Оптоволоконные кабели — устройство, виды и характеристики
В оптоволоконных кабелях, в отличие от кабелей с медными или алюминиевыми жилами, в качестве среды для передачи сигнала используется прозрачный волоконный световод. Сигнал здесь передается не с помощью электрического тока, а с помощью света. Это значит, что движутся практически не электроны, а фотоны, соответственно и потери при передаче сигнала оказываются пренебрежимо малы.
Данные кабели идеальны в качестве средства передачи информации, ведь свет способен проходить по прозрачному стекловолокну практически беспрепятственно на десятки километров, при этом интенсивность света уменьшается незначительно.
Бывают GOF-кабели (англ. glass optic fiber cable) — со стеклянным волокном, а также POF-кабели (англ. plastic optic fiber cable) — с прозрачным пластиковым волокном. И те и другие традиционно называются оптоволоконными или волоконно-оптическими кабелями.
Устройство оптоволоконного кабеля
Оптоволоконный кабель имеет достаточно простое устройство. В центре кабеля расположен световод из стекловолокна (его диаметр не превышает 10 мкм) облаченный в защитную пластиковую или стеклянную оболочку, обеспечивающую полное внутреннее отражение света за счет разности коэффициентов преломления на границе двух сред.
Получается что свет, на всем своем пути от передатчика к приемнику, не может выйти из центральной жилы. К тому же свету не страшны электромагнитные помехи, поэтому такой кабель не нуждается в электромагнитном экранировании, а нуждается лишь в упрочнении.
Для придания оптоволоконному кабелю механической прочности, применяют особые меры — делают кабель бронированным, тем более когда речь заходит о многожильных оптических кабелях, несущих сразу несколько отдельных световодов. Кабели для подвесного монтажа требуют особого упрочнения металлом и кевларом.
Самая простая конструкция оптоволоконного кабеля — стеклянное волокно в пластиковой оболочке. Более сложная конструкция — многослойный кабель с упрочняющими элементами, например для прокладки под водой, под землей или для подвесного монтажа.
В многослойном броневом кабеле несущий упрочняющий трос изготовлен из заключенного в полиэтиленовую оболочку металла. Вокруг него располагаются светонесущие пластиковые или стеклянные волокна. Каждое отдельное волокно покрыто слоем цветного лака в качестве цветовой маркировки и для защиты от механических повреждений. Пучки волокон облачены в пластиковые трубки, заполненные гидрофобным гелем.
В одной пластиковой трубке может находиться от 4 до 12 таких волокон, в то время как общее количество волокон в одном таком кабеле может доходить до 288 штук. Трубки оплетены нитью, стягивающей пленку, смоченную гидрофобным гелем — для большего демпфирования механических воздействий. Трубки и центральный кабель заключены в полиэтилен. Далее идут кевларовые нити, практически и обеспечивающие многожильному кабелю броню. Потом снова полиэтилен для защиты от влаги, и наконец внешняя оболочка.
Два основных типа оптоволоконных кабелей
Оптоволоконные кабели есть двух типов: многомодовый и одномодовый. Многомодовый стоит дешевле, одномодовый — дороже.
Одномодовый кабель обеспечивает лучам, проходящим по световоду, практически один и тот же путь без существенных взаимных отклонений, в итоге на приемник все лучи приходят одновременно и без искажений формы сигнала. Диаметр световода в одномодовом кабеле составляет около 1,3 мкм, и свет именно с такой длиной волны следует по нему передавать.
По этой причине в качестве передатчика используется источник лазерного излучения с монохроматическим светом строго требуемой длины волны. Именно кабели данного типа (одномодовые) рассматриваются сегодня как наиболее перспективные для коммуникаций на значительные расстояния в будущем, но пока они дороги и недолговечны.
Многомодовый кабель менее «точен», чем одномодовый. Лучи от передатчика идут в нем с разбросом, и на стороне приемника имеется некоторое искажение формы передаваемого сигнала. Диаметр световодного волокна в многомодовом кабеле составляет 62,5 мкм, а диаметр внешней оболочки 125 мкм.
Здесь используется обычный (а не лазерный) светодиод на стороне передатчика (с длиной волны 0,85 мкм), и оборудование получается не таким дорогим как с лазерным источником света, да и срок службы у нынешних многомодовых кабелей дольше. Кабели данного типа не превышают по длине 5 км. Типовое время задержки сигнала при передаче составляет порядка 5 нс/м.
Достоинства оптоволоконных кабелей
Так или иначе, оптоволоконный кабель принципиально отличается от обычных электрических кабелей исключительной помехозащищенностью, что обеспечивает максимальную сохранность как целостности, так и конфиденциальности передаваемой по нему информации.
Электромагнитная помеха, направленная на оптоволоконный кабель, не способна исказить световой поток, да и сами фотоны не порождают внешнего электромагнитного излучения. Без нарушения целостности кабеля невозможно перехватить передаваемую по нему информацию.
Полоса пропускания оптоволоконного кабеля теоретически составляет 10^12 Гц, что не идет ни в какое сравнение с токонесущими кабелями любой сложности. Можно легко передавать информацию со скоростью до 10 Гбит/с на километры.
Сам по себе оптоволоконный кабель стоит не дорого, почти так же, как тонкий коаксиальный кабель. Но основная доля удорожания готовой сети все же приходится на передающее и приемное оборудование, задача которого — преобразовать электрический сигнал в свет и обратно.
Затухание светового сигнала при прохождении через оптоволоконный кабель локальной сети не превышает 5 дБ на 1 километр, то есть почти такое же как у электрического сигнала низкой частоты. При том чем выше частота — тем выраженнее оказывается преимущество оптической среды перед традиционными электрическими проводниками — затухание растет незначительно. А на частотах выше 0,2 ГГц оптоволоконный кабель однозначно оказывается вне конкуренции. Практически возможно довести расстояние передачи до 800 км.
Оптоволоконные кабели применимы в сетях с топологиями «кольцо» или «звезда», при этом полностью отсутствуют проблемы заземления и согласования с нагрузкой, вечно актуальные для электрических кабелей.
Идеальная гальваническая развязка, наряду с вышеперечисленными достоинствами, позволяет аналитикам прогнозировать, что в сетевых коммуникациях оптоволоконные кабеля вскоре полностью вытеснят электрические, тем более с учетом растущего дефицита меди на планете.
Недостатки оптоволоконных кабелей
Справедливости ради, нельзя не упомянуть и о недостатках волоконно-оптических систем передачи информации, главный из которых — сложность монтажа систем и высокие требования к точности установки разъемов. Микронное отклонения при монтаже разъема способно привести к увеличению затухания в нем. Здесь необходима высокоточная сварка или специальный клеевой гель, коэффициент преломления света в котором аналогичен оному в самом монтируемом стекловолокне.
По этой причине квалификация персонала не допускает снисхождения, необходимы специальные инструменты и высокое мастерство владения ими. Чаще всего прибегают к использованию готовых кусков кабеля, на концах которых уже установлены готовые разъемы требуемого типа. Для разветвления сигнала от оптоволокна, применяют специализированные разветвители на несколько каналов (от 2 до 8), но при разветвлении неизбежно происходит ослабление света.
Конечно, оптоволокно является менее прочным и менее гибким материалом нежели та же медь, и изгибать оптоволокно на радиус менее чем 10 см небезопасно для его сохранности. Ионизирующие излучения снижают прозрачность оптоволокна, усиливают затухание передаваемого светового сигнала.
Оптоволоконные кабели стойкие к радиации стоят дороже обычных оптоволоконных кабелей. Резкий перепад температуры может привести к образованию трещины в световоде. Безусловно, оптоволокно уязвимо и к механическим воздействиям, к ударам, к ультразвуку; для защиты от этих факторов применяются специальные мягкие звукопоглощающие материалы оболочек кабелей.
Источник
Что такое и из чего состоит оптоволокно: полный разбор от Блондинки
Привет, друзья! О том, что такое оптоволокно, уже писал наш гуру Интернета и беспроводных технологий Бородач (ссылка на статью обязательно будет ниже). Но мои коллеги решили, что Блондинка тоже должна написать на эту тему и заодно добавить знаний в свою красивую головку. Ну что ж, надо – значит, надо! Будем разбираться.
Разумеется, пришлось схитрить и позадавать глупые вопросы нашим партнерам из LANart. За что им отдельное спасибо)
Определение для чайников
Оптоволокно – это тончайшие проводки (нити) из стекла или пластика, по которым переносится свет за счет внутреннего отражения. Кабель из оптического волокна используется как способ передачи информации на высокой скорости на большие расстояния (в прямом смысле слова «со скоростью света»). Так строятся волоконно-оптические линии связи (ВОЛС).
Факт из истории развития в России. Первая ВОЛС «Санкт-Петербург-Аберслунд» (город в Дании) была проложена компанией Ростелеком (тогда она называлась Совтелеком).
Сразу предлагаю посмотреть документальный фильм по теме:
Материалы
Стеклянное оптоволокно производится из кварца. Это обеспечивает следующие характеристики:
- Высокая оптическая проницаемость – это позволяет транслировать волны разных диапазонов.
- Минимальная потеря сигнала (малое затухание).
- Температурная устойчивость.
- Гибкость.
Для дальнего диапазона применяют халькогенидные стекла, калий цирконий фтористый или криолит калия.
Сейчас развивается производство оптоволокна из пластика. При этом сердцевину (ядро) делают из органического стекла, а оболочку из фторопластов. Недостатком полимерных материалов считают низкую пропускную способность в зонах с инфракрасным излучением.
Строение
Из чего состоит оптоволокно? Это круглая в разрезе нить, внутри которой есть ядро (сердцевина), снаружи покрытое оболочкой. Чтобы обеспечить полное внутреннее отражение, показатель преломления ядра должен быть выше того же параметра для оболочки. Как это работает – луч света, направленный в ядро, многократно отражается от оболочки.
Диаметр оптоволоконной нити, которая используется в телекоммуникациях, равен 124-126 микрон. При этом диаметр ядра может отличаться – все зависит от типа оптоволокна (об этом я расскажу в следующем разделе) и национальных стандартов.
1 микрон – это 0,001 мм. Я посчитала, получается, что диаметр всего 0,125 мм.
Виды и области применения
Друзья, перед ознакомлением с дальнейшим материалом настоятельно рекомендую обратить внимание вот на этот каталог оптического кабеля. Т.е. смотрите что можно купить на практике в реальном магазине, а ниже пытаетесь найти верную расшифровку. Это и интересно, и поможет лучше понять информацию)
Оптическое волокно бывает двух типов (в зависимости от количества лучей в волокне – мод):
- Одномодовое. Диаметр ядра – 7-10 микрон, светоотражение проходит в одной моде. Типы:
- Стандартное (с несмещенной дисперсией).
- Со смещенной дисперсией.
- С ненулевой смещенной дисперсией.
- Многомодовое. Диаметр сердцевины – 50-62 микрон (зависит от национальных стандартов), излучение проходит по нескольким модам. Классифицируются на:
- Ступенчатые.
- Градиентные.
Этот раздел сложен для простого обывателя, но, если кому-то хочется разобраться подробнее, напишите в комментарии. Кто-то из ребят обязательно пояснит все, что было непонятно.
Основные направления, где применяется оптоволокно – это волоконно-оптическая связь и волоконно-оптический датчик. Другие области:
- Освещение.
- Формирование изображения.
- Создание волоконного лазера.
Как я понимаю, все же основная область применения – это построение магистралей оптоволоконных линий связи. Проще говоря, это линии, с помощью которых передается Интернет во всех крупных городах.
А вот что рассказывает познавательная передача для детей и взрослых «Галилео»:
Оптический кабель
Вот мы и подобрались к самой большой тайне современности – оптоволоконный кабель, который соединяет города и континенты и передает информацию со скоростью света. При этом к нам в квартиру Интернет попадает через витую пару, чаще всего из 8 проводков. Максимальная скорость будет достигать значения в 1 Гбит/сек.
Кто в теме, тот знает, что разместить 8-жильный провод можно не в каждый кабель-канал. В этом и есть основное преимущество оптоволокна. Оптический кабель в несколько раз тоньше витой пары и обеспечивает более высокую скорость (до 10 Гбит/с).
Вроде как провайдеры стали потихоньку переводить абонентов на оптоволокно – то есть «оптика» будет идти не только ДО подъезда, но и ПО нему до квартиры. Неприятная новость – для использования такого кабеля нужен специальный маршрутизатор.
По способу монтажа оптический кабель классифицируется на следующие виды:
- Прокладывается в земле.
- Ведется через коллекторы и канализационные трубы.
- Ведется под водой.
- Прокладывается по воздуху (подвесной).
В зависимости от использования и дальности сигнала оптоволоконный кабель бывает:
- Магистральный – создание длинных линий на большие расстояния.
- Зоновый – организация магистрали между регионами.
- Городской – схож с зоновым, но длина линии не больше 10 км.
- Полевой – прокладка как по воздуху, так и под землей.
- Водный – тут название говорит само за себя.
- Объектовый – используется для конкретного участка, прост в прокладке.
- Монтажный – применяется многомодовое градиентное оптоволокно.
Есть еще классификация по способу исполнения ядра и количеству волокон в нем. Я думаю, это вряд ли будет интересно, но, если что, коллеги расскажут и об этом – нужно только написать в комментарии.
Достоинства и недостатки
Напоследок давайте разберемся в плюсах и минусах оптоволоконного кабеля. Начнем с преимуществ:
- Малые потери при большой длине ретрансляционного участка.
- Возможность передачи информации по тысячам каналов.
- Малые размеры и масса.
- Высокая защищенность от помех и внешних воздействий.
- Безопасность.
А теперь о недостатках:
- Подверженность радиации, за счет чего возрастает затухание сигнала.
- Подверженность стекла водородной коррозии, что приводит к повреждениям материала и ухудшению свойств.
По теме у нас есть еще 2 статьи. Почитать можно тут и тут.
На этом можно заканчивать. Надеюсь, была полезной, а мой рассказ интересным. Всем пока!
Источник