Для защиты кабеля от коррозии блуждающими токами

§ 51. Защита кабельных линий от коррозии

Коррозионный процесс. Почвенная влага представляет собой электролит различного состава и концентрации. Контакт металла с почвенным электролитом вызывает образование коррозионных элементов (пар). Если на поверхности металла, погруженного в электролит, имеются участки с различными электрическими потенциалами, то во внешней цепи, соединенной через электролит, проходит ток от более высокого потенциала к более низкому. Таким образом, участок с более высоким потенциалом будет анодом, а с меньшим — катодом. Участок кабельной линии, имеющий положительный электрический потенциал по отношению к окружающей среде, является анодной зоной, а отрицательный — катодной. В катодных зонах токи входят в оболочку кабеля, не создавая опасности ее разрушения. В анодных зонах токи проходят по оболочке, унося частицы металла и разрушая его.

Причины коррозии. Подземная коррозия, которая вызывает электрохимическое разрушение металлических элементов кабелей в процессе эксплуатации, подразделяется на электрокоррозию от блуждающих токов и почвенную коррозию от действия окружающей агрессивной среды.

Источником блуждающих токов являются в основном рельсовые пути магистрального, промышленного и городского электрифицированного железнодорожного транспорта. Отсутствие полной изоляции путевого хозяйства от земли, несовершенство устройств электроснабжения и другие причины вызывают утечку тяговых токов из рельсов в землю. Растекаясь в земле и встречая на своем пути различные инженерные сооружения (трубопроводы, кабели и т. п.), удельные сопротивления которых меньше сопротивления земли, блуждающие токи входят в сооружения и проходят в них по направлению к тяговым подстанциям. Для кабельной сети наиболее опасным источником коррозии является трамвай, использующий для тяги постоянный ток.

Читайте также:  Прокладка кабеля под армстронгом

Разрушение оболочек кабелей происходит тем сильнее, чем больше плотность тока, переходящего с кабеля в землю. Для бронированных силовых кабелей за допустимую плотность тока принята норма не выше 0,15 мА/дм 2 с удельным сопротивлением грунта 100 Ом•м.

Переходное сопротивление между рельсами и кабелями зависит от расстояния между ними, качества балласта под рельсовыми путями и качества грунта, в котором проложены кабели, а также от качества защитных покровов оболочек кабеля. Снижение всех видов сопротивления в рельсовой сети связано с уменьшением падения напряжения в ней, а следовательно, уменьшения тока утечки.

Устройство сварных соединений на рельсовых стыках и через определенные промежутки, электрическое соединение путей между собой для уменьшения их сопротивления предусмотрены ГОСТом.

Выбор защитных покровов кабелей, проложенных в траншеях, при наличии блуждающих токов зависит от материала оболочки. Для свинцовой оболочки применяют покровы Бл, Б2л, Б2лШп, Б2лШв, БШп, БШв, Пл, П2л, П2лШв, ПШв, ПШп, П2лШп; для алюминиевой — Бп, Б2л, Шв, БлШв, Шп, БлШп, БпШп, Б2лШв, БвШв, Б2лШп, П2л, ПлШв, П2лШп, П2лШв; для неметаллической — Б, П; без оболочки — БбШв, БбШп.

Наиболее подвержены блуждающим токам места пересечений и сближений с рельсами, а также участки, расположенные вблизи отсасывающих фидеров.

Почвенная коррозия — электрохимическое разрушение металлических оболочек от взаимодействия с грунтом. Интенсивность коррозии зависит от состава грунта, наличия влаги и доступа воздуха в грунт.

Песчаные грунты коррозионно наименее активны; наиболее развивается коррозия металлов в кислых болотистых грунтах и солончаках. Особенно сильно подвергаются почвенной коррозии кабели, прокладываемые на территориях химических предприятий. Поэтому на этих предприятиях прокладку кабелей в траншеях ограничивают либо заменяют ее открытой прокладкой на эстакадах и галереях. Кабели, предназначенные для прокладки в земле, имеют защитные покровы, предохраняющие металлические оболочки от почвенной коррозии.

Контроль за коррозией кабелей. Наиболее важной задачей борьбы с коррозией металлических оболочек кабельных линий является установление ее причин и источников. Выбор защитных мероприятий производят по совокупности данных исследований влияния блуждающих токов и коррозионности почв.

Для контроля за состоянием металлических оболочек кабельных линий необходимо иметь карту подземных сооружений с указанием на ней анодных и катодных зон и участков с агрессивными грунтами. На карту наносят рельсы электрифицированных железных дорог, ближайшие отсасывающие пункты и все виды защиты от блуждающих токов, установленные на подземных сооружениях. Наличие карты облегчит работу по разрытию кабельных трасс для производства контрольных измерений.

При контрольных замерах проверяют плотность тока, разность потенциалов и направление блуждающих токов. По току, проходящему по оболочке кабеля, судят о степени коррозионной опасности, а по его направлению — определяют места входа и выхода блуждающих токов с оболочек кабеля и устанавливают анодные и катодные зоны. Кроме того, во всех случаях раскопок контролируют состояние рельсовых стыков и кабелей.

В местах, где предполагается повреждение кабеля почвенной коррозией, оценку степени влияния коррозии на стальную броню определяют удельным сопротивлением грунта, потерей массы образца и плотностью поляризующего тока. Чем меньше удельное сопротивление грунта и чем больше потери массы образца и плотность поляризующего тока, тем больше опасность почвенной коррозии для брони кабеля.

Степень коррозионной активности грунтовой воды (средняя или высокая) по отношению к свинцовой и алюминиевой оболочкам определяют на основании химического анализа. Для этого на уровне прокладки кабеля на расстоянии 300—500 м друг от друга берут три пробы грунта в количестве 500 г и укладывают в чистую закрываемую крышкой посуду или в полиэтиленовые мешочки.

Силовые кабели со свинцовыми и алюминиевыми оболочками и стальной броней при наличии . средней и высокой коррозионной активности грунтов должны быть защищены катодной поляризацией. Ее выполняют с помощью источника постоянного тока, создающего противотоки. Кабели с алюминиевыми оболочками имеют защитный полимерный шланг (ААШв, ААШп), который надежно защищает оболочку от коррозионных воздействий. Контроль за коррозией металлических оболочек кабелей проводят по мере необходимости.

Мероприятия по защите кабелей от коррозии. При обнаружении коррозии металлических оболочек кабелей в процессе эксплуатации разрабатывают мероприятия по предотвращению дальнейшего разрушения их и замене поврежденных участков линии. Основным мероприятием по предотвращению почвенной коррозии является правильно выбранная трасса при проектировании кабельных линий. При необходимости кабели прокладывают в обход участков с агрессивными средами или применяют кабели с полимерным шлангом. При обнаружении неисправностей в устройствах электрифицированного транспорта снижают блуждающие токи до пределов установленных норм (сварка стыков рельсов, устройство отсосов и т. п.). Прокладку кабеля в местах сближения и пересечения с путями электрифицированного транспорта осуществляют в изолирующих трубах. Для борьбы с коррозией силовых кабелей от блуждающих токов применяют средства электрической защиты. Для кабелей, в которых среднесуточная плотность утечки блуждающих токов в землю превышает 0,15 мА/дм 2 , применяют катодную поляризацию.

Источник

Способы защиты кабелей от коррозии

способы защиты кабеля от коррозии

В рабочих условиях кабели требуют определенной защиты от коррозии и иного вредного воздействия окружающей среды. Как и со многими электроприборами, в качестве средства электрохимической защиты используют анодные электроды, сделанные из магния. Магниевый сплав замедляет процесс электро-коррозионного разрушения металлов.

Поэтому большое значение имеет защита кабелей от коррозии, которая должна предусматриваться на этапах проектирования, монтажа и эксплуатации линий электроснабжения. В случае открытой площадки проблема решается путем окрашивания брони или оболочки специальными антикоррозионными составами. При подземной прокладке кабеля для его защиты от коррозии приходится принимать специальные меры.

Виды коррозии кабельной продукции

Применяемые способы защиты кабелей от коррозии зависят от того, какому именно типу коррозионного воздействия подвержена линия электропередачи. Это определяется местом ее прокладки, условиями эксплуатации и материалами кабеля.

Коррозия металлической оболочки кабеля

Различают следующие основные виды коррозии:

  1. электрохимическая (почвенная);
  2. электрическая;
  3. межкристаллитная.

Причиной почвенной коррозии металлических оболочек и брони кабелей является воздействие агрессивных веществ, содержащихся в грунте. В почве постоянно присутствуют соли, щелочи, кислоты, которые выступают в качестве электролита. При контакте этих веществ с металлом на его поверхности образуются микроскопические гальванические элементы, в которых в качестве электродов выступают разные по структуре зерна металла или зерна металла и содержащиеся в его составе примеси. Протекание токов между этими электродами обуславливает быструю коррозию. Свинцовая кабельная оболочка быстрее всего разрушается при наличии в почве нитратов, извести и известняка, уксусной кислоты, доменных шлаков и каменноугольной смолы, большой концентрации перегноя. Стальная броня плохо переносит присутствие в грунте серных и сернокислых соединений, а также соединений хлора. Алюминиевые оболочки быстро корродируют во влажной почве, независимо от ее состава.

Электрическая коррозия протекает в результате воздействия на металлическую оболочку или броню кабеля блуждающих токов. Эти токи образуются в результате эксплуатации рельсового транспорта на электрическом ходу. Рельсы выступают в качестве обратных проводов, по которым ток возвращается на тяговую подстанцию. При этом существенная доля тока уходит в землю, образуя блуждающие токи. При наличии в зоне их действия кабеля с металлической оболочкой или броней возникает коррозия. За год блуждающий ток силой 1 А способен разрушать 3 кг алюминия, 9 кг стали, 35 кг свинца. При этом в некоторых случаях сила блуждающих токов может составлять несколько десятков ампер.

Межкристаллитная коррозия характерна для свинцовой брони и кабельных оболочек. Она возникает в результате длительного воздействия вибрации. Наибольшей угрозе подвержен кабель, проложенный вблизи железнодорожных и автомобильных магистралей, трамвайных путей, на мостах и т.д. При длительном воздействии вибрационных нагрузок свинцовая оболочка может растрескиваться. Причем трещины проходят, как правило, по границам зерен металла (кристаллитов), вследствие чего между ними начинают протекать коррозионные процессы, которые дополнительно усиливаются образованием окиси свинца.

Меры защиты от почвенной коррозии

Для предотвращения почвенной коррозии, в первую очередь, необходимо правильно выбрать маршрут прокладки кабельной трассы. Он не должен проходить в болотистой местности, в грунтах с повышенным содержанием влаги и извести. Также следует избегать участков с повышенным загрязнением, в том числе районы свалок бытовых и промышленных отходов, стока промышленных вод, мест с насыпными грунтами, включающими шлаки и т.д.

Если прокладку трассы мимо таких мест не удается обеспечить, то рекомендуется использовать кабельную продукцию с защитным пластиковым покрытием оболочки. При расположении в грунтах с повышенным содержанием агрессивных веществ эффективную защиту металлических оболочек кабелей дает прокладка внутри асбестоцементных труб.

Дополнительно может потребоваться использование электрических способов защиты от коррозии.

Меры защиты от электрической коррозии

Для предотвращения этого типа коррозии используются способы электрической защиты кабеля, которые также применяют и для защиты от химической коррозии.

Суть электрической защиты заключается в подаче отрицательного потенциала на металлическую оболочку кабеля, что позволяет прекратить на ее поверхности электролитические процессы.

Электрическую защиту подразделяют на три типа:

При катодной защите земля работает как катод. Между оболочкой кабеля и грунтом при помощи специальной катодной станции прикладывается разница потенциалов, что приводит к возникновению постоянного тока. Его протекание от почвы на кабель обеспечивает поляризацию.

Протекторная защита от коррозии не требует использования внешнего источника поляризационного тока. В качестве него используется гальванический элемент, который формируется металлической оболочкой кабеля («катод») и специальным металлическим элементом («анод»). Между ними в среде электролита возникает разница потенциалов. В результате протекания поляризационного тока происходит реакция восстановления металла кабельной оболочки и окисления протектора. Для защиты металлической оболочки кабелей от коррозии в зоне действия блуждающих токов промышленной частоты используются не обычные, а поляризованные протекторы. Их особенностью является подключение к кабельной оболочке через диод.

Электрический дренаж — это способ защиты кабеля от коррозии, предусматривающий отвод блуждающих токов при помощи проводника. Дренажный проводник подключается к металлической оболочке кабеля в центральной части анодной зоны, где накапливается наиболее значительный потенциал по отношению к земле. По этому проводнику блуждающие токи отводятся к минусовой шине подстанции или к рельсам.

Меры защиты от межкристаллитной коррозии

Для прокладки в зонах значительного вибрационного воздействия рекомендуется использовать кабель со свинцовой оболочкой особых марок. Они отличаются наличием в составе оболочки специальных присадок, которые повышают вибрационную стойкость металла. Прокладка кабеля в таких зонах должна осуществляться только цельным куском, поскольку на муфтовых соединениях межкристаллитная коррозия усиливается. Чтобы уменьшить вибрационное воздействие, рекомендуется выполнять прокладку кабеля в специальных коробах, наполненных песком, с использованием резиновых прокладок и других амортизирующих элементов.

Источник

Что такое блуждающие токи и как от них избавиться?

Последние 10-20 лет во многих мегаполисах наблюдается резкое снижение срока службы подземных металлических сооружений (трубопроводов горячего и холодного водоснабжения, системы отопления и т.д.). После проведения ряда экспертиз было установлено, что основная причина разрушения металла — электрохимическая коррозия, которую вызывают блуждающие токи. Из данной статьи Вы узнаете о природе этого явления, а также получите представление о способах защиты подземных сооружений и инженерных коммуникаций от гальванической коррозии.

Что такое блуждающий ток?

Как известно, земля является проводником электрического тока, что позволяет применять это свойство для создания заземляющих устройств. Но в тоже время, когда почва выступает в качестве токопроводящей среды, в ней образуются утечки. Поскольку нельзя спрогнозировать в какое время начнется процесс, и где он будет протекать, то такие проявления получили термин «блуждающие».

Причины и источники возникновения

Как мы помним из школьного курса физики, для образования электрического тока необходимо, чтобы возникла разность потенциалов между двумя участками цепи. Принцип возникновения блуждающих токов – аналогичный. Только роль проводника в данном случае исполняет земля.

На территории современных городов и населенных пунктов находится множество электрифицированных объектов, начиная от ЛЭП и заканчивая рельсовым транспортом, включая оборудование тяговых подстанций. Их объединяет один фактор – расположение на земле. Это приводит к довольно специфичному взаимодействию с последней, проявляющемуся в виде появления блуждающих токов. Ниже представлена таблица, которой приводятся их потенциальные источники и условия образования электросвязи связи с почвой.

Таблица 1. Потенциальные источники.

Название объекта Взаимосвязь с землей
Различные виды распределительных устройств, оборудование подстанций, ВЛ с нулевым проводником (глухозаземленная нейтраль), подключенным к повторным заземлителям. При наличии на объекте ЗУ.
ВЛ сетей с изолированной нейтралью, кабельные магистрали. Возникает при повреждении изоляционного покрытия токонесущих элементов кабелей.
Рельсовый электротранспорт, системы с заземленной нейтралью. Наличие технологической связи между одним из проводников и землей.

Механизм образования блуждающих токов

В таблице мы привели в качестве примера несколько источников, теперь рассмотрим подробно, как в них образуется интересующий нас процесс. Как уже упоминалось выше, чтобы он появился, между двумя точками на земле должно произойти возникновение разности потенциалов. Такие условия создаются контурами ЗУ систем с глухоизолированной нейтралью.

Нулевой провод (PEN) одним концом соединен с ЗУ электроподстанции, а вторым подключен к шине PEN потребителя, которая соединена с заземляющим устройством объекта. Соответственно, разница электрических потенциалов между выводами нулевого проводника будет передаваться ЗУ, что создаст условия для образования цепи. Величина утечки будет незначительной, поскольку основная нагрузка пойдет по пути наименьшего сопротивления (нулевому проводнику), но, тем не менее, часть ее пойдет по земле.

Образование блуждающих токов между ЗУ нулевого провода

Практически аналогичные условия образуются, когда возникают проблемы с изоляцией проводов (разрушение оболочек) кабельных магистралей или ВЛ. При возникновении КЗ на землю, в этой точке потенциал равный или близкий к фазе. Это вызывает образование тока утечки к ближайшему ЗУ с потенциалом PEN-провода.

В приведенном примере о постоянной утечке переменных токов речь не идет, поскольку согласно действующим нормам на поиск и устранение повреждения отводится два часа. При этом, в большинстве случаев, отключение поврежденной линии или локализация участка с КЗ производится автоматически. Процесс может существенно затянуться, если сила тока КЗ ниже аварийного порога.

Как показывает практика, наибольшая доля источников токов постоянной утечки приходится на городской и пригородный рельсовый электротранспорт. Механизм их образования продемонстрирован ниже.

Рельсовый электротранспорт в качестве источника блуждающих токов

Обозначения:

  1. Контактный провод, от которого получает питание силовая установка электротранспорта.
  2. Питающий фидер (подключен к контактному проводу).
  3. Одна из тяговых подстанций, питающая сети трамваев.
  4. Дренажный фидер (подключен к рельсам).
  5. Рельсы.
  6. Трубопровод на пути прохождения блуждающих токов.
  7. Анодная зона (положительные потенциалы).
  8. Катодная зона (отрицательные потенциалы).

Как видно из рисунка, постоянное напряжение в тяговую сеть поступает с подстанции и по рельсам возвращается обратно. При недостаточном сопротивлении рельсовых путей относительно земли, в грунте возникают электрические блуждающие токи. Если на пути распространения утечки блуждающих токов находится трубопровод или другая металлическая конструкция, то она становится проводником электричества.

Это связано с тем, что ток распространяется по пути наименьшего сопротивления. Соответственно, как только появляется проводник, ток будет распространяться по металлу, поскольку его электрическое сопротивление меньше, чем у земли. В результате участок трубопровода, через который проходит электроток, будет в большей степени подвержен коррозии металла. О причинах этого рассказано ниже.

Связь блуждающего тока и коррозии на металле

Ввиду наличия в земле воды и растворенных в ней солей любая металлическая конструкция в почве подвержена коррозии. Но если металл помимо этого подвергается воздействию блуждающих токов, то процесс приобретает электролитическую природу. Согласно закону Фарадея скорость электрохимической реакции напрямую зависит от тока, протекающего между анодом и катодом. Следовательно, на скорость коррозии металлической трубы (уложенной в грунте) будет влиять электрическое сопротивление почвы, а также сложная природа процессов, протекающих в катодной и анодной зоне.

В результате металлическая конструкция помимо обычной коррозии подвергается воздействию токов утечки. Это может стать причиной образования гальванической пары, что существенно ускорит процесс коррозии. На практике отмечались случаи, когда участок трубопровода системы водоснабжения, подвергавшийся гальванической коррозии выходил из строя через два года, при расчетном сроке эксплуатации 20 лет. Пример такого воздействия представлен ниже.

Труба после воздействия блуждающих токов

Способы защиты от блуждающих токов

Для предотвращения пагубного воздействия электрохимического потенциала применяются методы защиты, которые могут отличаться в зависимости от особенностей металлических конструкций. Рассмотрим в качестве примера способы защиты водопроводных труб, полотенцесушителей и газопроводов, начнем в порядке данной очередности.

Видео про различные защиты от блуждающих токов

Защита водопроводных труб

Для проложенных в земле металлоконструкций, в частности водопроводных труб, применяются две методики защиты: пассивная и активная. Подробно опишем каждую из них.

Пассивная защита

Данная методика предусматривает нанесение на поверхность металлоконструкций специального изолирующего слоя, образующего защитный барьер между землей и металлической оболочкой. В качестве изоляционного материала используются полимеры, различные виды эпоксидных смол, битумное покрытие и т.д.

Пример защитного покрытия трубы для подземной укладки

К сожалению, современная технология не позволяет создать защитный барьер, обеспечивающий полную изоляцию. Любое покрытие обладает определенной диффузионной проницаемостью, поэтому при данном способе возможна только частичная изоляция от грунта. Помимо этого следует учитывать, что в процессе транспортировки и монтажа может быть нанесено повреждение защитному слою. В результате на нем образуются различные дефекты изоляции в виде микротрещин, царапин, вмятин и сквозных повреждений.

Поскольку рассмотренный метод не обладает достаточной эффективностью, он применяется в качестве дополнения активной защиты, о которой пойдет речь далее.

Активная защита

Под данным термином подразумевается управление механизмами электрохимических процессов, которые протекают в местах контакта металлических конструкций с образующимся в грунте электролитом. Для этой цели применяется катодная поляризация, при которой отрицательный потенциал смещает естественный.

Реализовать такую защиту можно гальваническим методом или используя источник постоянного тока. В первом случае применяется эффект гальванической пары, в которой анод, подвергается разрушению (жертвенный анод), защищая при этом металлоконструкцию, у которой потенциал несколько ниже (см. 1 на рис.5). Описанный способ эффективен для грунтов с низким сопротивлением (не более 50,0 Ом*м), при более низком уровне проводимости данный метод не применяется.

Применение источника постоянного тока в катодной защите позволяет не зависеть от сопротивления грунта. Как правило, источник изготовлен на базе преобразователя, запитанного от электрической цепи переменного тока. Конструктивное исполнение источника позволяет задать уровень защитных токов в соответствии со сложившимися условиями.

Рисунок 5. Варианты реализации катодной защиты

Обозначения:

  1. Применение жертвенного анода.
  2. Метод поляризации.
  3. Проложенная в земле металлоконструкция.
  4. Закладка в грунте жертвенного анода.
  5. Источник постоянного тока.
  6. Подключение к источнику малорастворимого анода.

Защита полотенцесушителей

Полотенцесушителям и другим оконечным металлическим устройствам на водопроводных трубах (смесителям) коррозия, вызванная блуждающими токами, не угрожала до тех пор, пока в быту не стали широко применяться пластиковые трубы. Даже, если в Вашем стояке установлены металлические трубы, не факт, что у соседа снизу они не пластиковые, да и для отводов в ванную и кухню наверняка используется пластик.

Чтобы обеспечить защиту от аварийных утечек тока и не допустить электрокоррозии, необходимо выровнять потенциалы, заземлив полотенцесушитель, водопроводные трубы в стояке, а также батарею отопления.

Защита газопроводов

Защита подземных газопроводов от блуждающих токов, которые вызывают коррозию, осуществляется точно так же, как и для водопроводных труб. То есть применяется один из двух вариантов активной катодной защиты, принцип работы которой рассматривался выше.

Как измерить блуждающие токи?

Для оценки опасности от токов утечки производится комплекс измерительных работ, куда входит:

  • Измерение уровня тока и направление его движения по оболочкам кабелей магистральной линии.
  • Измерение разности потенциалов между контактных рельсов (рельсовой сетью) и проложенными в земле металлическими конструкциями.
  • Измерение изоляции рельсов от грунта на контрольных участках рельсового полотна.
  • Оценка плотности тока утечки с оболочки кабельных линий в грунт.

Измерения величины блуждающих токов производятся специальными приборами. При этом выбирается время, на которое приходится максимальный трафик рельсового электротранспорта.

Процесс измерения блуждающих токов выполняется в трансформаторных и тяговых подстанциях расположенных рядом с рельсовыми путями. При этом один из электродов, подключенных к измерительному прибору, соединяют с ЗУ, а второй, втыкается в землю в 10-и метрах от тяговой подстанции. Если между потенциалами на электродах появляется разность, она фиксируется прибором.

Рекомендуем также почитать:

Источник