Экранирование кабелей от помех

Содержание
  1. Изоляция проводов от помех: экранирование
  2. Изоляция проводов от помех: типы ЭМП
  3. Типы ЭМП
  4. Изоляция проводов от помех: типы экранировки
  5. Рекомендуем
  6. Экранирование в электрических сетях
  7. Физика экранирования
  8. Экранированные кабели
  9. Сечение экранированного силового кабеля для прокладки под землей в траншее
  10. Экранированные токопроводы
  11. Требования СО 153-34.21.122-2003
  12. Арматура железобетонного здания обладает свойством экранирования
  13. Экранирование для защиты оборудования и персонала
  14. Заземление и экранирование как способы обеспечения электромагнитной совместимости электронных устройств
  15. Системы заземления
  16. Заземление по цепям питания
  17. Конструкция
  18. Типы электромагнитных помех
  19. Ближняя и дальняя зоны эмиссии помех
  20. Устранение емкостной связи
  21. Экранирование электромагнитных полей в устройствах промышленной и силовой электроники

Изоляция проводов от помех: экранирование

Электромагнитная помеха (ЭМП) представляет собой внешнее или внутреннее электромагнитное явление, которое может оказать негативное влияние на качество работы технических средств (ТС).

К ТС предъявляются определенные требования в отношении как их помехоустойчивости, так и помехоэмиссии. О критериях качества функционирования технического средства и испытаниях на ЭМС читайте в статье «ЭМС-тестирование».

В настоящее время на фоне постоянного уплотнения (роста) комплектации электронных компонентов и увеличения скорости обработки сигналов нередко возникают сбои приборов и систем по причине электромагнитных воздействий.

Изоляция проводов от помех: типы ЭМП

Рассмотрим вопрос экранирования кабеля (проводов) в рамках функционирования сервосистем. При отсутствии изоляции проводов от помех нарушается стабильность данных систем, что влечет ошибки передачи сигналов, а иногда и включение/отключение приборов. Сами электромагнитные помехи могут распространяться по кабелю или же излучаться им самим. Диапазон первых обычно составляет до 30 МГц, вторых же (излучательных) – свыше 30 МГц.

Типы ЭМП

Начать разбираться в принципах экранирования нужно с понимания принципов передачи ЭМП через соединения. Это необходимо по той причине, что эффективное для одних типов соединений экранирование проводов может быть для других типов совершенно неэффективным. Более того, при неправильной привязке (заземлении) экрана можно получить еще более плохие результаты, чем при отсутствии экранирования.

Читайте также:  Как правильно выбрать автомат по сечению кабеля таблица

Ухудшить качество сигнала в цепях под силу четырем типам помех:

  • емкостным;
  • индуктивным (магнитным);
  • внутренним;
  • излучательным.

Емкостные помехи. С одной стороны, такие помехи относятся к наиболее легко подавляемым, в связи с чем они доставляют меньше проблем. С другой стороны, результатом действия таких помех может быть искажение ВЧ-сигналов в проводниках с большим выходным сопротивлением. Для подавления данного типа помех следует использовать провода с заземленной экранировкой.

Индуктивные помехи. Причиной возникновения такого типа электромагнитных помех является воздействие сильного магнитного поля, которое действует по принципу генератора. Из-за этого в проводнике может возникнуть ток с относительно низким импедансом, который способен нарушить передачу сигнала. Данные помехи, как и последствия их воздействия, могут оказаться довольно мощными для отключения/включения технических средств. Эффективным способом подавления индуктивных помех является использование витой пары, имеющей заземленную экранирующую оплетку. Экранирование проводов фольгой не такое эффективное из-за магнитных вихревых токов.

Подробнее о данном типе помех читайте в статье «Индуктивные помехи».

Внутренние помехи. К таким помехам относятся ЭМП, которые возникают в случае непосредственного подключения источника к системе. Например, при создании источником питания импульсных помех на линии переменного тока. К способам подавления внутренних помех относятся изоляция, фильтрация или иные методы согласования импедансов. При подавлении экранировка неэффективна, однако с ее помощью можно преградить помехам выход за пределы системы. Для сильных внутренних импульсных помех в неэкранированной системе возможна ситуация их перехода в индуктивные.

Излучательные помехи. Данный тип помех является наиболее сложным и имеет ряд ограничений, которые связаны с частотами. Для подавления таких помех недостаточно экранирования проводов фольгой. Эффективной может быть экранировка оплеткой, хотя для ее применения в данном случае существуют дополнительные требования. К ним относятся, например, следующие:

  • экран внутри экранируемых проводов не должен прерываться;
  • экранировка должна быть обязательно полной, со всех направлений, и др.

Изоляция проводов от помех: типы экранировки

Различают три типа экранировки кабелей:

Экранирование проводов оплеткой. Данный вид изоляции проводов от помех представляет собой сплетенные в сеть медные нити. Эти нити могут покрывать как отдельные проводники и витые пары, так и одновременно все жилы в кабеле. Процент покрытия определяется по плотности расположения медных нитей в оплетке: чем он больше, тем лучше защита от ЭМП и ниже радиоизлучение. На гибкость такой оплетки, а также срок ее службы напрямую влияет диаметр нитей.

Экранирование проводов спиральной обмоткой. С помощью такого типа экранировки обеспечиваются большие, чем в случае с оплеткой, гибкость и время жизни при изгибе. Спиральная обмотка представляет собой оголенную либо луженую проволоку, которая по спирали закручена вокруг проводника. Такой тип оплетки наиболее эффективен для низких частот, покрытие более 95%. Спиральная обмотка в качестве экранирования применяется в самых гибких кабелях, устойчивых к деформациям (скручивание и т.п.). В таких кабелях другие типы экранировки (оплеткой и фольгой) могут быть повреждены в процессе скручивания кабеля.

Экранирование проводов фольгой. Обычно это алюминиевая фольга на полиэфирной подложке. Эта подложка придает механическую прочность. Благодаря алюминию обеспечивается эффективная защита от ВЧ-помех емкостного типа.

Способы накладывания на проводник экрана из фольги:

  • фольгой к проводнику;
  • фольгой наружу;
  • с краями наматываемой полоски фольги, которые загнуты в форме буквы Z.

Рекомендуем

Для измерения электромагнитных помех рекомендуем системы TDEMI производства GAUSS INSTRUMENTS.

Источник

Экранирование в электрических сетях

Для защиты электротехнического оборудования от помех и прочих электромагнитных влияний достаточно эффективной мерой является экранирование. Согласно ГОСТ 30372-95, экранированием называется способ ослабления электромагнитной помехи с помощью экрана, имеющего высокую электрическую и (или) магнитную проводимость.

Физика экранирования

В электроэнергетике используются частоты 50 или 60 Гц. Гармоники от них можно принимать во внимание в диапазоне примерно до 1,5 кГц, если речь идет о воздействии на силовое оборудование (о средствах связи будет сказано отдельно). Спектр молнии очень широкий, помехи для радиосвязи наблюдаются вплоть до частоты 30 МГц. Тем не менее, пик спектра удара молнии находится в районе 500 Гц.

На низких частотах пригодна модель, предложенная еще Фарадеем. Внешнее электрическое поле вызывает поляризацию в толще экрана. В результате на поверхности внутри экрана находятся электрические заряды, противоположные по знаку зарядам на внешней поверхности. В итоге поле от этих зарядов компенсирует внешнее электрическое поле.

Экранирование от магнитного поля низкой частоты обусловлено тем, что, при коэффициенте магнитной проницаемости материала экрана много большим 1 и достаточной толщине конструкции силовые линии магнитного поля проходят по экрану, не попадая в пространство, заключенное внутри него.

Совсем не обязательно, чтобы экран был выполнен из сплошного листа без отверстий. В экране могут быть отверстия. Мало того, он может представлять собой клетку из электропроводящего материала. Такой вариант экрана называется «клетка Фарадея». Но при этом должно соблюдаться условие: линейные размеры отверстий или шаг между прутьями сетки по линейным размерам меньше (в идеале — много меньше) длины волны излучения, от которого производится экранирование. Также важен хороший электрический контакт (в идеале — сварка) между прутьями клетки.

Согласно ГОСТ Р 51317.1.2-2007 (МЭК 61000-1-2:2001) «Совместимость технических средств электромагнитная. Методология обеспечения функциональной безопасности технических средств в отношении электромагнитных помех» под низкими частотами применительно к экранированию подразумеваются частоты ниже 9 кГц.

На частотах выше 9 кГц при рассмотрении явления экранирования используется иная модель. Если предельно упростить процессы для облегчения понимания, то экран на высоких частотах работает следующим образом. Под действием внешнего излучения в экране возникают вихревые токи. Эти токи создают электромагнитное поле, компенсирующее внешнее воздействие.

Экранированные кабели

Некоторые типы силовых кабелей имеют экран. Чаще всего это экран представляет собой металлическую ленту, которой обмотана изоляция токопроводящих жил. Также встречаются варианты экрана из толстой проволоки и комбинация толстой проволоки и металлической ленты. Известны конструкции кабелей с экранами из токопроводящей бумаги и токопроводящей резины. Очень редко можно встретить силовые кабели с экраном, представляющим собой оплетку из тонкой проволоки, хотя для сигнальных кабелей такая конструкция весьма распространена.

Сечение экранированного силового кабеля для прокладки под землей в траншее

Экранирование кабелей применяется в следующих основных случаях:

  • Кабели на напряжение свыше 2 кВ, проложенные в земле или в воде, а также проходящие в непосредственной близости от металлических конструкций. Наличие экрана предотвращает возникновение коронных разрядов между токопроводящими жилами и почвой (водой, металлическими конструкциями). Такие разряды приводят к разрушению изоляции кабеля.
  • Рядом с силовым кабелем проходят сигнальные кабели, чувствительные к наводкам. Это требование закреплено в ПУЭ-7, п. 3.4.11
  • Кабели, соединяющие частотно-регулируемый привод с мотором. Это связано с тем, что энергия по такому кабелю передается на частотах порядка десятков кГц.

Силовые кабели, прокладываемые в земле и в воде, также часто имеют металлическую броню. Эта броня предназначена для механической защиты кабеля, тем не менее, она обладает экранирующими свойствами. Согласно ПУЭ-7, п. 3.4.11, наличие брони или металлической оболочки обязательно для кабеля, соединяющего вторичную обмотку трансформатора на напряжение 110 кВ и выше, со щитом.

Экранированные токопроводы

На объектах генерации и высоковольтных подстанциях нашли свое применение комплектные пофазно-экранированные токопроводы. В них токопровод каждой фазы заключен в замкнутый непрерывный экран. При этом экран может быть герметичным, при больших напряжениях в него закачивают элегаз. Экраны подключают в одной точке к контуру заземления объекта.

Главные функции, которые выполняют пофазно-экранированные токоотводы — уменьшение взаимодействия между проводниками при внешних коротких замыканиях, а также устранение нагрева индуцированными токами расположенных поблизости конструкций из металла и железобетона. Другие важные функции экрана — защита токопровода от пыли и влаги, повышение безопасности эксплуатации и обслуживания.

Требования СО 153-34.21.122-2003

Вопросы экранирования с целью защиты от вторичного воздействия молнии рассмотрены в СО 153-34.21.122-2003 «Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций». Этот документ рекомендует использовать, при наличии такой возможности, в качестве экрана металлическую арматуру здания.

Арматура железобетонного здания обладает свойством экранирования

При электрическом соединении элементов арматуры друг с другом объекта получается «клетка Фарадея». Она защищает от электромагнитных воздействий удара молнии оборудование внутри здания. Арматура, согласно инструкции, должна быть соединена с системой молниезащиты здания.

В том случае, когда внутри защищаемого пространства имеются экранированные кабели, их экраны соединяются с системой молниезащиты на обоих концах и на границах зон. При прокладке кабелей между зданиями, если экран кабеля выдерживает ток молнии, дополнительное внешнее экранирование не требуется. Иначе для защиты кабеля рекомендуется размещать его в металлической трубе или экранированном коробе. Внешний экран или собственный экран кабеля на обоих концах соединяют электрически с общими заземляющими шинами зданий.

Экранирование для защиты оборудования и персонала

На понизительных станциях и открытых распределительных устройствах, находящихся под напряжением 300 кВ и выше, уровень электромагнитного излучения от оборудования опасен для обслуживающего персонала. В связи с этим применяются защитные меры в виде металлических сеток, магнитных экранов из материалов с высокой магнитной проницаемостью и т. п. Соответствующие рекомендации приведены в п. 4.2 ПУЭ-7.

В современной электроэнергетике широко применяются разнообразные устройства связи. В частности, цифровизация энергетики без них невозможна.

Электроэнергетическое оборудование и линии электропередач является источником широкополосных помех. Для нормальной работы систем связи, установленных на подстанциях, необходимо обеспечить надежное экранирование слаботочного оборудования. С этой целью аппаратуру связи устанавливают в металлические шкафы, подключенные к общему контуру заземления объекта. Поскольку на работу средств связи могут оказывать влияние даже помехи с длиной волны порядка нескольких сантиметров, конструкция шкафа не должна иметь в себе крупных отверстий. При необходимости контролировать работу оборудования связи через смотровое окно, применяется экранирование окна токопроводящей сеткой, либо установка в окно токопроводящего стекла. Указанные элементы должны иметь электрическое соединение со шкафом.

Экранирование средств связи в электроэнергетике регламентируется семейством стандартов ГОСТ МЭК 6100, а также стандартами организаций. Данное экранирование должно защищать аппаратуру связи от составляющих спектра выше 9 кГц, т. е. относится к категории высокочастотного экранирования. Для высоких частот металлический экран может быть тонким, но важна его высокая проводимость.

Источник

Заземление и экранирование как способы обеспечения электромагнитной совместимости электронных устройств

Самый простой способ добиться электромагнитной совместимости электронного устройства (ЭМС) — принять ее требования в расчет при проектировании. Последующие меры по обеспечению ЭМС будут, в общем, значительно обширнее. Они часто слишком дороги из-за недостатка места и требуют дополнительных расходов. Это также относится к модернизации и техническому обслуживанию имеющегося оборудования. И только соблюдение требований ЭМС на этапе проектирования обеспечивает достаточную помехоустойчивость системы и минимальную помехоэмиссию, что делает ее экономически выгодной. Одним из важнейших методов обеспечения электромагнитной совместимости (ЭМС) является правильный монтаж, кроме этого, важно с учетом ЭМС обеспечить цепями заземления проектируемое устройство, чтобы создать необходимые контуры сброса паразитной энергии помех.

Системы заземления

В соответствии с нормативными документами различают два вида заземления: защитное, выполняемое в целях электробезопасности, и функциональное, реализуемое для обеспечения работоспособности электроустановки (не в целях электробезопасности). В связи с этим все цепи заземления можно разбить на несколько групп. Они показаны в таблице.

Таблица. Обозначения и названия цепей заземления

Обозначение

Название

Цепи

Сигнальная «земля», или схемная «земля»

Цепи возврата сигнальных токов

Цепи возврата постоянных токов

Цепи возврата переменных силовых токов
и экранирующие корпуса

При разработке системы лучше всего изолировать друг от друга цепи возврата сигнальных токов, цепи возврата постоянных токов питания и цепи возврата переменных токов питания и построить систему заземления из трех независимых контуров, сходящихся в одной точке. Такой подход позволяет оптимизировать каждую заземляющую цепь в отдельности. Например, цепи заземления схем распространения сигналов должны иметь низкий импеданс в диапазоне частот до нескольких мегагерц и выше (в зависимости от спектра сигналов), и по ним, как правило, течет малый ток. Заземляющая цепь источников питания постоянного тока должна быть рассчитана на низкий импеданс, но значительно более высокий ток. А заземления источников питания по сети переменного тока (корпусная «земля») должны иметь низкий импеданс вблизи частоты 100 Гц и выдерживать токи в сотни ампер.

В очень редких случаях различные контуры заземления могут не соединяться. Такие схемы с плавающим заземлением применяются для чрезвычайно чувствительных устройств. Они требуют хорошей изоляции схемы от корпуса (высокого сопротивления и низкой емкости), иначе оказываются малоэффективны. Причем в качестве источников питания таких систем должны использоваться гальванически развязанные источники питания или солнечные элементы и батареи, а сигналы должны поступать и покидать схему через трансформаторы или оптроны.

Иногда точки сигнального и корпусного заземления соединяют высокоомным резистором, по которому стекают статические заряды.

Заземление по цепям питания

Широко используемые системы заземления предназначены для выполнения разно­образных задач. Они могут функционировать отдельно или вместе и обеспечивать одну или несколько функций:

  • защиту людей от поражения электрическим током;
  • защиту оборудования от повреждения электрическим током;
  • обеспечивать нулевую точку отсчета потенциала для слаботочных сигналов;
  • поддерживать требуемый уровень электромагнитной совместимости.

Правильно выполненное заземление по цепям питания играет особую роль в бесперебойном функционировании установки. Очень важно, чтобы компоненты установки как в низкочастотном, так и в высокочастотном диапазоне имели единое заземление. Поэтому еще при проектировании установки следует учитывать высокочастотный характер заземления. Все компоненты установки должны быть заземлены с низким электрическим сопротивлением — как для низких частот (НЧ), так и для высоких частот (ВЧ).

Система заземления обычно проектируется и устанавливается для обеспечения в этой цепи низкого сопротивления, способного отводить как токи короткого замыкания при срабатывании систем защиты, так и высоко­частотные токи помех от электронных устройств и систем. Правильно выполненная система заземления и уравнивания потенциалов значительно улучшает электромагнитную обстановку помещения и электромагнитную совместимость оборудования, тем самым обеспечивая:

  • улучшенную электромагнитную совместимость вычислительных и иных систем;
  • соответствие требованиям электромагнитной совместимости (по излучению помех и устойчивости к ним);
  • возможность надежной и безотказной работы различного электронного электрооборудования.

Существуют различные системы заземления, но для всех из них требуется соблюдение специальных условий, однако эти условия не всегда соблюдаются в стандартных промышленных и бытовых электросистемах, особенно когда идет речь о высокочастотном заземлении.

Использование отдельной «чистой» системы заземления для электронного оборудования и «грязной» системы заземления для силового оборудования не рекомендуется с точки зрения обеспечения требуемой электромагнитной совместимости, так как при разряде молнии в электросистеме возникнут высокочастотные возмущения, токи короткого замыкания и переходные токи между этими «землями». Возникшие в результате переходные напряжения могут привести к повреждению или выходу из строя электронного оборудования.

В типовой электросистеме для много­этажного здания каждый этаж должен иметь собственную сеть заземления (обычно в виде сетки), и все сетки должны быть соединены между собой и присоединены к заземлению.

Для обеспечения защиты от обрыва одного из проводников (чтобы ни одна из секций сети заземления не оказалась отсоединенной) требуются не менее двух соединений с этой сеткой (избыточное резервирование).

На практике для получения более равномерного распределения токов используется более двух соединений. Это сглаживает различия в потенциалах и общем сопротивлении между различными этажами здания и другими контурами заземления. Каждое помещение в здании должно иметь проводники системы заземления для эквипотенциального соединения устройств, систем, кабелепроводов и конструкций. Эту систему можно усилить с помощью металлических труб, лотков, опор, подставок и др. В специальных случаях, например в аппаратных серверных или в компьютерных помещениях, для выравнивания потенциалов при соединении устройств коммуникационными кабелями можно усилить существующую сеть заземления дополнительными заземляющими проводниками или шинами и создать специальную зону.

Параллельные контуры заземляющего тока, как правило, имеют разные резонансные частоты. Если один из контуров отличается большим сопротивлением, он наверняка шунтируется другим контуром, имеющим другую резонансную частоту. В целом, в широком спектре частот (от десятков герц до мегагерц) наличие большого количества параллельных контуров с различными частотными параметрами статистически приводит к системе с низким полным сопротивлением.

  • Есть и различные технические способы, чтобы обеспечить низкоомную цепь заземления, такие как:
  • соединение с широким поверхностным контактом, которое с двух концов имеет достаточный поверхностный контакт с общим выводом;
  • создание соединений из большого количества отдельных, изолированных друг от друга, проводников (заземляющий литцентрат);
  • применение экранированного провода, так как экран является для НЧ и ВЧ очень низкоомным соединением.

Все указанные варианты имеют низкую индуктивность и, следовательно, обладают малым высокочастотным сопротивлением, что способствует обеспечению ЭМС.

Конструкция

При конструировании очень важным мероприятием становится функциональная разбивка прибора на узлы и блоки с учетом требований ЭМС.

Влияние помех на соединительные провода различных групп может быть сильно снижено при хорошо спланированной трассировке этих проводников. Причем во многих случаях возможна эксплуатация и с неэкранированными проводами. При скручивании информационных проводов также может быть сильно снижено воздействие помех. Скручивание становится тем эффективнее, чем больше витков приходится на единицу длины провода (приблизительно 75 витков на один 1 п. м). При малом воздействии помех расстояние между проводами должно быть тем больше, чем дольше провода идут параллельно. Пересечение между собой токонесущих проводников должно осуществляться под прямым углом между ними.

Хорошим местом для установки фильтра по цепи питания является место непосредственно в приборе. В этом случае может представлять проблемы лишь линия между фильтром и местом ввода кабеля в корпус, так как теперь только на этот участок линии могут воздействовать помехи.

Рис. 1. Заземление фильтра

Поскольку почти во всех фильтрах используются конденсаторы утечки заряда на «землю» C, то эффективность фильтра существенно зависит от качества заземления фильтра. Плохое заземление можно представить с помощью сопротивления R и индуктивности L (рис. 1). Эти элементы препятствуют закорачиванию напряжения помехи на конденсаторах утечки при высоких частотах. Так как фильтр закорачивает напряжение помехи, чтобы направить ток помехи на ее источник, то полное сопротивление соединения между фильтром и источником помехи должно быть как можно меньше. Причем правильный выбор структуры и параметров фильтра возможен только после проведения специализированных расчетов, исследований и измерений.

Типы электромагнитных помех

Рассмотрим отдельно четыре основных типа помех, от которых можно избавиться с помощью правильно выполненного заземления:

  • кондуктивные;
  • индуктивные;
  • емкостные;
  • электростатические.

Кондуктивные помехи распространяются при наличии непосредственного электрического контакта между электрическими цепями и делятся на два вида (рис. 2):

  1. Помехи типа провод-«земля», напряжение которых приложено между каждым из проводников и «землей», которые еще называются несимметричными, или синфазными.
  2. Помехи типа провод-провод, напряжение которых приложено между отдельными электрическими цепями или между элементами одной и той же электрической цепи, которые еще называются симметричными, противофазными или дифференциальными.

Рис. 2. Виды кондуктивных помех

В отличие от дифференциальных синфазные помехи в процессе работы не приводят к сбоям электронного оборудования. Однако могут полностью вывести из строя такое оборудование из-за электрического пробоя внутренней изоляции (или p-n-переходов) в микросхемах и микропроцессорах в случае воздействия помех высокой энергии. С другой стороны, если электронное оборудование полностью изолировано от «земли», то импульсные помехи и перенапряжения относительно «земли» (синфазные несимметричные помехи общего вида) никак не могут повлиять на это оборудование, подобно тому как высокое напряжение относительно «земли» не мешает птицам спокойно сидеть на высоковольтных проводах. Дифференциальные же помехи вообще не имеют отношения к наличию или отсутствию заземления, их можно рассматривать как пульсации по цепям питания.

Что касается индуктивных помех, распространяющихся посредством электромагнитных полей, то, как известно, эффективная защита от помех данного типа осуществляется размещением чувствительной электронной аппаратуры внутри замкнутых металлических оболочек (клетка Фарадея), роль которых призваны выполнять корпуса электронных приборов или экраны. Как известно, заземление клетки Фарадея никак не влияет на эффективность ослабления ею индуктивных помех.

С емкостными помехами дело обстоит несколько сложнее, поскольку помехи этого типа распространяются через емкостные связи между находящимися рядом проводами, между близко расположенными металлическими корпусами, а также между перечисленными элементами и «землей». Заземление экранов проводов и металлических корпусов (впрочем, так же, как и снижение емкости) позволяет устранить емкостные помехи синфазного типа и практически не влияет на емкостные помехи дифференциального типа.

Статические помехи могут появляться в результате накопления статического заряда на изолированном от «земли» корпусе и возникающих в результате этого периодических пробоев на «землю». Заземление корпуса позволяет предотвратить накопление статического заряда. Однако для устранения электростатических (и даже частично емкостных) помех синфазного типа вовсе не требуется наличие низкоомного заземления, достаточно соединить корпус с системой заземления высокоомным резистором. Иногда, для чувствительной электроники используют отдельный контур заземления, соединенный в одной точке с общим контуром заземления (Signal Reference Subsystem), что принципиально не меняет сущности заземления. При этом предполагается, что многочисленные электронные устройства, имеющие электрические и информационные связи между собой, будут обладать общим нулевым (опорным) потенциалом, предотвращающим сбои в работе высокочувствительной электроники из-за электромагнитных помех, создающих дополнительную разность потенциалов между цепями нулевого потенциала, если их не заземлить.

Обеспечение опорного потенциала помогает защитить оборудование и персонал от мощных высокочастотных воздействий. Это общепринятый подход и общая практика обеспечения ЭМС электронной аппаратуры. Считается, что если между всеми электронными устройствами будет сохраняться общий потенциал системы заземления, то есть не будет возникать разность потенциалов между цепями нулевого потенциала различных устройств, то повышение общего потенциала и отличие его от нуля, происходящее одновременно во всех устройствах, не способно вызвать нарушения в работе этих устройств.

Ближняя и дальняя зоны эмиссии помех

В решении задач ЭМС и экранирования в частности важно правильно определить характер поля источника излучения помех.

На практике при характеристике электромагнитной обстановки при работе разно­образной электронной аппаратуры используют термины «электрическое поле», «магнитное поле», «электромагнитное поле». Кратко поясним, что это означает и какая связь существует между ними.

Электрическое поле создается зарядами. Например, во всем известных школьных опытах по электризации эбонита присутствует как раз электрическое поле. Для характеристики величины электрического поля используется понятие «напряженность электрического поля», имеющая обозначение Е. Электрическое поле Е создается между двумя проводниками с различными потенциалами. Оно измеряется в вольтах на метр и пропорционально подаваемому напряжению, деленному на расстояние между проводниками.

Магнитное поле Н образуется вокруг провод­ника, по которому протекает электрический ток. Оно измеряется в амперах на метр и пропорционально току, деленному на расстояние до проводника (рис. 3).

Рис. 3. Магнитное поле

Физические причины существования электромагнитного поля связаны с тем, что изменяющееся во времени электрическое поле порождает магнитное поле, а изменяющееся магнитное поле порождает вихревое электрическое поле. При этом оба компонента, Е и Н, непрерывно изменяясь во времени, воздействуют друг на друга и создают электромагнитные волны (рис. 4).

Рис. 4. Электромагнитные поля:
а) электрическое поле;
б) магнитное поле;
в) электромагнитная волна

Электромагнитные волны характеризуются длиной волны (l), единица измерения — метр. Источник энергии, генерирующий излучение, а по сути создающий электромагнитные колебания, характеризуется частотой (f), единица измерения — герц, а соответственно и электромагнитное поле (ЭМП) этой же частоты.

Важное свойство электромагнитного поля — его разделение на так называемую ближнюю и дальнюю зоны. В ближней зоне, или зоне индукции, на расстоянии от источника излучения меньше длины волны r 3l. В дальней зоне интенсивность поля убывает обратно пропорционально расстоянию до источника помех.

Характеристики поля определяются параметрами источника, величиной Z = E/H и окружающей средой, а также расстоянием от источника до точки наблюдения. Вблизи источника свойства электромагнитного поля обусловлены в основном характеристиками источника, а вдали зависят главным образом от среды, в которой оно распространяется (воздух, вакуум или материал).

Если в источнике протекает значительный ток при малом напряжении, то в ближней зоне преобладает магнитное (низкоомное) поле. Если же в источнике протекает малый ток при относительно большом напряжении, то в ближней зоне преобладает электрическое (высокоомное) поле. Поле в дальней зоне от любого источника называют электромагнитным, или плоской волной; для него Z = 120p 377 Ом (рис. 5).

Рис. 5. Волновое сопротивление электрического и магнитного полей

Таким образом, определение зоны и характера источника поля позволяет принимать более эффективные меры для уменьшения помех. Например, учитывая, что электрическое поле ближней зоны влияет на рецептор через паразитную емкостную связь с источником, а магнитное поле — через паразитную индуктивную связь, на основании этих данных выбирают соответствующий этому полю экран.

В ближней зоне узлов и элементов радио­электронной аппаратуры, с большими напряжениями и малыми токами генерируются электромагнитные поля с преобладанием электрической составляющей. При этом помехи создаются электрической индукцией, приближенно определяемой эквивалентной емкостью связи. Для ослабления этой связи можно:

  1. Максимально разносить цепи рецептора и источника помех.
  2. Компоновать цепи источника и рецептора помех, минимизируя емкость связи, например располагая помехонесущие и помеховосприимчивые провода под углом, близким к 90°.
  3. Уменьшать размеры цепей источника и рецептора помех.
  4. Применять дифференциальное включение рецептора помех, что практически позволяет значительно ослабить влияние емкостных синфазных помех.
  5. Применять компенсацию помех путем включения дополнительного источника противофазного сигнала помехи.
  6. Если возможность применения указанных мер при проектировании аппаратуры ограничена, то для обеспечения требуемого ослабления помех необходимо прибегнуть к экранированию электрического поля. Конструкции, реализующие это ослабление, называют экранами.

Экранирование электрического поля основано на замыкании силовых линий помехонесущего электрического поля на металлический экран, соединенный с корпусом аппаратуры или землей. Экранирующий эффект заземленного металлического экрана заключается в замыкании большей части емкости связи между экранируемыми элементами конструкции на корпус прибора.

Устранение емкостной связи

Для уменьшения электрической связи между цепями применяется электростатическое экранирование.

Например, между двумя проводниками образуется паразитная емкость, вследствие чего через сопротивление Z2 проходит переменный ток, создаваемый переменным напряжением U. Это событие нарушает режим работы цепи, в которую включено сопротивление Z2, и поэтому нежелательно. Для устранения паразитной емкости между проводниками помещается заземленная пластина Э, называемая электростатическим экраном (рис. 6).

Рис. 6. Защита цепи резистора Z2 электростатическим экраном

Экран шунтирует часть тока источника переменного тока, тем самым снижается нежелательный ток сопротивления Z2. Таким образом, возникает емкостная связь между проводником цепи Z1 и экраном Э. Благодаря этому ток в цепи сопротивления Z2 устраняется.

Каждая катушка индуктивности, кроме индуктивности, обладает и некоторой емкостью. Под влиянием этой емкости возле катушки создается электрическое поле, которое может вызвать паразитные связи. Для того чтобы экранировать не только магнитное, но и электрическое поле катушки, экран делают закрытым со всех сторон и заземляют (соединяют с корпусом установки).

В катушках трансформаторов, кроме желаемой индуктивной связи между обмотками, как правило, возникает нежелательная емкостная связь, то есть между обмотками образуется паразитная емкость. Для сокращения этого явления между катушками помещают электростатический экран (рис. 7), который в данном случае не имеет замкнутых цепей для электрического тока и не оказывает воздействия на магнитные поля катушек.

Рис. 7. Устранение емкостной связи между катушками

Для снижения такой паразитной емкости (емкостной связи) еще используют увеличенное расстояние между обмотками, решая при этом дополнительную задачу обеспечения предельно допустимого напряжения между обеими обмотками. При использовании указанных методов следует не забывать о снижении коэффициента связи между данными обмотками.

Экранирование электромагнитных полей в устройствах промышленной и силовой электроники

Экранирование служит основным средством ослабления электромагнитных помех, вызванных излучением. Экраны применяются для отдельных элементов, узлов, блоков и устройств, которые могут быть либо источниками, либо рецепторами помех. Как правило, экранирование удорожает изделие, поэтому необходимость экранирования должна быть обоснована и рассматриваться только после того, как полностью исчерпаны схемотехнические решения и методы оптимальной компоновки аппаратуры.

Основным назначением электромагнитных экранов является локализация поля помех, создаваемых источником питания, в местах их возникновения с целью ослабления влияния помех на элементы источника питания, чувствительные к помехам. Эффективность экранирования, электрической и магнитной составляющих поля определяется отношением напряженности поля в любой точке пространства, в отсутствие экрана и при его наличии. В общем случае экран не только локализует, но и искажает поле источника в защищаемой области пространства, а также оказывает побочное влияние на параметры паразитной индуктивности и другие паразитные параметры цепей электропитания, находящиеся в зоне действия экрана. Экран устанавливается между источником и приемником помех и снижает напряженности воздействующих полей от Е0 и Н0 до сниженных значений Е1, Н1 за экраном.

Для представления вопросов экранирования рассматривается связь между двумя схемами в виде сосредоточенных емкости и индуктивности между проводниками, поэтому такую схему можно анализировать при помощи обычной теории цепей. При этом надо помнить ряд постулатов:

  • Первое — экраны в преобразовательных устройствах выполняются из немагнитных материалов, а на экранируемых частотах их толщина намного меньше глубины скин-слоя этих частот.
  • Второе — приемник помех не настолько сильно связан с источником, чтобы служить для него нагрузкой.
  • Третье — индуктивные токи в схемах приемников сигналов малы и не искажают первоначальное поле.

Экраны служат для ослабления электрических, магнитных и электромагнитных полей, а именно для того, чтобы исключить проникновение и воздействие таких полей на элементы, блоки, приборы, кабели, помещения и здания. Также для того, чтобы подавить исходящие от электрических и электронных промышленных средств и устройств помехи, обусловленные полями.

Диапазон частот, определяющий электромагнитный режим работы экрана, как правило, соответствует условиям ближней зоны и излучения для частот порядка сотен мегагерц, поэтому принципы и особенности действия электромагнитного экрана необходимо рассматривать применительно к электрической и магнитной составляющей поля в отдельности. Различают следующие режимы работы: магнитостатику, электромагнитный режим и волновой.

Физическая сущность электромагнитного экранирования сводится к тому, что под действием источника электромагнитной энергии со стороны экрана, обращенной к источнику помехи, возникают заряды, а в его стенках — токи, поля которых во внешнем пространстве по интенсивности близки к полю источника, а по направлению противоположны ему, в результате чего происходит взаимная компенсация полей. В основу электромагнитного режима работы экрана положена теория ослабления электрического и магнитного полей за счет действия вихревых токов в толще материала экрана. Особенностью электромагнитного экрана является наличие электрических потерь мощности в толще экрана, вследствие чего экран нагревается. При относительно низких частотах вихревых токов мощность потерь прямо пропорциональна квадрату частоты. Поэтому при проведении экранирования выбирают материалы экрана с наибольшей удельной проводимостью или с большой магнитной проницаемостью.

С точки зрения волновых представлений эффект экранирования проявляется и из-за многократного отражения электромагнитных волн от поверхности экрана и затухания энергии волн в его металлической толще. Отражение электромагнитной энергии обусловлено несоответствием волновых характеристик диэлектрика, в котором расположен экран, и материала экрана. Чем сильнее это несоответствие, чем больше отличаются волновые сопротивления экрана и диэлектрика, тем интенсивнее частичный эффект экранирования, определяемый отражением электромагнитных волн. Такое рассмотрение является упрощенным, природа же электромагнитного экранирования гораздо сложнее.

Эффективность волнового экранирования aэ может быть записана как сумма потерь отражения R, переотражения A и поглощения B:

Это выражение известно как «модель линии передачи» для эффективности экранирования, и среди других моделей она выделяется важнейшим предположением, что связь между токами экрана и источника падающих волн ничтожно мала.

На эффективность экранирования оказывают существенное влияние частота поля, электропроводность и магнитная проницаемость материала экрана, конфигурация, размеры и толщина экрана. Принципиально следует иметь в виду, что эффективность экранирования зависит от наличия дефектов и отверстий в стенке экрана (трещин, дверных, вентиляционных и оконных проемов, кабельных вводов и отверстий для элементов обслуживания и сигнализации), а также от того, что внутри экранированных объемов могут возникать резонансные эффекты.

Эффективность экранирующих устройств ориентировочно может быть оценена величиной коэффициента экранирования aэ следующим образом:

Источник