Допустимые потери напряжения пуэ по кабелям

Содержание
  1. Потери напряжения в электрических сетях
  2. Что означает падение напряжения
  3. Допустимое падение напряжение в кабеле
  4. СП 256.1325800.2016: потери напряжения в электрической сети
  5. Проверка кабеля по потере напряжения
  6. Как найти падение напряжения и правильно рассчитать его потерю в кабеле
  7. В трехфазной сети
  8. На участке цепи
  9. Распределение уровня потерь
  10. ПУЭ-7 п.1.3.10 ДОПУСТИМЫЕ ДЛИТЕЛЬНЫЕ ТОКИ ДЛЯ ПРОВОДОВ, ШНУРОВ И КАБЕЛЕЙ С РЕЗИНОВОЙ ИЛИ ПЛАСТМАССОВОЙ ИЗОЛЯЦИЕЙ
  11. Таблица 1.3.4. Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами
  12. Таблица 1.3.5. Допустимый длительный ток для проводов с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами
  13. Таблица 1.3.6. Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной, найритовой или резиновой оболочке, бронированных и небронированных
  14. Таблица 1.3.7. Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных
  15. Таблица 1.3.8. Допустимый длительный ток для переносных шланговых легких и средних шнуров, переносных шланговых тяжелых кабелей, шахтных гибких шланговых, прожекторных кабелей и переносных проводов с медными жилами
  16. Таблица 1.3.9. Допустимый длительный ток для переносных шланговых с медными жилами с резиновой изоляцией кабелей для торфопредприятий
  17. Таблица 1.3.10. Допустимый длительный ток для шланговых с медными жилами с резиновой изоляцией кабелей для передвижных электроприемников
  18. Таблица 1.3.11. Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией для электрифицированного транспорта 1,3 и 4 кВ
  19. Таблица 1.3.12. Снижающий коэффициент для проводов и кабелей, прокладываемых в коробах

Потери напряжения в электрических сетях

Что означает падение напряжения

Падение происходит, когда происходит перенос нагрузки на всем участке электрической цепи. Действие этой нагрузки напрямую зависит от параметра напряженности в ее узловых элементах. Когда определяется сечение проводника, важно участь, что его значение должно быть таким, чтобы в процессе нагрузки сохранялось в определенных границах, которые должны поддерживаться для нормального выполнения работы сети.

Читайте также:  Как измерить квадратуру кабеля


Мнемоническая диаграмма для закона Ома

Более того, нельзя пренебрегать и характеристикой сопротивляемости проводников, из которых состоит цепь. Оно, конечно, незначительное, но его влияние весьма существенно. Падение происходит при передаче тока. Именно поэтому, чтобы, например, двигатель или цель освещения работали стабильно, необходимо поддерживать оптимальный уровень, для этого тщательно рассчитывают провода электроцепи.

Важно! Предел допустимого значения рассматриваемой характеристики отличается от страны к стране. Забывать это нельзя. Если она снижается ниже значений, которые определены в определенной стране, следует использовать провода с большим сечением.

Любой электроприбор будет работать полноценно, если к нему подается то значение, на которое он рассчитан. Если провод взят неверно, то из-за него происходят большие потери электронапряжения, и оборудование будет работать с заниженными параметрами. Особенно актуально это для постоянного тока и низкой напряженности. Например, если оно равно 12 В, то потеря одного-двух вольт уже будет критической.

Вам это будет интересно Чет отличается RJ-11 от RJ-12


Закон Ома для участка цепи

Допустимое падение напряжение в кабеле

Значение потери электронапряжения регламентируется и нормируется сразу несколькими правилами и инструкциями устройства электроустановок. Так, согласно правилу СП 31-110-2003, суммарная потеря напряжения от входной точки в помещении до максимально удаленного от нее потребителя электроэнергии не должно быть больше 7.5 %. Это правило работает на всех электроцепях с напряжением не более 400 вольт. Данное правило используется при монтаже и проектировке сетей, а также при их проверке службами Ростехнадзора.

Важно! Этот документ обобщает и отклонение электронапряжения в сетях однофазного тока бытового назначения. Оно должно быть не более 5 % при нормальной работе и 10 % после аварийной ситуации. Если сеть низковольтная, то есть до 50 вольт, то нормальным падением считается +-10 %.

Для кабелей питающей сети используют правило РД 34.20.185-94. Оно допускает параметр потерь не более 6 %, если напряжение составляет 10 кВ и не более 4–6 % при электронапряжении 380 вольт. Чтобы одновременно соблюсти эти правила и инструкции, добиваются потерь 1.5 % для малоэтажных знаний и 2.5 % для многоэтажных.


Падение напряжения на резисторе

СП 256.1325800.2016: потери напряжения в электрической сети

В своде правил СП 256.1325800.2016 , действующем со 2 марта 2017 г., допущено большое число ошибок. Поэтому его следует отменить (см. https://y-kharechko.livejournal.com/31515.html ). Рассмотрим требования п. 8.23 СП к потерям напряжения в электрической сети, в которых допущена грубая ошибка. В п. 8.23 СП, в частности, указано: «В нормальных условиях работы сетей рекомендуется поддерживать напряжение в точке питания потребителя с отклонением от номинального значения не более ±10% . . Суммарные потери напряжения от шин 0,4 кВ ТП до наиболее удаленного осветительного прибора общего освещения в жилых и общественных зданиях не должны, как правило, превышать 7,5% . При этом потери напряжения от ВРУ здания до наиболее удаленных светильников должны быть не более 3%, а до прочих потребителей − не более 4% ». Первое из процитированных требований соответствует ГОСТ 29322 (см. https://y-kharechko.livejournal.com/48222.html , https://y-kharechko.livejournal.com/49081.html , https://y-kharechko.livejournal.com/48775.html ), в котором напряжение в точке подключения однофазной электроустановки здания к низковольтной электрической сети установлено равным 230 В ± 10 %, трёхфазной электроустановки здания – 400 В ± 10 %. Таким образом, максимально допустимые потери напряжения в низковольтной распределительной электрической сети могут быть равными 20 % номинального напряжения (см. https://y-kharechko.livejournal.com/32353.html ). Второе из процитированных требований противоречит первому требованию. Оно ограничивает потери напряжения в низковольтной распределительной электрической сети 3,5 % (7,5 % − 4 %) номинального напряжения. Это является грубой ошибкой, поскольку СП не распространяется на распределительные электрические сети. Более того, нормирование потерь напряжения в распределительных электрических сетях не имеет никакого смысла. В распределительных электрических сетях нормируют напряжения в точках подключения электроустановок зданий 230 В ± 10 % и 400 В ± 10 %. Поэтому потери напряжения в них могут достигать 20 %. Кроме того, в СП неправильно указано максимально допустимое падение напряжения в электроустановках зданий для «прочих потребителей». В приложении А ГОСТ 29322 сказано, что стандартом МЭК 60364-5-52 :2009 «Низковольтные электрические установки. Часть 5-52. Выбор и монтаж электрического оборудования. Системы электропроводок» «для электроустановок, подключаемых к электрическим сетям общего пользования, установлены следующие максимальные падения напряжения: для электрических светильников – 3 %, для других электроприемников – 5 % ».

Проверка кабеля по потере напряжения

Всем известно, что протекание электрического тока по проводу или кабелю с определенным сопротивлением всегда связано с потерей напряжения в этом проводнике.

Согласно правилам Речного регистра, общая потеря электронапряжения в главном распределительном щите до всех потребителей не должна превышать следующие значения:

  • при освещении и сигнализации при напряжении более 50 вольт – 5 %;
  • при освещении и сигнализации при напряжении 50 вольт – 10 %;
  • при силовых потреблениях, нагревательных и отопительных систем вне зависимости от электронапряжения – 7 %;
  • при силовых потреблениях с кратковременным и повторно-кратковременным режимами работы вне зависимости от электронапряжения – 10 %;
  • при пуске двигателей – 25 %;
  • при питании щита радиостанции или другого радиооборудования или при зарядке аккумуляторов – 5 %;
  • при подаче электричества в генераторы и распределительный щит – 1 %.

Вам это будет интересно Обозначение ват

Исходя из этого и выбирают различные типы кабелей, способных поддерживать такую потерю напряжения.


Пример калькулятора для автоматизации вычислений

Как найти падение напряжения и правильно рассчитать его потерю в кабеле

Одним из основных параметров, благодаря которому считается напряженность, является удельное сопротивление проводника. Для проводки от станции или щитка к помещению используются медные или алюминиевые провода. Их удельные сопротивления равны 0,0175 Ом*мм2/м для меди и 0,0280 Ом*мм2/м для алюминия.

Рассчитать падение электронапряжения для цепи постоянного тока в 12 вольт можно следующими формулами:

  • определение номинального тока, проходящего через проводник. I = P/U, где P – мощность, а U – номинальное электронапряжение;
  • определение сопротивления R=(2*ρ*L)/s, где ρ – удельное сопротивление проводника, s – сечение провода в миллиметрах квадратных, а L – длина линии в миллиметрах;
  • определение потери напряженности ΔU=(2*I*L)/(γ*s), где γ – это величина, которая равна обратному удельному сопротивлению;
  • определение требуемой площади сечения провода: s=(2*I*L)/(γ*ΔU).

Важно! Благодаря последней формуле можно рассчитать необходимую площадь сечения провода по нагрузке и произвести проверочный расчет потерь.


Таблица значений индуктивных сопротивлений

В трехфазной сети

Для обеспечения оптимальной нагрузки в трехфазной сети каждая фаза должна быть нагружена равномерно. Для решения поставленной задачи подключение электромоторов следует выполнять к линейным проводникам, а светильников – между нейтральной линией и фазами.

Потеря электронапряжения в каждом проводе трехфазной линии с учетом индуктивного сопротивления проводов подсчитывается по формуле

Первый член суммы – это активная, а второй – пассивная составляющие потери напряженности. Для удобства расчетов можно пользоваться специальными таблицами или онлайн-калькуляторами. Ниже приведен пример такой таблицы, где учтены потери напряжения в трехфазной ВЛ с алюминиевыми проводами электронапряжением 0,4 кВ.

Потери напряжения определены следующей формулой:

Здесь ΔU—потеря напряжения, ΔUтабл — значение относительных потерь, % на 1 кВт·км, Ма — произведение передаваемой мощности Р (кВт) на длину линии, кВт·км.

Вам это будет интересно Как рассчитать индуктивность катушки


Однолинейная схема линии трехфазного тока

На участке цепи

Для того, чтобы провести замер потери напряжения на участке цепи, следует:

  • Произвести замер в начале цепи.
  • Выполнить замер напряжения на самом удаленном участке.
  • Высчитать разницу и сравнить с нормативным значением. При большом падении рекомендуется провести проверку состояния проводки и заменить провода на изделия с меньшим сечением и сопротивлением.

Важно! В сетях с напряжением до 220 в потери можно определить при помощи обычного вольтметра или мультиметра.

Базовым способом расчета потери мощности может служить онлайн-калькулятор, который проводит расчеты по исходным данным (длина, сечение, нагрузка, напряжение и число фаз).


Образец калькулятора для вычисления потерь

Таким образом, вычислить и посчитать потери напряжения можно с помощью простых формул, которые для удобства уже собраны в таблицы и онлайн-калькуляторы, позволяющие автоматически вычислять величину по заданным параметрам.

Распределение уровня потерь

В процессе проектирования электрической системы, проектировщики должны распределить потери между отдельными участками цепи. Опытные мастера рекомендуют выделять на участок цепи от трансформатора до вводного аппарата до 4%. Такая величина потерь считается оптимальной, так как для обеспечения меньшего уровня потерь придется использовать электрический кабель большого диаметра сечения, что крайне негативно скажется на стоимости подключения объекта к электрическим сетям.

Естественно, величина потерь на данном участке должна быть максимально низкой. Если на участке от трансформатора до вводного устройства будет взята величина потерь на уровне 4%, то потери в электрической системе внутри объекта должны будут быть на уровне не более 3,5%. Внутри электрифицируемых объектов создаются электрические системы не очень большой протяженности, потому величина потерь на них, при использовании кабеля для линии освещения диаметром 1,5-2,5 мм, будет составлять около 2%. Таким образом, допустимая величина потерь напряжения в электросети не будет превышена, а стоимость монтажа электрической системы не будет слишком высокой.

Многие молодые проектировщики могут недооценивать важность грамотного распределения потерь электрического напряжения на пути транспортировки электроэнергии от объектов энергетического хозяйства сетевых компаний до конечного потребителя. Это достаточно грубая ошибка. В первую очередь, грамотное распределение позволяет значительно экономить на электрических кабелях, за счет чего общая стоимость монтажа электрики внутри объекта может быть значительно снижена. Кроме того, неправильное распределение потерь может привести к запрету на выполнение электромонтажных работ по электропроекту, если эта ошибка будет выявлена специалистами на этапе согласования проектной документации. Чтобы проект успешно прошел этап экспертизы, проектировщикам должны быть известны особенности согласования электропроектов.

При определении уровня потерь напряжения на каждом участке транспортировки электричества, специалистам обязательно следует учитывать индивидуальные особенности и характеристики объекта, для которого создается электросеть. В некоторых случаях на участок от трансформатора до вводного устройства можно устанавливать потери и на уровне 6%. Это имеет смысл в ситуациях, когда небольшой объект с маломощной электрической системой располагается на большом расстоянии от объектов энергетического хозяйства сетевой компании.

Также вы можете узнать стоимость проектирования электрики, воспользовавшись калькулятором.

Источник

ПУЭ-7 п.1.3.10 ДОПУСТИМЫЕ ДЛИТЕЛЬНЫЕ ТОКИ ДЛЯ ПРОВОДОВ, ШНУРОВ И КАБЕЛЕЙ С РЕЗИНОВОЙ ИЛИ ПЛАСТМАССОВОЙ ИЗОЛЯЦИЕЙ

Допустимые длительные токи для проводов с резиновой или поливинилхлоридной изоляцией, шнуров с резиновой изоляцией и кабелей с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках приведены в табл. 1.3.4-1.3.11. Они приняты для температур: жил +65, окружающего воздуха +25 и земли + 15°С.

Узнать, где применяется кабель в резиновой изоляции, и посмотреть все марки данного кабеля можно здесь: http://cable.ru/cable/kabel-rezinovaya.php

При определении количества проводов, прокладываемых в одной трубе (или жил многожильного проводника), нулевой рабочий проводник четырехпроводной системы трехфазного тока, а также заземляющие и нулевые защитные проводники в расчет не принимаются.

Данные, содержащиеся в табл. 1.3.4 и 1.3.5, следует применять независимо от количества труб и места их прокладки (в воздухе, перекрытиях, фундаментах).

Допустимые длительные токи для проводов и кабелей, проложенных в коробах, а также в лотках пучками, должны приниматься: для проводов — по табл. 1.3.4 и 1.3.5 как для проводов, проложенных в трубах, для кабелей — по табл. 1.3.6-1.3.8 как для кабелей, проложенных в воздухе. При количестве одновременно нагруженных проводов более четырех, проложенных в трубах, коробах, а также в лотках пучками, токи для проводов должны приниматься по табл. 1.3.4 и 1.3.5 как для проводов, проложенных открыто (в воздухе), с введением снижающих коэффициентов 0,68 для 5 и 6; 0,63 для 7-9 и 0,6 для 10-12 проводников.

Для проводов вторичных цепей снижающие коэффициенты не вводятся.

Таблица 1.3.4. Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами

Ток, А, для проводов, проложенных в одной трубе

Сечение токопроводящей жилы, мм 2 открыто двух одножильных трех одножильных четырех одножильных одного двухжильного одного трехжильного 0,5 11 — — — — — 0,75 15 — — — — — 1 17 16 15 14 15 14 1,2 20 18 16 15 16 14,5 1,5 23 19 17 16 18 15 2 26 24 22 20 23 19 2,5 30 27 25 25 25 21 3 34 32 28 26 28 24 4 41 38 35 30 32 27 5 46 42 39 34 37 31 6 50 46 42 40 40 34 8 62 54 51 46 48 43 10 80 70 60 50 55 50 16 100 85 80 75 80 70 25 140 115 100 90 100 85 35 170 135 125 115 125 100 50 215 185 170 150 160 135 70 270 225 210 185 195 175 95 330 275 255 225 245 215 120 385 315 290 260 295 250 150 440 360 330 — — — 185 510 — — — — — 240 605 — — — — — 300 695 — — — — — 400 830 — — — — —

Таблица 1.3.5. Допустимый длительный ток для проводов с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами

Ток, А, для проводов, проложенных

Сечение токопроводящейжилы, мм 2
открыто двух одножильных трех одножильных четырех одножильных одного двухжильного одного трехжильного
2 21 19 18 15 17 14
2,5 24 20 19 19 19 16
3 27 24 22 21 22 18
4 32 28 28 23 25 21
5 36 32 30 27 28 24
6 39 36 32 30 31 26
8 46 43 40 37 38 32
10 60 50 47 39 42 38
16 75 60 60 55 60 55
25 105 85 80 70 75 65
35 130 100 95 85 95 75
50 165 140 130 120 125 105
70 210 175 165 140 150 135
95 255 215 200 175 190 165
120 295 245 220 200 230 190
150 340 275 255
185 390
240 465
300 535
400 645

Таблица 1.3.6. Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной, найритовой или резиновой оболочке, бронированных и небронированных

Ток *, А, для проводов и кабелей

* Токи относятся к проводам и кабелям как с нулевой жилой, так и без нее.

Таблица 1.3.7. Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных

Сечение токопроводящей жилы, мм2
в воздухе в воздухе в земле в воздухе в земле
1,5 23 19 33 19 27
2,5 30 27 44 25 38
4 41 38 55 35 49
6 50 50 70 42 60
10 80 70 105 55 90
16 100 90 135 75 115
25 140 115 175 95 150
35 170 140 210 120 180
50 215 175 265 145 225
70 270 215 320 180 275
95 325 260 385 220 330
120 385 300 445 260 385
150 440 350 505 305 435
185 510 405 570 350 500
240 605

Ток, А, для кабелей

Сечение токопроводящей жилы, мм2
в воздухе в воздухе в земле в воздухе в земле
2,5 23 21 34 19 29
4 31 29 42 27 38
6 38 38 55 32 46
10 60 55 80 42 70
16 75 70 105 60 90
25 105 90 135 75 115
35 130 105 160 90 140
50 165 135 205 110 175
70 210 165 245 140 210
95 250 200 295 170 255
120 295 230 340 200 295
150 340 270 390 235 335
185 390 310 440 270 385
240 465

Примечание. Допустимые длительные токи для четырехжильных кабелей с пластмассовой изоляцией на напряжение до 1 кВ могут выбираться по табл. 1.3.7, как для трехжильных кабелей, но с коэффициентом 0,92.

Таблица 1.3.8. Допустимый длительный ток для переносных шланговых легких и средних шнуров, переносных шланговых тяжелых кабелей, шахтных гибких шланговых, прожекторных кабелей и переносных проводов с медными жилами

Сечение токопроводящей жилы, мм2

Ток *, А, для шнуров, проводов и кабелей

одножильных двухжильных трехжильных 0,5 — 12 — 0,75 — 16 14 1,0 — 18 16 1,5 — 23 20 2,5 40 33 28 4 50 43 36 6 . 65 55 45 10 90 75 60 16 120 95 80 25 160 125 105 35 190 150 130 50 235 185 160 70 290 235 200

* Токи относятся к шнурам, проводам и кабелям с нулевой жилой и без нее.

Таблица 1.3.9. Допустимый длительный ток для переносных шланговых с медными жилами с резиновой изоляцией кабелей для торфопредприятий

Сечение токопроводящей жилы, мм 2

Ток *, А, для кабелей напряжением, кВ

0,5 3 6 6 44 45 47 10 60 60 65 16 80 80 85 25 100 105 105 35 125 125 130 50 155 155 160 70 190 195 —

* Токи относятся к кабелям с нулевой жилой и без нее.

Таблица 1.3.10. Допустимый длительный ток для шланговых с медными жилами с резиновой изоляцией кабелей для передвижных электроприемников

Сечение токопроводящей жилы, мм 2

Ток *, А, для кабелей напряжением, кВ

Сечение токопроводящей жилы, мм 2

Ток *, А, для кабелей напряжением, кВ

3 6 3 6 16 85 90 70 215 220 25 115 120 95 260 265 35 140 145 120 305 310 50 175 180 150 345 350

* Токи относятся к кабелям с нулевой жилой и без нее.

Таблица 1.3.11. Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией для электрифицированного транспорта 1,3 и 4 кВ

Сечение токопроводящей жилы, мм 2 Ток, А Сечение токопроводящей жилы, мм 2 Ток, А Сечение токопроводящей жилы, мм 2 Ток, А
1 20 16 115 120 390
1,5 25 25 150 150 445
2,5 40 35 185 185 505
4 50 50 230 240 590
6 65 70 285 300 670
10 90 95 340 350 745

Таблица 1.3.12. Снижающий коэффициент для проводов и кабелей, прокладываемых в коробах

Количество проложенных проводов и кабелей

Снижающий коэффициент для проводов, питающих группы электро приемников и отдельные приемники с коэффициентом использования более 0,7

Источник