- Антенный кабель для сотового
- Какой кабель лучше всего применять для антенн 3G/4G усилителей (так же подходит для Wi-Fi)
- Часто возникает вопрос?
- А вот что говорят про кабель опытные радиолюбители:
- Советы по эксплуатации:
- Какой кабель лучше использовать для усилителa сотового сигнала: 50 или 75 Ом?
- Антенный кабель для сотового
- Какой кабель лучше всего применять для антенн 3G/4G усилителей (так же подходит для Wi-Fi)
- Часто возникает вопрос?
- А вот что говорят про кабель опытные радиолюбители:
- Советы по эксплуатации:
Антенный кабель для сотового
Статьи » Какой кабель лучше всего применять для антенн 3G/4G усилителей, Wi-Fi
Какой кабель лучше всего применять для антенн 3G/4G усилителей (так же подходит для Wi-Fi)
Кабель CommScope RG6, стандарный, с медным центральным проводником, с внешним проводником состоящим из ламинированной алюминиевой фольги, прочно прикрепленной к диэлектрику и луженой медной проволочной оплетки, оболочка белый поливинилхлорид
Волновое сопротивление | 75 Ом |
Постоянная распространения | 84% |
Диаметр центрального проводника | 1,02 мм |
Материал центрального проводника | медь |
Диаметр диэлектрика | 4,57 мм |
Материал диэлектрика | полиэтилен физического вспенивания |
Диаметр внешнего проводника | 4,75 мм |
Материал внешнего проводника | фольга Al+PET+Al и CuSn оплетка |
Материал фольги | алюминий+полипропилен+алюминий |
Материал оплетки | луженая медная проволока |
Плотность оплетки | 50% |
Диаметр оболочки, мм | 6,91 |
Толщина оболочки, мм | 0,76 |
Материал оболочки | белый поливинилхлорид |
Минимальный радиус изгиба | от 28 до 31 мм |
Эффективность экранирования нового кабеля | 85 — 95 дБ |
после 10 000 перегибов | 75 — 85 дБ |
Вес кабеля | 49 кг/ 1 километр |
Упаковка: деревянная катушка | 1000 ft. (305 метров) |
Максимальное затухание в течении всего периода эксплуатации, дБ/100 м:
5 МГц | 1,7 |
50 МГц | 4,89 |
100 МГц | 6,69 |
200 МГц | 9,48 |
400 МГц | 13,5 |
800 МГц | 19,19 |
1000 МГц | 21,49 |
1450 МГц | 25,94 |
1600 МГц | 27,43 |
2150 МГц | 31,99 |
2400 МГц | 33,96 |
Часто возникает вопрос?
» Мне сказали специалисты , что ставить кабель 75 Ом нельзя, так как все разъёмы в модеме 50 Ом. Должен стоять 50 Ом!»
Однако на 10 метрах «хорошего» кабеля RG58 вы теряете в 2-3 раза больше, чем на обычном телевизионном кабеле RG6U (10 метров кабеля RG58 = 25-30 метров кабеля RG6U) .
Попытаемся разобраться.
Достаточно часто нам приходится сталкиваться с ситуацией, когда при установке антенн CDMA 8 Дб 14 Дб и 17 Дб у пользователей сигнал увеличивается незначительно , а иногда даже и уменьшается. Связано это со многоми факторами: неправильная установка антенны (например, под шифером , на чердаке, или на уровне окна в зоне слабого сигнала идущего с уровня горизонта), неправильные переходники и применение низкосортного кабеля 50 Ом RG58. На данный момент в нашей стране отсутствует нормальный кабель RG58. Все образцы, которые удалось измерить, имели затухание на частоте 800 мГц в 2-3 раза большее (ориентировочное затухание на частоте 870-900 мГц порядка 58 Дб на 100 метров), чем кабель 75 Ом( про RG58 смотреть тут , применяемый для спутникового телевидения (самым лучшим оказался кабель Finmark RG6U с 60% заполнением, с затуханием 19 Дб на 100 м частоте 870 мГц)
Но как же быть? Ведь модемы CDMA GSM UMTS имеют СВЧ вход 50 Ом? А потери на рассогласование.
А вот что говорят про кабель опытные радиолюбители:
«У коаксиальных кабелей со сплошной полиэтиленовой изоляцией минимум потерь соответствует волновому сопротивлению 50 Ом, с пенистым полиэтиленом — 60 Ом, но все эти различия не ярко выражены и гораздо большее значение имеет качество материалов и тщательность изготовления. Поэтому при выборе волнового сопротивления кабеля достаточно руководствоваться соображениями удобства согласования.
Если выбор конкретных типов кабеля ограничен, имеет смысл просчитать, что выгоднее с точки зрения минимизации потерь: использование кабеля с высокой степенью естественного согласования сопротивлений, но с большим затуханием или менее подходящего по волновому сопротивлению, но более качественного кабеля с дополнительными согласующими цепями (учитывая дополнительные потери в этих цепях!). В ряде случаев может оказаться, что выгоднее согласиться с повышенной величиной КСВ, применив без всяких согласующих цепей имеющийся в наличии высококачественный кабель с волновым сопротивлением, отличающимся от сопротивления нагрузки.
Вот характерный пример: антенна имеет входное сопротивление 50 Ом на резонансной частоте. В нашем распоряжении есть 50-омный кабель, который при требуемой длине имеет собственные потери (при КСВ=1) на рабочей частоте 2 дБ, и 75-омный с потерями 0,5 дБ при тех же условиях.
Используя кабель 75 Ом, получим КСВ=1,5 на резонансной частоте. Дополнительные потери из-за рассогласования не превысят 0,1 дБ. При отходе от резонансной частоты, даже если КСВ поднимется до 4, дополнительные потери не станут больше 0,5 дБ. Таким образом, с этим 75-омным кабелем суммарные потери составят от 0,6 до 1 дБ.
Если с 50-омным кабелем КСВ на краю рабочего диапазона частот поднимется только до 2, то дополнительные потери станут 0,3 дБ. В итоге, с имеющимся 50-омным кабелем суммарные потери будут в пределах 2 — 2,3 дБ.
Выигрыш, благодаря использованию «неправильного» 75-омного кабеля вместо «правильного» 50-омного, в данном случае будет приблизительно такой же, какой могло бы дать, например, удлинение антенны Yagi примерно на треть!
Дополнительная согласующая цепь между антенной и фидером 50/75 Ом вполне может внести потери порядка 0,5 дБ. Если мы с ее помощью попытаемся улучшить КСВ в 75-омном фидере, то получим суммарные потери от 1 до 1,2 дБ (полагая, что так КСВ не поднимется выше 2 на краях диапазона) — то есть не уменьшим, а увеличим потери на 0,2 — 0,4 дБ. Но они будут все же значительно ниже, чем при применении 50-омного кабеля с большими собственными потерями.
Важно только иметь в виду, что при любом рассогласовании, как с одним, так и с другим кабелем, передатчик «видит» на конце кабеля комплексное сопротивление, которое может значительно отличаться и от волнового сопротивления фидера, и от входного сопротивления антенны. Чтобы передатчик смог отдать в фидер расчетную мощность, его выходные цепи должны быть настроены соответствующим образом.
RG 6 это 75 Омный кабель работает до 2 ГГц Коэффициент затухания на 1 м для частот 860 МГц — 0,253 дБ RG 11 это тоже 75 Омный кабель Для антенн WiFi нужен 50 Омный
Советы по эксплуатации:
Кабель с полиэтиленовой изоляцией в течение 10-20 лет может сильно состариться, даже при хранении в идеальных условиях. Старение выражается в значительном увеличении потерь. Иногда также возникают трещины на наружной оболочке. Если планируется использовать кабель, со дня выпуска которого прошло более 5-7 лет, следует предварительно измерить его затухание на рабочей частоте и тщательно осмотреть его наружную оболочку. Кабель, который уже использовался вне помещения (даже недолго), надо проверять обязательно. Время от времени, если есть возможность, полезно проверять потери в фидерах действующих антенн.
Популярно мнение, что кабель с фторопластовой изоляцией имеет меньшие потери, чем с полиэтиленовой. Но достаточно сравнить их паспортные данные, чтобы убедиться, что по погонному затуханию эти два вида кабелей при равных диаметрах практически равноценны. Достоинством фторопластовой изоляции является лучшая термостойкость и стабильность параметров во времени. К сожалению, большинство кабелей с ленточной фторопластовой изоляцией не предназначено для наружной прокладки и уличная влага их быстро портит.
Влага, проникшая внутрь кабеля, увеличивает потери и понижает его волновое сопротивление, а со временем необратимо его портит. Конец кабеля и места его сростки, находящиеся на открытом воздухе, следует тщательно герметизировать силиконовым герметиком (никакая изолента здесь не поможет) и термоусаживаемыми трубками. Около точки присоединения к клемме или разъему антенны кабель следует изогнуть в виде петли так, что его конец приходил бы к месту присоединения не снизу вверх, а сверху вниз, чтобы избежать затекания в него дождевой воды, если нарушится герметизация. Кабель лучше всего прокладывать по северной стороне антенной мачты, здания, и вообще такими путями, где он меньше открыт прямым солнечным лучам. Особенно это важно для кабелей, имеющих оболочку не черного цвета. Солнечный ультрафиолет рано или поздно разрушает наружную оболочку, а как только в ней появилась хоть одна микротрещина — влага проберется внутрь незамедлительно. «
Источник
Какой кабель лучше использовать для усилителa сотового сигнала: 50 или 75 Ом?
На первый взгляд установка усилителя сотового сигнала не выглядит чем-то сложным. Прикрутил антенны снаружи и внутри дома, проложил между ними кабель, включил усилитель в сеть и . ничего не заработало. Очень часто читатели обращаются ко мне с проблемами установки усилителей, так как нюансов там очень много. И причина во многих случаях кроется в неправильном выборе коаксиального кабеля.
Кстати, вы не задумывались зачем вообще используют именно коаксиальный кабель? Почему бы не использовать обычный двужильный электрический кабель, который применяют в бытовой электросети? Всё дело в волновом сопротивлении .
Все мы знаем, что любой кабель обладает электрическим сопротивлением, которое препятствует прохождению тока по нему. Так вот с ростом частоты переменного тока в кабеле появляется ещё один тип сопротивления — волновое . И чем выше частота — тем сильнее оно проявляется.
Для передачи сигнала сотовой связи в сверхвысокочастотном (СВЧ) диапазоне волновое сопротивление куда важнее электрического. Появляется оно из-за так называемого Скин-эффекта , когда ток течёт не по всей площади проводника, а лишь по его поверхности. Именно из-за этого и применяют коаксиальный кабель, в котором внешняя жила имеет форму кольца и идеально подходит для передачи СВЧ-сигнала.
Измеряется волновое сопротивление также в омах (Ом). Самые распространённые типы коаксиальных кабелей, которые можно встретить в широкой продаже — 50 и 75 Ом. И вот теперь мы возвращаемся к вопросу из темы: какой лучше выбрать для усилителя сотового сигнала.
Казалось бы, что чем меньше сопротивление — тем лучше, так как меньше энергии сигнала будет теряться по пути между элементами усилителя. Но не всё так просто. Волновое сопротивление кабеля должно быть согласовано с антеннами и самим усилителем сигнала .
Иначе в системе может возникнуть эффект стоячей волны. Проявляется он когда часть сигнала отражается от дальнего конца линии (приёмника), возвращается к источнику и может ослабить мощность сигнала. В результате даже на относительно коротком отрезке кабеля может теряться существенная часть энергии принятого от сотовой станции сигнала. Выглядеть это будет как «злая магия», когда по отдельности всё работает и исправно, но после установки на выходе усилителя нет сигнала.
Так вот чтобы этого не произошло важно использовать именно тот тип ВЧ-кабеля, который определён заводом-изготовителем усилителя и антенн . Если в инструкции написано 50 Ом — покупайте кабель 50 Ом, а если 75 Ом — нужен коаксиальный кабель с волновым сопротивлением 75 Ом и никак иначе.
Источник
Антенный кабель для сотового
Статьи » Какой кабель лучше всего применять для антенн 3G/4G усилителей, Wi-Fi
Какой кабель лучше всего применять для антенн 3G/4G усилителей (так же подходит для Wi-Fi)
Кабель CommScope RG6, стандарный, с медным центральным проводником, с внешним проводником состоящим из ламинированной алюминиевой фольги, прочно прикрепленной к диэлектрику и луженой медной проволочной оплетки, оболочка белый поливинилхлорид
Волновое сопротивление | 75 Ом |
Постоянная распространения | 84% |
Диаметр центрального проводника | 1,02 мм |
Материал центрального проводника | медь |
Диаметр диэлектрика | 4,57 мм |
Материал диэлектрика | полиэтилен физического вспенивания |
Диаметр внешнего проводника | 4,75 мм |
Материал внешнего проводника | фольга Al+PET+Al и CuSn оплетка |
Материал фольги | алюминий+полипропилен+алюминий |
Материал оплетки | луженая медная проволока |
Плотность оплетки | 50% |
Диаметр оболочки, мм | 6,91 |
Толщина оболочки, мм | 0,76 |
Материал оболочки | белый поливинилхлорид |
Минимальный радиус изгиба | от 28 до 31 мм |
Эффективность экранирования нового кабеля | 85 — 95 дБ |
после 10 000 перегибов | 75 — 85 дБ |
Вес кабеля | 49 кг/ 1 километр |
Упаковка: деревянная катушка | 1000 ft. (305 метров) |
Максимальное затухание в течении всего периода эксплуатации, дБ/100 м:
5 МГц | 1,7 |
50 МГц | 4,89 |
100 МГц | 6,69 |
200 МГц | 9,48 |
400 МГц | 13,5 |
800 МГц | 19,19 |
1000 МГц | 21,49 |
1450 МГц | 25,94 |
1600 МГц | 27,43 |
2150 МГц | 31,99 |
2400 МГц | 33,96 |
Часто возникает вопрос?
» Мне сказали специалисты , что ставить кабель 75 Ом нельзя, так как все разъёмы в модеме 50 Ом. Должен стоять 50 Ом!»
Однако на 10 метрах «хорошего» кабеля RG58 вы теряете в 2-3 раза больше, чем на обычном телевизионном кабеле RG6U (10 метров кабеля RG58 = 25-30 метров кабеля RG6U) .
Попытаемся разобраться.
Достаточно часто нам приходится сталкиваться с ситуацией, когда при установке антенн CDMA 8 Дб 14 Дб и 17 Дб у пользователей сигнал увеличивается незначительно , а иногда даже и уменьшается. Связано это со многоми факторами: неправильная установка антенны (например, под шифером , на чердаке, или на уровне окна в зоне слабого сигнала идущего с уровня горизонта), неправильные переходники и применение низкосортного кабеля 50 Ом RG58. На данный момент в нашей стране отсутствует нормальный кабель RG58. Все образцы, которые удалось измерить, имели затухание на частоте 800 мГц в 2-3 раза большее (ориентировочное затухание на частоте 870-900 мГц порядка 58 Дб на 100 метров), чем кабель 75 Ом( про RG58 смотреть тут , применяемый для спутникового телевидения (самым лучшим оказался кабель Finmark RG6U с 60% заполнением, с затуханием 19 Дб на 100 м частоте 870 мГц)
Но как же быть? Ведь модемы CDMA GSM UMTS имеют СВЧ вход 50 Ом? А потери на рассогласование.
А вот что говорят про кабель опытные радиолюбители:
«У коаксиальных кабелей со сплошной полиэтиленовой изоляцией минимум потерь соответствует волновому сопротивлению 50 Ом, с пенистым полиэтиленом — 60 Ом, но все эти различия не ярко выражены и гораздо большее значение имеет качество материалов и тщательность изготовления. Поэтому при выборе волнового сопротивления кабеля достаточно руководствоваться соображениями удобства согласования.
Если выбор конкретных типов кабеля ограничен, имеет смысл просчитать, что выгоднее с точки зрения минимизации потерь: использование кабеля с высокой степенью естественного согласования сопротивлений, но с большим затуханием или менее подходящего по волновому сопротивлению, но более качественного кабеля с дополнительными согласующими цепями (учитывая дополнительные потери в этих цепях!). В ряде случаев может оказаться, что выгоднее согласиться с повышенной величиной КСВ, применив без всяких согласующих цепей имеющийся в наличии высококачественный кабель с волновым сопротивлением, отличающимся от сопротивления нагрузки.
Вот характерный пример: антенна имеет входное сопротивление 50 Ом на резонансной частоте. В нашем распоряжении есть 50-омный кабель, который при требуемой длине имеет собственные потери (при КСВ=1) на рабочей частоте 2 дБ, и 75-омный с потерями 0,5 дБ при тех же условиях.
Используя кабель 75 Ом, получим КСВ=1,5 на резонансной частоте. Дополнительные потери из-за рассогласования не превысят 0,1 дБ. При отходе от резонансной частоты, даже если КСВ поднимется до 4, дополнительные потери не станут больше 0,5 дБ. Таким образом, с этим 75-омным кабелем суммарные потери составят от 0,6 до 1 дБ.
Если с 50-омным кабелем КСВ на краю рабочего диапазона частот поднимется только до 2, то дополнительные потери станут 0,3 дБ. В итоге, с имеющимся 50-омным кабелем суммарные потери будут в пределах 2 — 2,3 дБ.
Выигрыш, благодаря использованию «неправильного» 75-омного кабеля вместо «правильного» 50-омного, в данном случае будет приблизительно такой же, какой могло бы дать, например, удлинение антенны Yagi примерно на треть!
Дополнительная согласующая цепь между антенной и фидером 50/75 Ом вполне может внести потери порядка 0,5 дБ. Если мы с ее помощью попытаемся улучшить КСВ в 75-омном фидере, то получим суммарные потери от 1 до 1,2 дБ (полагая, что так КСВ не поднимется выше 2 на краях диапазона) — то есть не уменьшим, а увеличим потери на 0,2 — 0,4 дБ. Но они будут все же значительно ниже, чем при применении 50-омного кабеля с большими собственными потерями.
Важно только иметь в виду, что при любом рассогласовании, как с одним, так и с другим кабелем, передатчик «видит» на конце кабеля комплексное сопротивление, которое может значительно отличаться и от волнового сопротивления фидера, и от входного сопротивления антенны. Чтобы передатчик смог отдать в фидер расчетную мощность, его выходные цепи должны быть настроены соответствующим образом.
RG 6 это 75 Омный кабель работает до 2 ГГц Коэффициент затухания на 1 м для частот 860 МГц — 0,253 дБ RG 11 это тоже 75 Омный кабель Для антенн WiFi нужен 50 Омный
Советы по эксплуатации:
Кабель с полиэтиленовой изоляцией в течение 10-20 лет может сильно состариться, даже при хранении в идеальных условиях. Старение выражается в значительном увеличении потерь. Иногда также возникают трещины на наружной оболочке. Если планируется использовать кабель, со дня выпуска которого прошло более 5-7 лет, следует предварительно измерить его затухание на рабочей частоте и тщательно осмотреть его наружную оболочку. Кабель, который уже использовался вне помещения (даже недолго), надо проверять обязательно. Время от времени, если есть возможность, полезно проверять потери в фидерах действующих антенн.
Популярно мнение, что кабель с фторопластовой изоляцией имеет меньшие потери, чем с полиэтиленовой. Но достаточно сравнить их паспортные данные, чтобы убедиться, что по погонному затуханию эти два вида кабелей при равных диаметрах практически равноценны. Достоинством фторопластовой изоляции является лучшая термостойкость и стабильность параметров во времени. К сожалению, большинство кабелей с ленточной фторопластовой изоляцией не предназначено для наружной прокладки и уличная влага их быстро портит.
Влага, проникшая внутрь кабеля, увеличивает потери и понижает его волновое сопротивление, а со временем необратимо его портит. Конец кабеля и места его сростки, находящиеся на открытом воздухе, следует тщательно герметизировать силиконовым герметиком (никакая изолента здесь не поможет) и термоусаживаемыми трубками. Около точки присоединения к клемме или разъему антенны кабель следует изогнуть в виде петли так, что его конец приходил бы к месту присоединения не снизу вверх, а сверху вниз, чтобы избежать затекания в него дождевой воды, если нарушится герметизация. Кабель лучше всего прокладывать по северной стороне антенной мачты, здания, и вообще такими путями, где он меньше открыт прямым солнечным лучам. Особенно это важно для кабелей, имеющих оболочку не черного цвета. Солнечный ультрафиолет рано или поздно разрушает наружную оболочку, а как только в ней появилась хоть одна микротрещина — влага проберется внутрь незамедлительно. «
Источник