Диапазоны рабочих температур кабеля

Выды термостойких проводов для высокотемпературной среды

В условиях повышенных термических нагрузок обычные кабели использовать нельзя. Поэтому для создания мощных сетей в районах с умеренным климатом применяется специальная термостойкая продукция. В частности, речь идет о такой ее разновидности, как термостойкий провод. Наиболее распространенный тип проводов имеет маркировку РКГМ.

Расшифровка аббревиатуры

Маркировка провода содержит пять букв, однако вначале следует сказать об отсутствующей букве А, что указывает на медные жилы провода. Присутствующие в маркировке буквы трактуются следующим образом:

  1. P — резиновый изоляционный материал.
  2. К — изоляция сделана из кремнийорганического материала (силикона).
  3. Г — гибкий провод небронированного типа.
  4. М — стекловолоконная внешняя оплетка. Материал пропитывается жароустойчивым силиконовым лаком или эмалью.

Конструктивные особенности провода можно рассмотреть на картинке, расположенной ниже.

Кабель РКГМ

Обратите внимание! Правильнее называть РКГМ проводом, а не кабелем.

Базовые характеристики

Провод РКГМ отличается следующими характеристиками:

  1. Номинальное переменное напряжение — до 660 В.
  2. Сечение многопроволочной жилы — от 0,75 до 120 квадратных миллиметров.
  3. Класс гибкости — от 4 и больше.
  4. Наименьший радиус изгиба при установочных работах — двойной
  5. Диапазон рабочих температур — от минус 60 до плюс 180 градусов по Цельсию. Температура прокладки не должна быть меньше 15 градусов мороза.
  6. Гарантийный срок эксплуатации — 8 лет.
  7. Устойчив к воспламенению.

В таблице ниже представлена номенклатура проводов РКГМ по сечениям, массе и диаметру.

Сечение, кв.мм Масса провода, кг/км Наружный диаметр, мм
0,75 18,4 3,5
1 21 3,6
1,5 27 3,9
2,5 41,7 4,6
4 58,9 5,4
6 86,1 6,3
10 128 7,6
16 199 9,2
25 301 10,9
35 403 12,2
50 549 14,1
70 755 16,5
95 1018 18,6
120 1252,8 21,3
Читайте также:  Кабель olflex classic 110 3x1 5

Сферы применения

Благодаря высокой термической стойкости, провод РКГМ применяется в таких сферах, как:

  • прокладка электрических цепей во внутренних частях зданий, а также в уличных условиях при умеренном климате;
  • производство обмоток для высокомощных электрических установок и машин переменного тока;
  • использование в качестве комплектующего в химическом оборудовании (резиновый изолятор устойчив к воздействию агрессивных химических сред);
  • установка во влажных местах, где высока вероятность развития грибка и плесени.

Широко используется РКГМ и как термостойкий кабель для сауны. Сечение в 2,5 квадратных миллиметра применяется для розеток. Этой площади сечения вполне достаточно, если не планируется использование крупных электрических приборов. Сечение в 1,5 квадратных миллиметра используется для установки осветительных приборов в парилке.

Обратите внимание! Выпускаются провода РКГМ, расцветка которых специально рассчитана на деревянные конструкции. Такая проводка благодаря цвету сливается со стенами. При этом в продаже имеются и провода классического белого цвета.

РКГМ можно применять для организации проводки не только в бане или сауне, но и в ванной комнате, а также в подвальном помещении. Таким образом, одно из ключевых качества РКГМ — влагоустойчивость. При этом данный проводник не слишком хорошо переносит низкие температуры, его оболочка начинает разрушаться при минусовых значениях.

Компании-производители

Ниже перечислены основные российские производители термостойкого провода РКГМ:

  • «Камкабель»;
  • «Уралкабель»;
  • «Рыбинсккабель»;
  • «Новомосковский кабельный завод».

РКГМ производится в соответствие с техническими характеристиками, прописанными в ТУ16.К80-09-90. При желании заменить РКГМ на другой провод необходимо смотреть в данные ТУ, подбирая продукт с похожими техническими данными.

Другие виды кабеля

При желании возможно выбрать другой вид кабеля из 6 описанных ниже.

Еще один вариант термостойкого силиконового кабеля — ПВКВ. Аббревиатура означает: П — провод, В — вывод электромашины, КВ — изолятор из двух слоев кремнийорганического материала. ПВКВ используется в производстве обмоток класса «H» для машин, которые эксплуатируются без отрицательного воздействия масел или других агрессивных химических материалов. ПВКВ сохраняет эксплуатационные свойства при температурах до 180 градусов выше нуля. ПВКВ отличается высокой влагоустойчивостью.

Техническая особенность ПВКВ — повышенная гибкость токоведущей жилы, которая способна выдерживать до двух десятков изгибов. Провод устойчив как к высокому, так и к низкому атмосферному давлению, а также к его резким перепадам. ПВКВ хорошо противостоит вибрационным и другим механическим воздействиям (например, ударам). Изоляция позволяет применять его в пожароопасных местах, поскольку данный проводник не горюч. Так как ПВКВ устойчив к грибку и плесени, его можно использовать во влажных помещениях, в том числе в банях и подвалах.

Расшифровывается аббревиатура следующим образом: П — провод из меди, РК — кремнийорганический материал изоляции, пропитанный противогнилостной смазкой, А — высокая твердость. ПРКА используется при установке электрических обогревательных установок, электродвигателей, а также при прокладке проводки в сушильном оборудовании, банях и саунах.

Изолятор не имеет в своем составе галогенной составляющей, не горит, устойчив к грибку и плесени, не разрушается под воздействием ультрафиолетового излучения, практические не выделяет газов. Изоляционный слой способен сохранять эксплуатационные качества при температурах до 180 градусов выше нуля и уровне влажности до 98 %. Проводник отличается высокой стойкостью ко множественным изгибам.

Буквы в маркировке несут следующую информацию: П — провод, А — асбест в качестве материала, Л — лакированная поверхность. Токопроводящие жилы покрыты одним слоем асбеста, пропитанного кремнийорганическим лаком.

Провод отличается особенно высокой устойчивостью к повышенным температурам, выдерживая воздействие 300-градусного тепла в течение 3 тысяч часов подряд. Однако следует иметь в виду, что уже при 250 градусах выше нуля изоляционный материал начинает выделять токсины, опасные для здоровья человека. Тем не менее, для электропроводки в бане или сауне ПАЛ — отличный выбор, так как материал сохраняет полную экологическую безопасность в пределах от минус 50 до плюс 200 градусов по Цельсию.

ПАЛ отличается высокой механической прочностью, устойчивостью к истиранию, воздействию агрессивных химических сред (бензина, лакокрасочных материалов, толуола и т.д.). Провод устойчив к изгибам и может эксплуатироваться даже после двух десятков циклов изгиба.

Расшифровка аббревиатуры: П — провод, М — монтажный, Т — термически устойчивый, К — кремнийорганический материал изоляционного слоя. Используется при установке оборудования специального назначения. К примеру, ПМТК часто применяется в обогревателях, электрических плитах и печах. Нередко можно встретить ПМТК в банях и саунах.

ПМТК содержит многопроволочную токоведущую жилу из меди. Такой проводник отличается стойкостью к ультрафиолетовому излучению, может эксплуатироваться в помещениях со 100 % уровнем влажности при температурах от минус 60 до плюс 200 градусов по Цельсию. Изоляционный материал ПМТК не горюч.

Этот тип термостойких проводов используется только для неподвижной прокладки и сохраняет эксплуатационные характеристики при температурах до 150 градусов выше нуля. Применяется в банях, саунах, электрических печах и обогревателях.

Провод содержит токоведущие жилы из меди, которые изолируются кремнийорганической резиной. Кабельная оболочка изготавливается из фторсилоксановой резины. В отличие от стандартных проводов, ПНБС можно присоединять непосредственно к электронагревательным приборам.

Основное применение провода в изоляционном слое из кремнийорганической резины — влажные жаркие помещения, к каковым относятся бани и сауны. Кабельная оболочка также производится из кремнийорганического материала. ПРКС отличается высокой гибкостью, устойчивостью к механическим воздействиям и агрессивным химическим средам. ПРКС способен выносить температуру до 250 градусов выше нуля, при этом не выделяя каких-либо токсинов. Благодаря многожильному содержимому, по одному кабелю можно передавать до 30 кВт электроэнергии.

Источник

Температурные диапазоны эксплуатации локальной сети

Для волоконно-оптических кабелей различают 3 температурных диапазона: хранения (самый широкий), эксплуатации (менее широкий) и монтажа (самый узкий). Для уличных оптических кабелей диапазон хранения может составлять от -40ºС до +70ºС, эксплуатации от -30ºС до +65ºС, а монтажа – от 0ºС до +35ºС. На последний диапазон основное влияние оказывает удобство работы людей: если температура комфортна для монтажников, то для кабеля она тем более приемлема. Поэтому даже если температура монтажа захватывает отрицательный диапазон, на практике монтажники ставят палатку и тепловую пушку, чтобы обеспечить в зоне работы комфортные условия.

У кабелей внутреннего применения меньше допустимый диапазон отрицательных температур при хранении и эксплуатации, при этом в реальной жизни внутри зданий температура практически всегда выше нуля. Параметры оптического волокна меняются с температурой, но эти изменения не оказывают значимого влияния на передачу сигналов, пока температуры не поднимаются до 150ºС или выше. Да и в этом случае в первую очередь под воздействием в первую очередь оказываются внешняя оболочка и другие элементы конструкции, изготовленные из полимерных материалов, а не кварцевые световоды. Кабели с плотным буфером при прочих равных имеют меньший температурный диапазон, чем кабели со свободным буфером.

Представление о том, что вода опасна для кварцевого стекла, уходит корнями в прошлое, когда световоды не были покрыты защитными слоями и буфером. Если поместить оголенное волокно в воду и многократно менять температуру около точки замерзания воды, микротрещины в волокне могут разрастаться. Однако в современных кабелях световоды не имеют контакта с водой, и единственная сфера применения, где эту проблему можно рассматривать всерьез – морские кабели для подводной прокладки.

Температурные параметры медных кабелей витая пара в целом похожи на диапазоны для оптики. Однако нужно помнить, что при высоких температурах затухание сигналов в витой паре, особенно на высоких частотах, сильно увеличивается. Стандарты задают предельные значения затухания при тестировании для 20ºС. Но датчиков температуры в сертификационных тестерах нет, а значит, сбой по вносимым потерям можно получить просто за счет слишком высокой температуры. Вывод один: витую пару нужно беречь от воздействия высоких температур и не размещать в зонах, где возможно временное или постоянное превышение температур. По этой причине применение витой пары для передачи данных на улице ограничено, предпочтение отдается волоконной оптике.

С температурными диапазонами для твинаксиальных кабелей ситуация схожая, но в телекоммуникационных помещениях и центрах обработки данных условия варьируются не так сильно, как на улице. Внутренние условия в ЦОД определяются в первую очередь не комфортом сотрудников, а потребностями активного оборудования. Если ему обеспечена должная обстановка, то для твинаксиальных шнуров она тем более подходит. Нижняя граница температур в ЦОД определяется точкой росы (конденсация недопустима), поэтому разрешенный диапазон использования кабелей от 0ºС даже шире, чем будет востребовано на практике. Верхняя граница определяется температурой, при которой активное оборудование способно функционировать продолжительное время без выхода из строя. Проведенные в свое время эксперименты Cisco показали, что оборудование может долго работать даже при 47ºС. Профессиональные проектировщики, тем не менее, стараются размещать кабели и шнуры подключения в ЦОД так, чтобы они не попадали в горячие коридоры и не оказывались на пути нагретого воздуха. В шкафах под шнуры отводят фронтальные и боковые зоны, удаленные от выпускных отверстий активного оборудования.

На беспроводные среды температурные изменения сколько-либо значимого влияния не оказывают. Перепады температур могут повлиять на приемо-передающее оборудование, но не саму воздушную среду.

Источник

Диапазоны рабочих температур кабеля

ГОСТ Р МЭК 60724-2009

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ПРЕДЕЛЬНЫЕ ТЕМПЕРАТУРЫ ЭЛЕКТРИЧЕСКИХ КАБЕЛЕЙ НА НОМИНАЛЬНОЕ НАПРЯЖЕНИЕ 1 кВ (1,2 кВ) И 3 кВ (3,6 кВ) В УСЛОВИЯХ КОРОТКОГО ЗАМЫКАНИ

Short-circuit temperature limits of electric cables with rated voltages of 1 kV (1,2 kV) and 3 kV (3,6 kV)

Дата введения 2010-01-01

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0-2004 «Стандартизация в Российской Федерации. Основные положения»

Сведения о стандарте

1 ПОДГОТОВЛЕН Открытым акционерным обществом «Всероссийский научно-исследовательский, проектно-конструкторский и технологический институт кабельной промышленности» (ОАО «ВНИИКП») на основе собственного аутентичного перевода стандарта, указанного в пункте 4

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 46 «Кабельные изделия»

4 Настоящий стандарт идентичен международному стандарту МЭК 60724:2000 «Предельные температуры электрических кабелей на номинальное напряжение 1 кВ (1,2 кВ) и 3 кВ (3,6 кВ) в условиях короткого замыкания» [IEC 60724:2000 «Short-circuit temperature limits of electric cables with rated voltages of 1 kV (1,2 kV) and 3 kV (3,6 kV)»] с изменением N 1:2008, которое выделено в тексте слева двойной вертикальной линией.

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты Российской Федерации, сведения о которых приведены в дополнительном приложении А

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

При выборе параметров кабельной сети в условиях короткого замыкания следует руководствоваться следующими факторами:

a) максимально допустимыми пределами температуры элементов конструкции кабеля (например, токопроводящей жилы, изоляции, экрана или металлической оболочки, подушки, брони и наружной оболочки). Практически энергия, вызывающая повышение температуры, обычно выражается значением, эквивалентным , что позволяет определить максимально допустимую продолжительность заданного тока короткого замыкания;

b) максимальным значением тока, при котором не произойдет механическое повреждение (такое как растрескивание) вследствие возникновения электромагнитных сил. Независимо от расчетов по предельным температурам это значение определяет максимальный ток, который не должен быть превышен;

c) тепловыми рабочими характеристиками соединительных и концевых муфт в диапазонах предельных значений тока и продолжительности его протекания, установленных для рассматриваемого кабеля. Арматура должна также выдерживать термомеханические и электромагнитные нагрузки, создаваемые током короткого замыкания;

d) условиями прокладки, оказывающими влияние на указанные выше факторы.

Фактор а) подробно рассмотрен в настоящем стандарте, и пределы установлены только на основе конструкции кабеля. Предполагается, что действие одного короткого замыкания не вызывает значительного повреждения кабеля, но повторение коротких замыканий может накапливать дефекты. Указания по факторам с) и d) приводятся при необходимости, когда это касается термомеханических нагрузок, возникающих в токопроводящих жилах и металлических оболочках. Фактор b) в настоящем стандарте не учитывается.

Предельные значения температур, рекомендованные настоящим стандартом, следует использовать только для руководства.

Установление предельных значений температур для соединительных и концевых муфт не представляется возможным вследствие того, что их конструкция не стандартизована и поведение различно. В идеальном случае арматура должна быть сконструирована так, чтобы можно было полностью использовать мощность кабеля, но это не всегда оправдано экономически, поэтому возможности кабельной сети в условиях коротких замыканий могут определяться характеристиками ее соединительных и концевых муфт. Насколько возможно, в настоящем стандарте даются рекомендации по характеристикам арматуры, монтируемой на кабелях, рассчитанных на предельные параметры короткого замыкания, приведенные в настоящем стандарте.

1 Область применения

Настоящий стандарт является руководством по максимальным пределам температуры электрических кабелей на номинальное напряжение 1 кВ (1,2 кВ) и 3 кВ (3,6 кВ) в условиях короткого замыкания. В стандарте приведены указания, касающиеся:

— материалов наружной оболочки и подушки;

— материалов токопроводящей жилы и металлической оболочки и способов их соединения.

Указания стандарта учитывают конструкцию арматуры и влияние условий прокладки на предельно допустимую температуру нагрева.

Расчет допустимого тока короткого замыкания в токопроводящих конструктивных элементах кабеля следует проводить по МЭК 60949.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие международные стандарты:

МЭК 60055 (все части) Кабели с бумажной изоляцией в металлической оболочке на номинальное напряжение до 18/30 кВ включительно (с медными или алюминиевыми токопроводящими жилами, исключая маслонаполненные кабели и кабели с газом под давлением)

МЭК 60502-1 Кабели силовые с экструдированной изоляцией и арматура к ним на номинальное напряжение от 1 кВ (1,2 кВ) до 30 кВ (3,6 кВ). Часть 1. Кабели на номинальное напряжение 1 кВ (1,2 кВ) и 3 кВ (3,6 кВ)

В случае недатированных ссылок следует применять последнее издание нормативного документа.

МЭК 60949:1988 Расчет термически допустимых токов короткого замыкания с учетом неадиабатического нагрева

3 Факторы, определяющие применение предельных температур

3.1 Общие положения

Предельные температуры при токе короткого замыкания, указанные в разделе 4, являются фактическими температурами токопроводящего конструктивного элемента, контактирующего с материалами других элементов конструкции кабеля. Эти температуры действительны для короткого замыкания продолжительностью до 5 с. Они могут быть получены при расчете допустимого тока короткого замыкания, если учитывается рассеяние тепла в изоляции во время короткого замыкания (неадиабатический процесс).

Если рассеяние тепла при токе короткого замыкания не учитывается (адиабатический процесс), эти расчеты дают значение безопасных токовых нагрузок в условиях короткого замыкания.

Примечание — Предельные температуры, указанные в разделе 4, не должны быть превышены и при повторных коротких замыканиях, происходящих за короткий промежуток времени.

Приведенная продолжительность короткого замыкания 5 с является ограничением для установления предельных температур, а не для применения метода расчета при адиабатическом характере нагрева. Временной предел при применении метода расчета при адиабатическом характере нагрева является функцией продолжительности короткого замыкания и площади поперечного сечения токопроводящего элемента конструкции кабеля. Это рассматривается в МЭК 60949.

Указанные значения температуры токопроводящей жилы следует применять с осторожностью для кабелей с оболочкой из низкотемпературного материала, с особой осторожностью в случае жилы сечением 1000 мм и выше. Причиной этого является то, что высокая термическая временная константа этих кабелей приводит к более продолжительному воздействию высоких температур на наружную оболочку. Кроме того, высокие механические напряжения могут приводить к деформации изоляции. Тем не менее, следует подчеркнуть, что для токопроводящей жилы сечением свыше 1000 мм предельно допустимый ток короткого замыкания так высок, что он, как правило, не достигается в обычных сетях.

Допускается устанавливать другие предельные температуры, если известно, что они более приемлемы для материалов или конструкции кабеля.

3.2 Кабели

3.2.1 Кабели с бумажной изоляцией (кабели с пропитанной бумажной изоляцией по МЭК 60055)

Предельные температуры для кабелей с бумажной изоляцией, пропитанной маслоканифольным или нестекающим составом, обусловлены способностью пропиточного к миграции и образованию пустот. Для всех кабелей с бумажной изоляцией имеются также ограничения из-за теплового разрушения элементов кабеля и возможного разрыва бумажных лент вследствие перемещения изолированных жил.

3.2.2 Кабели с полимерной изоляцией по МЭК 60502-1

Для термопластичных изоляционных материалов предельные значения температур следует применять с осторожностью, если кабели проложены непосредственно в грунте или прочно закреплены скобами при прокладке на воздухе. Локальные механические нагрузки при закреплении скобами или при монтаже с радиусом изгиба менее установленного, особенно для жестко закрепленных кабелей, могут вызвать значительные деформирующие усилия в кабелях при коротком замыкании. При невозможности изменить эти условия рекомендуется уменьшить предельное значение температуры на 10 °С.

3.3 Арматура

Следует учитывать конструкцию и способ монтажа соединительных и концевых муфт с тем, чтобы предельные температуры при токах короткого замыкания, установленные в настоящем стандарте, могли быть с безопасностью использованы на практике. Приведенные ниже указания а)-h) не являются исчерпывающими и предназначены только для руководства. Предпочтительно, чтобы характеристики арматуры рассматривались в совокупности с конкретными условиями прокладки кабеля.

a) Продольные силы в токопроводящих жилах кабеля могут быть значительными в зависимости от

степени ограничения поперечных перемещений кабеля. Значение возникающего напряжения в жиле может быть порядка 50 Н/мм . Эти силы могут вызвать выпучивание токопроводящих жил, а также

повреждения в соединительных и концевых муфтах.

b) Короткое замыкание вызывает осевое растяжение токопроводящих жил кабеля. Это растяжение может продолжаться в течение весьма длительного времени, особенно если кабель после короткого

замыкания нагружен лишь частично. При расчетах конструкций следует использовать минимальное значение напряжения на жиле 40 Н/мм .

c) В кабелях с пропитанной бумажной изоляцией расширение пропиточного состава может привести к значительному увеличению жидкостного давления. Если пропиточный состав просочится в соединительные и концевые муфты, может произойти размягчение битумного заполнения. Влага может проникнуть в арматуру и кабель в таком количестве, что повлияет на характеристики изоляции.

d) Установление предельного значения температуры подразумевает, что допустимо любое сочетание величины тока и времени, которое обеспечивает температуру, не превышающую это предельное значение. Для токов короткого замыкания этого недостаточно. Во избежание чрезмерных электромагнитных сил должен быть установлен дополнительный предел для пикового значения тока. Эти силы весьма существенны для концевых муфт и требуются соответствующие крепления, чтобы избежать их нежелательных перемещений и повреждений.

e) Если предполагается, что температура жилы будет выше 160 °С, то не следует применять муфты с использованием пайки.

f) Следует проверять конструкцию в отношении стабильности электрического контакта во всех соединениях муфт (таких как соединения токопроводящих жил, соединения брони и металлической оболочки) при коротком замыкании.

g) Проволоки экрана и/или брони, смонтированные вместе в соединительной или концевой муфте, могут иметь более низкие характеристики при коротком замыкании, чем в кабеле. Для таких соединений ожидаемое повышение температуры не должно быть чрезмерным для примененных материалов и должны быть предусмотрены соответствующие механические крепления.

h) Следует учитывать возможность усадки полимерной изоляции в продольном направлении на разделанных концах кабеля после воздействия температуры короткого замыкания.

3.4 Условия прокладки

Для наиболее полного использования характеристик кабеля в условиях короткого замыкания следует проанализировать влияние условий прокладки. Одним из важных факторов является величина и характер механического воздействия на кабель. Увеличение длины кабеля во время короткого замыкания может быть значительным. Когда этому удлинению оказывается противодействие, то возникают значительные силы.

Кабели воздушной прокладки рекомендуется прокладывать так, чтобы удлинение поглощалось в большей степени равномерно по длине (что достигается прокладкой по извилистой трассе), чем в результате повышенной подвижности только лишь нескольких точек. Места крепления должны быть расположены на достаточном расстоянии друг от друга, чтобы не препятствовать боковому смещению многожильных кабелей или групп одножильных кабелей.

Если кабели проложены непосредственно в грунте или места крепления расположены часто, должны быть установлены приспособления у соединительных и концевых муфт, компенсирующие возникающие продольные силы. Следует избегать резких изгибов, т.к. продольные силы трансформируются в радиальное давление в местах изгибов по трассе кабеля, что может вызвать повреждение термопластичных элементов конструкции кабеля, таких как изоляция и оболочки. Рекомендуется, чтобы минимальный радиус изгиба при прокладке отвечал соответствующим правилам по прокладке. Для кабелей воздушной прокладки желательно также избегать закрепления в местах изгиба для предотвращения местного давления на кабель.

Источник