Формула термической устойчивости кабеля

Проверка сечения кабеля по термической стойкости

Цель работы

Научиться проверять выбранный кабель линии электропередач по термической стойкости.

Краткие теоретические сведения

Кабели и шины выбирают по номинальным параметрам (току и напряжению) и проверяют на термическую стойкость при коротком замыкании. Поскольку процесс короткого замыкания кратковременный, то можно считать, что все тепло, выделяемое в проводнике кабеля, идет на его нагрев.

При протекании тока короткого замыкания по кабелям, их токопроводящие жилы нагреваются, что в ряде случаев приводит к разрыву оболочек кабелей, разрушению концевых заделок, пожару в кабельных сооружениях и большим материальным потерям. Повышение температуры жил кабелей при коротком замыкании ведет к химическому разложению изоляции и резкому снижению ее электрической и механической прочности и, в итоге, — к аварии.

Максимально допустимые кратковременные превышения температуры при коротких замыканиях для силовых кабелей до 10 кВ принимаются с медными и алюминиевыми жилами: с бумажной пропитанной изоляцией 200 0 С, с поливинилхлоридной и резиновой изоляцией 150 0 С.

Задание

Проверить выбранный кабель линии электропередач по термической стойкости.

Проанализировать проделанную работу.

Необходимые данные для расчёта берутся из предыдущих практических работ №1, №2 и №3. Проверку на термическую стойкость осуществлять для кабельной линии в земле при коротком замыкании на шинах тяговой подстанции ТП1 в точке К1.

Порядок выполнения расчёта

Выбранное сечение проверяют на термическую стойкость от воздействия токов короткого замыкания (только кабельные линий проложенных в земле) по условию

(9)

где smin — минимальная площадь сечения по термической стойкости, мм 2 ;

sкл — площадь сечения выбранного кабеля, мм 2 .

Минимально площадь сечение по термической стойкости smin, мм 2 , определяется по формуле

(10)

где I — установившееся значение тока короткого замыкания, А;

tпр — приведённое время короткого замыкания от возникновения до отключения (суммарное время срабатывания защиты), принимаем 0,2 с;

С — термический коэффициент, соответствующий разности значений теплоты, выделенной в проводнике после и до короткого замыкания, для кабелей с медными жилами 141 Ас 2 /мм 2 , для кабелей с алюминиевыми жилами 85 Ас 2 /мм 2 .

Установившееся значение тока короткого замыкания, принимаем равное трёхфазному току короткого замыкания в Iкз (3) , А, и определяется по формуле

(11)

где Z — полное сопротивление линии, Ом.

Полное сопротивление линии определяется по формуле Z, Ом

(12)

Пример выполнения расчёта

Необходимые данные для расчёта берутся из предыдущих практических работ №1, №2 и №3.

Проверку на термическую стойкость осуществлять для кабельной линии в земле при коротком замыкании на шинах тяговой подстанции ТП1 в точке К1.

Для кабельной линии в земле выбран кабель АСБ 3х50, Iдоп = 140 А, R0 = 0,64 Ом/км, Х0 = 0,09 Ом/км.

Полное сопротивление линии

Трёхфазный ток короткого замыкания

Минимальная площадь сечения по термической стойкости

Выбранный кабель термически устойчив.

По результатам расчёта практической работы выбранный для кабельной линии в земле кабель АСБ 3х50, Iдоп = 140 А термически устойчив.

Контрольные вопросы

1.Что происходит с кабелем при коротких замыканиях?

2.Максимально допустимые кратковременные превышения температуры при коротких замыканиях для силовых кабелей 10 кВ.

3.Как осуществляется проверка кабеля на термическую стойкость?

Источник

Проверка выбранного сечения на термическую стойкость

Термическое действие токов КЗ

Токи КЗ вызывают нагрев токоведущих частей, значительно превышающий нормальный. Чрезмерное повышение температуры может привести к повреждению изоляции, разрушению контактов и даже к их плавлению, несмотря на кратковременность процесса КЗ. После отключения поврежденного участка прохождение тока КЗ прекращается, токоведущие части охлаждаются.

При выборе токоведущих частей необходимо найти конечную температуру нагрева токами КЗ с учетом периодической и апериодической составляющих. Этот расчет достаточно трудоемкий, поэтому термическую стойкость обычно проверяют определением минимально допустимого сечения по условию допустимого нагрева при КЗ:

где — тепловой импульс тока КЗ, А 2 с; — постоянная затухания апериодической составляющей ( – результирующие индуктивное сопротивления схемы относительно точки КЗ; — угловая частота, ); — время отключения КЗ, с; — время действия основной защиты, с; — полное время отключения выключателя, с; — коэффициент, зависящий от допустимой температуры при КЗ и материала проводника.

Его рекомендуемые значения приведены ниже:

— шины медные — 170;

— шины алюминиевые — 71-90;

— кабели до 10 кВ с бумажной изоляцией и алюминиевыми жилами — 90;

— кабели и провода с поливинилхлоридной изоляцией, алюминиевыми жилами — 75;

— то же с полиэтиленовой изоляцией — 65;

Выбранные шины или кабель термически стойки, если их сечение больше

Проверка аппаратов на термическую стойкость производится по току термической стойкости , заданному заводом-изготовителем, и расчетному времени термической стойкости по каталогу . Аппарат термически стоек,

Кабель ААШв 3 x 10 + 1 х 6 мм 2 проходит по нагреву длительным током. Выбираем сечение жил кабеля по нагреву током КЗ. С этой целью определим тепловой импульс тока КЗ:

(39)

где — постоянная затухания апериодической составляющей, с; — время отключения КЗ, с;

2 ? (0,6 + 0,01) = 0,5 кА 2sup>?с

Минимальное сечение жил кабеля по термической стойкости составит:

где – коэффициент, зависящий от допустимой температуры при КЗ и

материала проводника. Его рекомендуемые значения приведены ниже:

— кабели до 10 кВ с бумажной изоляцией и алюминиевыми жилами = 90;

— кабели и провода с полиэтиленовой изоляцией, алюмин. жилами = 65.

Ближайшим стандартным сечением для кабеля данной марки будет Fст = 10 мм 2 .Таким образом, для присоединения трансформаторов подстанции выбираем кабель ААШв 3 x 10 + 1 х 6 мм 2 .

Аналогично рассчитываем токи короткого замыкания для остальных линий, отходящих от ЗТП, проверяем их сечения на термическую стойкость и сводим расчетные данные в таблицу 6.

Остальные расчеты производим анолгично.

Таблица 22Расчет токов короткого замыкания и проверка сечений на термическую стойкость

Номер линии Марка кабели или провода Сопротивление Токи короткого замыкания Тепловой импульс тока КЗ Втер кА 2 ?с Сечение по термической стойкости F мм 2 Стандартное сечение по термической стойкости Fст, мм 2
RлмОм ZлмОм Хл мОм IК (3) кА IК (2) кА IК (1) кА
1; 2 ААШВ 3х10+1х6 238,7 238,7 0,91 0,79 0,35 0,5 7,86
3;4 ААШВ 3х10+1х6 220,1 220,1 0,98 0,85 0,32 0,6 8,6
5;6 ААШВ 3х10+1х6 1,67 1,45 0,54 1,7 14,5
7;8 ААШВ 3х10+1х6 300,7 300,7 0,73 0,64 0,24 0,33 6,4
9;10 ААШВ 3х10+1х6 576,6 576,6 0,39 0,34 0,13 0,1 3,5
11;12 ААШВ 3х10+1х6 375,1 375,1 0,59 0,51 0,2 0,2 4,5
ААШВ 3х120+1х95 1,71 1,71 10,4 2,98 66,49 72,4
САПсш 3х25+1х35 САПсш 3х16+1х25 155,5 8,5 1,36 1,18 0,63 1,3 16,3
САПсш 3х16+1х25 315,2 315,6 16,5 0,7 0,6 0,34 0,3 8,4
САПсш 3х35+1х50 САПсш 3х16+1х25 43,4 171,9 215,8 0,87 0,47 0,61

Из рассчитанных данных можно сделать вывод, что линии 5 и 6 не проходят проверку на термическую стойкость. Руководствуясь рассчитанным стандартным сечением по термической стойкости Fст принимаем на данных линиях кабель марки ААШв сечением 3 x 16 + 1 х 10 мм 2 .

Источник

Формула термической устойчивости кабеля

ГОСТ Р 52736-2007

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Короткие замыкания в электроустановках

МЕТОДЫ РАСЧЕТА ЭЛЕКТРОДИНАМИЧЕСКОГО
И ТЕРМИЧЕСКОГО ДЕЙСТВИЯ ТОКА КОРОТКОГО ЗАМЫКАНИЯ

Short-circuits in electrical installations.
Calculation methods of electrodynamics and thermal effects of short-circuit current

Дата введения 2008-07-01

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0-2004 «Стандартизация в Российской Федерации. Основные положения»

Сведения о стандарте

1 РАЗРАБОТАН Филиалом ОАО «НТЦ электроэнергетики» — ВНИИЭ, Московским энергетическим институтом (Техническим университетом) (МЭИ (ТУ))

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 437 «Токи короткого замыкания»

Информация об изменениях к настоящему стандарту публикуется ежегодно в издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

1 Область применения

Настоящий стандарт распространяется на трехфазные электроустановки промышленной частоты и определяет методы расчета и проверки проводников и электрических аппаратов на электродинамическую и термическую стойкость при коротких замыканиях (КЗ).

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 687-78 Выключатели переменного тока на напряжение свыше 1000 В. Общие технические условия

ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией. Технические условия

ГОСТ 18410-73 Кабели силовые с пропитанной бумажной изоляцией. Технические условия

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный документ заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) документом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

термическое действие тока короткого замыкания в электроустановке: Изменение температуры элементов электроустановки под действием тока короткого замыкания.

электродинамическое действие тока короткого замыкания в электроустановке: Механическое действие электродинамических сил, обусловленных током короткого замыкания, на элементы электроустановки.

интеграл Джоуля: Условная величина, характеризующая тепловое действие тока короткого замыкания на рассматриваемый элемент электроустановки, численно равная интегралу от квадрата тока короткого замыкания по времени, в пределах от начального момента короткого замыкания до момента его отключения.

ток термической стойкости электрического аппарата при коротком замыкании (ток термической стойкости): Нормированный ток, термическое действие которого электрический аппарат способен выдержать при коротком замыкании в течение нормированного времени термической стойкости.

ток электродинамической стойкости электрического аппарата при коротком замыкании (ток электродинамической стойкости): Нормированный ток, электродинамическое действие которого электрический аппарат способен выдержать при коротком замыкании без повреждений, препятствующих его дальнейшей работе.

4 Общие положения

4.1 Исходные положения

4.1.1 При проверке проводников и электрических аппаратов электроустановок на электродинамическую и термическую стойкость при КЗ предварительно должны быть выбраны расчетные условия КЗ, т.е. расчетная схема электроустановки, расчетный вид КЗ в электроустановке, расчетная точка КЗ, а также расчетная продолжительность КЗ в электроустановке (последнюю используют при проверке на термическую стойкость проводников и электрических аппаратов, а также при проверке на невозгораемость кабелей).

4.1.2 Расчетная схема электроустановки должна быть выбрана на основе анализа возможных электрических схем этой электроустановки при продолжительных режимах ее работы. К последним следует относить также ремонтные и послеаварийные режимы работы.

4.1.3 В качестве расчетного вида КЗ следует принимать:

— при проверке электрических аппаратов и жестких проводников с относящимися к ним поддерживающими и опорными конструкциями на электродинамическую стойкость — трехфазное КЗ;

— при проверке электрических аппаратов и проводников на термическую стойкость — трех- или однофазное КЗ, а на генераторном напряжении электростанций — трех- или двухфазное КЗ, в зависимости от того, какое из них приводит к большему термическому воздействию;

— при проверке гибких проводников по условию их допустимого сближения во время КЗ — двухфазное КЗ.

4.1.4 В качестве расчетной точки КЗ следует принимать такую точку на расчетной схеме, при КЗ в которой проводник или электрический аппарат подвергается наибольшему электродинамическому или термическому воздействию.

Примечание — Исключения из этого требования допустимы лишь при учете вероятностных характеристик КЗ и должны быть обоснованы требованиями соответствующих ведомственных нормативных документов.

4.1.5 Расчетную продолжительность КЗ при проверке проводников и электрических аппаратов на термическую стойкость следует определять путем сложения времени действия основной релейной защиты, в зону которой входят проверяемые проводники и электрические аппараты, и полного времени отключения соответствующего выключателя, а при проверке кабелей на невозгораемость — путем сложения времени действия резервной релейной защиты и полного времени отключения ближайшего к месту КЗ выключателя.

При наличии устройств автоматического повторного включения (АПВ) цепи следует учитывать суммарное термическое действие тока КЗ.

4.1.6 При расчетной продолжительности КЗ до 1 с допустимо процесс нагрева проводников под действием тока КЗ считать адиабатическим, а при расчетной продолжительности КЗ более 1 с и при небыстродействующих АПВ следует учитывать теплоотдачу в окружающую среду.

5 Электродинамическое действие тока короткого замыкания

5.1 Расчет электродинамических сил взаимодействия проводников

5.1.1 Электродинамические силы взаимодействия , Н, двух параллельных проводников с токами следует определять по формуле

, (1)

где — постоянный параметр, Н/А ;

— мгновенные значения токов проводников, А;

— длина проводников, м;

— расстояние между осями проводников, м;

Для проводников прямоугольного сечения коэффициент формы следует определять по кривым, приведенным на рисунке 1.

Рисунок 1 — Диаграмма для определения коэффициента формы проводников прямоугольного сечения

Для круглых проводников сплошного сечения, проводников кольцевого сечения, а также проводников (шин) корытообразного сечения с высотой профиля 0,1 м и более следует принимать =1,0.

5.1.2 Наибольшее значение электродинамической силы имеет место при ударном токе КЗ.

5.1.3 Максимальную силу , Н, (эквивалентную равномерно распределенной по длине пролета нагрузки), действующую в трехфазной системе проводников на расчетную фазу при трехфазном КЗ, следует определять по формуле

, (2)

где — длина пролета, м;

— ударный ток трехфазного КЗ, А;

— коэффициент, зависящий от взаимного расположения проводников.

Значения коэффициента для некоторых типов шинных конструкций (рисунок 2) указаны в таблице 1.

Рисунок 2 — Схемы взаимного расположения шинных конструкций

Источник

Читайте также:  Как подключить два смартфона между собой по кабелю