку наводке на другой жиле с проходящим обратным током. В результате за пределы кабеля электромагнитное поле не выйдет. Тот же самый эффект может возникнуть в коаксиальных кабелях при отсутствии заземления экрана на противоположном от генератора конце.

Читайте также:  Симметричный кабель скорость передачи данных

Чтобы как-то снизить это явление надо нарушить симметрию линии увеличив количество проводящих элементов (жил) в плече обратного тока.

Подобным включением можно искать место разбитости пар. Но практически это неосуществимо: катушкой кабелеискателя нужно проводить по поверхности кабеля, а он в свою очередь на поверхности бывает крайне редко. Битость же, как правило, происходит в муфтах, которые в свою очередь и так создадут увеличенный фон сигнала (Поиск кабелеискателем разбитости пар).

Включение генератора через электрическую ёмкость кабеля

Следующая схема, скорее вынужденная и применяется в тех случаях когда сложно или невозможно заземлить дальний конец кабеля. Иногда её называют ёмкостной или «через ёмкость». Цепь по постоянному току оказывается не замкнутой, и всевозможные автоматические измерения импеданса показывают бесконечное сопротивление линии. Выходное напряжение прибора выставляется максимальным, частоту то же предпочтительно повысить до 1000 Гц и более.

Трассировка при таком включении никогда не доводит до конца кабеля и удовлетворительно работает на длинных, от 500 метров, линиях. Уровень сигнала при прохождении трассы постоянно падает от генератора к противоположному концу, что обусловлено особенностью ёмкостной связи.

Включение генератора для поиска повреждений

Далее представлена схема включения генератора для поиска повреждения. Она такая же, как и предыдущая, но из-за сопротивления повреждения (R), и соответственно тока утечки сопротивление (импеданс) не будет бесконечным. «Умные» современные приборы при автоматическом измерении импеданса это сопротивление будут видеть и соответственно станут настраиваться.

При большом сопротивлении повреждения подобная схема используется для поиска места повреждения щупами (контактный метод). И именно такой вариант использования наиболее характерен для кабелей связи.

В силовых кабелях часто используется методы преобразования (прожига) повреждения. Сопротивление при прожиге доводится до минимальных, близких к нулю значений. В этом случае место повреждения ищут одним кабелеискателем методом минимума. Из-за изменения направления тока в кабеле в месте повреждения изменяется направление электромагнитного поля (фиолетовые стрелки). Место повреждения определяется по отсутствию фиксации минимума в месте повреждения.

Здесь, конечно же есть свои нюансы, например мест с изменением направления электромагнитного поля вблизи повреждения несколько и связано это с особенностями повива силовых кабелей.

Включение генератора на экран

Ну и наконец, следующие две схемы скорее для примера того, что к делу подключения генератора к кабелю надо относиться творчески. Экран, броня, жила — всё условно. Экран изолированный с обоих концов это та же жила. А на оптоволоконных кабелях из токопроводящих материалов есть только броня.

Схема иллюстрирует подключение прибора и прохождение тока при трассировке и использовании экрана кабеля.

Обе схемы могут использоваться на оптоволоконных кабелях.

Источник

Импульсный генератор для поиска повреждения кабеля

Точный поиск кабельных повреждений звуковой частотой — другая область применения аппаратуры кабелеискателей. Шансы на успех в телекоммуникационных кабелях — значительно худшие (за исключением определённых типов повреждений), чем в силовых кабелях и ограничены повреждениями с очень малыми сопротивлениями и трассировкой.

Однако, эти методы описаны здесь, потому что нет никаких других более точных и простых методов для поиска повреждений.

6.6.1. Низкоомные повреждения между жилами

Кабелеискателем можно определить точное расположение низкоомных повреждений в кабелях. Метод, лучше всего подходит для коротких расстояний. Может использоваться подключение со вскрытой муфты.

Генератор звуковой частоты должен быть соединен и с повреждёнными жилами и с максимально возможным током. В случае длинных телекоммуникационных кабелей с высокой погонной индуктивностью больший ток достигается использованием очень низкой частоты. Очень длинные кабеля усложняют использование этого метода.

Здесь, как и с идентификацией кабелей, низкоомное повреждение (

Каждое обнаруженное при проходе трассы отклонение от минимума, тщательно исследуется

Если отклонений не обнаружено в предварительно трассированной области, то используются другие жилы кабеля, и повреждение имеет другую позицию. Иллюстрация переходов в повреждениях различных позициях катушки-датчика на рисунке 22.

Рисунок 22: Позиции точек переходов повреждения

Минимальная сигнал может быть отмечен даже на обычном кабельном повиве, поисковая обмотка проводится в вертикальной позиции сначала слева и затем справа от трассы кабеля.

На коротких участках возле повреждения минимум исчезает или становится очень слабым. Эти два максимума с обеих сторон также отличаются по значению, например, пяти делениям шкалы слева и восьми делениям шкалы справа.

В принципе любое отклонение в структуре поля звуковой частоты может указать неоднородность в кабеле или его периферии, таких, как пересечения или резкие изменения в глубины залегания.

6.6.3. Поверхностный поиск или контактный метод

Наземный поиск повреждений отдельных жил в пластмассовой изоляции или небронированного кабеля производится по методу шагового напряжения, который обычно дает очень точные результаты. С этой целью генератор звуковой частоты соединяется с повреждённой жилой и с хорошим заземлением. Сопротивление повреждения к земле может быть приблизительно в диапазоне 10 кОм. Падение напряжения звуковой частоты, может быть измерено контактным методом посредством штырей, или емкостным, с конденсаторными пластинами.

При использовании емкостного зонда частота сигнала должна быть максимально высокой (> 1 кГц). Связи с травой или другими неровностями нужно избегать, так как этих точках, дополнительный контакт, вызывает скачки потенциала, которые не должны быть приписаны падению напряжения и к повреждению.

В данном эссе эта тема рассмотрена очень скупо, но на сайте есть страницы с более детальным описанием контактных методов:
• Контактный метод. Поиск повреждения кабеля штырями
• Описание и принцип работы прибора ИМПИ-3

Источник

Акустический метод определения места повреждения кабельной линии

Акустический метод поиска повреждений кабеля практически универсален. Он позволяет находить повреждения различного типа: «заплывающие» пробои, однофазные и междуфазные повреждения с различными переход­ными сопротивлениями, обрывы одной или нескольких жил. При этом полное замыкание с маленьким переходным сопротивлением не дает искрового разряда и не может быть определено данным методом. В ряде случаев с помощью акустического метода поиска возможно найти несколько повреждений на одной кабельной линии.

Общий принцип

Сущность акустического метода обнаружения повреждений кабельных линий видна из самого его названия. Ин­формативным параметром является уровень кратковременного звукового сигнала — щелчка, удара, возникающего одновременно с электрическим искровым или дуговым разрядом, происходящим в месте повреждения (МП) кабеля в момент подачи на него высо­ковольтного импульса электрического напряжения. Для контроля и индикации сигнала используется высокочувствительный аку­стический датчик (микрофон), преобразующий звуковой сигнал в электрический. Датчик подключен к >переносному приемно-уси­лительному устройству, снабженному звуковой и визуальной ин­дикацией. Оператор, пошагово перемещая по поверхности вдоль трассы кабеля датчик, в направлении увеличения сигнала находит точку с максимальным сигналом, которая находится непосред­ственно над МП. Таким образом, локализуют место повреждения (рис.).

Определение точного местонахождения повреждения в кабельной линии

Акустический сигнал в грунте

Акустический сигнал в грунте довольно быстро затухает и область обнаружения МП акустическим методом при стандартной глу­бине прокладки кабеля ограничивается несколькими десятками метров. В самом лучшем случае это сотня метров. Ограничения связаны с характеристиками грунта, энергией разряда и чувстви­тельностью применяемой аппаратуры.

Виды повреждений

Очевидно, что необходимым условием для возникновения элек­трического пробоя является наличие достаточно большого элек­трического сопротивления в МП кабеля. Есть сопротивление — есть «предмет для пробоя». Нет сопротивления (короткое за­мыкание) — при подаче импульса напряжения будет импульс тока, но электрического разряда, а значит и акустического сигнала, не будет. Практика показывает, что сопротивление должно быть не меньше нескольких десятков Ом. Такое ограничение определя­ет виды повреждений, которые можно обнаруживать, используя акустический метод, т.е. область применения метода. Это утечки в изоляции, «заплывающие» пробои, однофазные и междуфазные повреждения с различными переходными сопротивлениями, об­рывы одной, двух или всех жил.

Схемы подключения генератора к кабелю

Для создания разряда необходимо специальное оборудование.Это импульсные, т.н. ударные генераторы, способные создать мощный электрический разряд. Энергия необходимая для создания разря­да накапливается в достаточно большой электрической емкости и через коммутатор или разрядник подается на кабель. Длительный опыт использования ударных генераторов показал, что в боль­шинстве случаев достаточно энергии до 2000 Дж. Использование генераторов с энергией более 3000 Дж может быть опасным для кабеля, поскольку очень большие импульсные токи в момент раз­ряда порождают очень сильные магнитные поля, сопровождаю­щиеся мощными механическими воздействиями на элементы кон­струкции кабеля.

Схема определения места повреждения зависит от вида поврежде­ния КЛ. Если произошел «заплывающий» пробой (как правило, в муфтах), то сопротивление в месте повреждения большое — единицы и десятки мегаом. При этом с помощью генератора напряже­ние доводится до пробоя. При устойчивых замыканиях, имеющих переходное сопротивление в месте повреждения от единиц Ом до десятков килоом, используется генератор, разрядник и накопи­тельная (зарядная) емкость или емкость неповрежденных жил. Через разрядник высоковольтный импульс посылается в повре­жденную жилу кабеля, в месте повреждения которой происходит пробой, вызывающий акустический сигнал.

Способы подключения генератора к кабелю в зависимости от вида повреждения изображены на рисунках:

Схемы подключения генератора к кабелю

Сочетание с индукционным методом поиска

Вариант акустического метода определения места повреждения кабельной линии в сочетании с индукционным методом мо­жет быть эффективным в сложных случаях, когда акустический сигнал слаб и имеет «размытую» характеристику без четкого мак­симума уровня. Это затрудняет локализацию МП, сильно умень­шает точность его определения. Для реализации этого метода не­обходимо акустический приемник дополнить электромагнитным каналом, состоящим из магнитной антенны и усилителя. Магнит­ное поле, возникающее при разряде, достигает магнитной антенны практически мгновенно, поскольку скорость его распространения сравнима со скоростью света (300 000км/сек). Скорость распро­странения звука в грунте измеряется сотнями метров в секунду. Принимая оба сигнала и измеряя время запаздывания звуково­го сигнала относительно магнитного можно оценить расстояние до места повреждения. При приближении к МП задержка будет уменьшаться и непосредственно над ним будет минимальна. По­следовательность действий при проведении поиска такая же, как и для акустического метода, но кроме (или вместо) контроля уров­ня акустического сигнала, увеличивающегося с приближением к МП, контролируется величина задержки, уменьшающаяся по мере приближения к МП.

Нестандартный вариант акустического метода

Нестандартный вариант акустического метода определения повреждений кабеля может использоваться, когда в МП сопротивление равно нулю, т.е. имеет место короткое замыкание, а использование индукци­онного метода невозможно. Как уже упоминалось выше, при про­хождении большого тока по близко расположенным проводникам возникают мощные силы, притягивающие или отталкивающие эти проводники. Поскольку любая изоляция, разделяющая эти проводники, обладает определенной упругостью, она сжимается или растягивается (в зависимости от направления силы). Если ток носит импульсный характер механические взаимодействия меж­ду элементами конструкции кабеля — жилами, или жилой и обо­лочкой — тоже носят импульсный, взрывной характер. Жилы или жила-оболочка «хлещут» друг по другу. При этом возникают и звуковые щелчки – «шлепки». В отличие от «классического» случая с локальным разрядом и локальным же акустическим «щелчком» в описываемом случае звук порождается на всей протяженности кабеля, где протекает ток, т.е. до места КЗ. Это обстоятельство и позволяет локализовать МП. Если оператор слышит щелчки, он находится до МП. После прохождения МП звук постепенно уменьшается и исчезает, т. к. ток в кабеле отсутствует и соответ­ственно отсутствует механическое взаимодействие порождающее звук. Место, где начинает уменьшаться уровень звукового сигнала и является МП. Естественно уровень акустического сигнала в рас­сматриваемом случае значительно меньше, чем в случае мощного разряда происходящего в МП, практически в одной точке и для успешной реализации метода требуется наличие высокочувстви­тельного оборудования.

Источник

Генератор высоковольтных импульсов для поиска обрыва в линии электропередачи

Прибор, описание которого представлено в данной статье, позволяет определить место разрыва линии электропроводки,например, в доме. В основе его работы используется метод, который в электротехнике называют акустическим. Он основан на прослушивании в месте повреждения звуковых колебаний (хлопков), вызванных искровым разрядом.

Обычно разрыв в электропроводке колеблется в пределах 0,5. 2 мм. Такой разрыв легко пробивает напряжение 1 . 3 кВ постоянного тока. Упрощенная схема устройства приведена на рис. 1, где Uu — источник повышающего напряжения до пробоя, Ru — внутреннее сопротивление источника напряжения.

Рис. 1. Упрощенная схема устройства.

Если в месте пробоя будет низкое сопротивление, хлопка не будет. Источник будет разряжаться, и напряжение не повысится. Во избежание этого нужно в цепь схемы поставить разрядник (искусственный разрыв около 1 мм). А для того, чтобы пробой был хорошо слышен и виден, необходимо добавить высоковольтный конденсатор.

Рис. 2. Структурная схема устройства.

Структурная схема устройства приведена на рис. 2. Обычно обрыв проводки находится на глубине 1 . 2 см в штукатурке или в соединительной коробке. Место повреждения легко обнаруживается по световой вспышке и по звуку хлопка разряда. Перед поиском места обрыва на участке электросети нужно отключить все электропотребители.

Принципиальная схема

Высоким напряжением аппарата можно повредить изоляцию обмоток электродвигателей и других электронных устройств. И обязательно нужно соблюдать технику электробезопасности [1]. Полезно перед этим воспользоваться генератором высокой частоты и искателем и приблизительно определить место повреждения [2, 3].

Рис. 3. Принципиальная схема генератора высоковольтного напряжения.

Также надо замерить ёмкость проводки до места повреждения кабеля, ёмкость 1 м провода АППВ 2*2,5 примерно равна 80. 100 пФ. Для поиска места обрыва необходимо подключить к высоковольтному прибору (см.схему устройства на рис. 3) питание -220 Вик выходным клеммам “0” и “1” или “2” — линию с обрывом. Затем нажать кнопку SA1 и держать около 3 сек. до разряда.

Если кнопку держать дольше, разряды будут повторяться по мере накопления напряжения на конденсаторе С2. Само устройство прибора не содержит дефицитных деталей.

Трансформатор Тр1 — от строчной развертки чёрно-белого телевизора. Разрядник Р35 можно заменить самодельным. Он изготовлен из кусочка фольгированного стеклотекстолита размерами 30*30 с круглым отверстием в центре диаметром 15 мм. По середине фольга удалена, по краям предусмотрены два отверстия для подключения проводов, см. рис. 4.

Рис. 4. Самодельный разрядник для замены Р35.

С каждой площадки навстречу друг другу припаяны два кусочка медного провода диаметром 1 мм с зазором 3 мм. В зазоре будет происходить пробой, с расчетом 1 мм = 1 кВ.

Такой разрядник Р1 установлен в схеме для предохранения высоковольтного трансформатор Тр1. При разряде в заводском разряднике Р35 звук очень слабый и не мешает слушать разряд в электропроводке в доме.

Конденсатор С2 К75-53 1 мФ на напряжение 5 кВ. Его можно заменить несколькими конденсаторами меньшей ёмкости, но сумма всех ёмкостей должна быть около 1 мФ, рабочее напряжение — не меньше 5 кВ.

Схема управления симистором ST1 взята из [4]. Номиналы деталей устройства указаны на принципиальной схеме. Неоновая лампа Л1 нужна для сигнализации напряжения сети 220 В на питание прибора.

Прибор собран в небольшом пластиковом кейсе. Теперь приведу два примера применения прибора из моей практики:

  1. Снижение кабеля от УКВ антенны. Сопротивление между экраном и центральной жилой по показанием тестера 100 Ом. Должно быть около 5. 10 Ом. При подключении прибора к кабелю один человек нажимал на кнопку SA1, а я наблюдал за антенной и кабелем вечером. Под правым болтом подключения кабеля к шлейфу антенны были видны искры. Правый болт был сильнее подтянут. Переходное сопротивление упало до 8 Ом.
  2. Потухла электролампа освещения в комнате. Лампа цела и исправна. Лампу вывернул. Концы в патроне закоротил. К отдельной линии, идущей к патрону лампы, подключил провода, отходящие от клемм “0” и “1” прибора. При нажатии на кнопку SA1 прибора в месте разрыва в проводке, выходящей с потолка, раздавались разряды. Ликвидация разрыва была легко устранена.

Б. Марченко. Приморский край, п.Кавалерово. РМ-02-17.

  1. Осторожно! Электрический ток! — Радио, 2015, №5, стр. 54.
  2. Б.Марченко. Приборы для определения места повреждения кабеля. — Радиолюбитель, 1997, №2, стр. 24-25.
  3. Б.Марченко. Приборы для измерения малых емкостей. — Радиомир, 2014, №7, стр. 27; Радиомир, 2014, №9, стр. 32.
  4. А. Просянов. Блок питания и киловольтметр для “люстры Чижевского”. — Радио, 2008, №1, стр. 27-28.

Источник