Алюминиевая оболочка кабеля это

Марки алюминиевых проводов и кабелей и области их применения

Преимущества и недостатки проводников из алюминия. Какие бывают марки алюминиевых проводов и кабелей, и какая область применения каждого.

Алюминиевые провода и кабели запрещены для использования в качестве проводки в квартирах и жилых домах. Но разрешено их использование только для подключения электроустановок при сечении кабеля свыше 16 кв. мм или для подключения инженерного оборудования (насосов, климатических устройств и т.д.) проводом от 2,5 кв. мм. Это прописано в ПУЭ издания после 2002 года. Однако, спрос на кабель с жилами из алюминия различных сечений остается высоким – это вызвано двумя банальными причинами: банальной экономией и ситуациями, когда нужно заменить часть старой проводки, а финансов на прокладку новых медных жил нет, а также в ситуациях описанных выше. В этой статье мы рассмотрим плюсы и минусы, а также, какими бывают марки алюминиевых проводов и кабелей. Содержание:

  • Преимущества и недостатки алюминия
  • Марки алюминиевых проводов
  • Марки алюминиевого кабеля

Преимущества и недостатки алюминия

У алюминиевой кабельной продукции есть свои преимущества и недостатки, на основании которых происходит выбор материала для конкретных задач.

  1. Цена. Стоимость кабеля играет решающую роль при больших объёмах производства. Однако следует учитывать, что если алюминиевый кабель ощутимо дешевле медного аналогичным сечением, то при сравнении меди и алюминия с разными сечениями, но сопоставимой допустимой токовой нагрузкой разница в стоимости не столь существенна.
  2. Вес. Алюминиевый кабель весит примерно в два раза меньше медного, поэтому при прокладке алюминия по воздушным линиям нужно вдвое меньше опор. Это сокращает расходы на строительство линий.
  1. Текучесть. Алюминиевые кабели и провода в большинстве своем делаются из мягких сплавов, а это пагубно сказывается на качестве контакта. При эксплуатации контакты с алюминием ухудшаются (особенно на скрутках и винтовых зажимах) и их нужно периодически протягивать. Это связано с его текучестью.
  2. Окисление. При работе алюминиевого проводника во влажной среде и на воздухе происходит его окисление. В этом процессе поверхность жилы покрывается оксидной пленкой, после чего окислительные процессы останавливаются. Потому что образовавшаяся пленка препятствует их развитию. С одной стороны таким образом алюминий сам себя защищает от полного сгнивания, а с другой – оксидная пленка не проводит ток. Следовательно, контакт сначала начинает усиленно греться, по мере возрастания переходного сопротивления, а затем и вовсе исчезает.
  3. Хрупкость. Большая часть проводов из алюминия ломаются, стоит их несколько раз согнуть. Это приводит к проблемам, как на этапе монтажа электроустановки, так и в процессе обслуживания, например при замене розеток и другого электрооборудования.
Читайте также:  Монтаж оборудования буровой установки

Однако некоторые из недостатков, например, текучесть, зависят от конкретного производителя и марки продукции, т.к. в этой сфере применяются различные сплавы.

Марки алюминиевых проводов

СИП – самонесущий изолированный провод. Используется в воздушных линиях электропередач напряжением вплоть до 35 кВ. Количество жил – от 1 до 4. Маркировка выглядит подобно этой: «СИП 1, СИП 2» и так далее. Если после цифры присутствует буква «А», значит нулевая жила изолирована, если нет – то ноль без изоляции. Жилы покрыты устойчивым к УФ-излучению полиэтиленом. От маркировки может изменяться количество жил и их конструкция. Отличительная особенность у марки СИП 3 – это то, что он одножильный сталеалюминевый провод.

АПВ – провод алюминиевый с монолитной изолированной жилой, производится в диапазоне сечений от 2,5 до 16 кв. мм. Используется для сборки электрических схем, щитов и шкафов, можно применять для сборки арматуры осветительных приборов. Продукция этой марки прокладывается в стенах, трубах, лотках. Рассчитан на напряжение до 1000 В 50 Гц. Материал изоляции – ПВХ-пластикат.

А – неизолированный провод, используется на воздушных линиях электропередач. Провода состоят из тонких проволок, скрученных в так называемый повив. Диапазон сечением 16-750 кв. мм.

АС – неизолированный провод, отличается от предыдущего только наличием стального сердечника, что делает его более жестким и устойчивым к механическим воздействиям.

Марки алюминиевого кабеля

АВВГ – с алюминиевыми жилами и двойной виниловой изоляцией. Пожалуй, один из наиболее распространенных типов кабелей. Используется в сетях 0,66/1 кВ с частотой переменного тока 50 Гц. Выпускается в диапазоне сечений от 2,5 до 240 кв. мм. С количеством жил от 2 до 4. Его используют для стационарного подключения электрооборудования к питающей сети, может использоваться и в помещениях со сложными условиями, например, частично затопленные, с повышенной влажностью или взрывоопасные. Его можно использовать в качестве проводника на силовую проводку фактически активно используется в сетях 0,4 кВ. Используется и для проводки в жилых домах, подходит для подключения розеток и на производстве.

АВБбШв – с алюминиевыми жилами и ленточной броней изоляцией ПВХ каждой жилы и слоя опоясывающей изоляции, а вернее сказать снаружи ПВХ-шланг. Количество жил от 1 до 5, а их сечение от 2,5 кв. мм до 240 кв. мм. Номинальные напряжения – 0,66-1 кВ и 50 Гц частота переменного тока. Он может применяться для прокладки проводки и подключения электроустановок к питающей сети в сложных условиях, а также при возможностях механических повреждений, во взрыво- и пожароопасных помещениях. В том числе и для наружной прокладки и под землей, например для ввода в дом питающего кабеля. Броня из двух лент позволяет прокладывать линию без дополнительной защиты от грызунов. При сечениях свыше 6 кв. мм. изоляция усиливается слоем сшитого полиэтилена и покровом из битума.

АСБл – бронированный стальными лентами, а также в свинцовой оболочке. Количество жил от 1 до 4, их сечение лежит в диапазоне 16-800 кв. мм. Используется для работы в электроустановках напряжением до 10 кВ. В зависимости от класса гибкости и площади поперечного сечения токопроводящие жилы могут быть как однопроволочными (монолитными, в каталогах могут обозначаться сокращенно «ОЖ»), так и многопроволочными. Жилы покрыты бумажной изоляцией, заключены в экран из электропроводящей бумаги. Они заключены в свинцовую оболочку, а подушка выполнена из битума, крепированной бумаги и ПВХ-пленки. Можно использовать для прокладки в грунте с малой и средней коррозийной активностью.

АПвПуг – бронированный для линий напряжением до 6-10 кВ частотой 50 Гц. Тип брони – стальная ленточная. Изоляция – сшитый полиэтилен. Предназначен для прокладки в земле: траншеях и грунте независимо от степени коррозийной активностью. Поэтому герметичен, защищен от проникновения влаги. Возможно использование для воздушных линий, а в случае обеспечения должной противопожарной защиты (нанесения огнезащитных покрытий) и в сооружениях. Диапазон сечений – от 50 до 800 кв. мм, жилы многопроволочные. Кроме того на кабеле присутствует экран из медной проволоки сечением 16-35 кв. мм скрепленных медной лентой. Материалы позволяют прокладывать его даже в водоемах судоходных и несудоходных, при условии исключения вероятности механических повреждений кабеля.

ААБл – бронированный, для прокладки в сетях 1-10 кВ. Жилы могут быть однопроволочными или многопроволочными, изолированы пропитанной бумагой, поверх которой размещена поясная изоляция из полупроводящей бумаги. Это все заключено в алюминиевую оболочку и броню из двух стальных лент. Допустимые напряжения указываются в маркировке, например ААБл 1 – 1 кВ, ААБл 6 – 6 кВ, ААБл 10 – 10 кВ соответственно. Диапазон сечений 50-240 кв. мм. Может использовать в любой местности от умеренного до холодного климата. Для прокладки вертикальных участков линий нельзя использовать этот вид кабеля, есть специальный с нестекающей пропиткой ЦААБл-10. В грунте можно прокладывать данную марку при невысокой коррозионной активности.

ААШв – с бумажной изоляцией алюминиевых жил покрытых слоем общей виниловой изоляции. Используется в сетях до 10 кВ (или до 6 кВ в зависимости от конкретного варианта изделия). Жилы могут быть одножильными (маркировка «ОЖ» или «ОК») и многопроволочными (маркировка «мк», «мс», «мж»). При прокладке одного кабеля изоляция не распространяет горение. Пропитка бумажной изоляции выполняется таким вязким составом, что он не вытекает, а при соединении кабеля в муфтах не образуется воздушных включений. Экран выполнен из электропроводящей бумаги. Количество жил от 1 до 4, а диапазон их сечений лежит в пределах 50-800 кв. мм.

В заключение хотелось бы отметить, что в последнее время все чаще говорят том, что алюминий вернется в бытовую электропроводку. Реальную причину этому назвать сложно. Производители позиционируют новые кабели, изготовленные из нетекучих жестких сплавов, а также разработку алюминиевых кабелей, покрытых слоем меди. Скептики утверждают, что это попытки компании «Русал» увеличить доход от сбыта своей продукции. В любом случае виды и марки алюминиевых проводов и кабелей нужно знать, чтобы их правильно использовать.

Источник

Защитные оболочки и покровы кабелей: назначение, материалы, виды, борьба с коррозией, бронирование

Назначение защитных оболочек и покровов

Защитные оболочки служат для защиты изолирующего слоя провода или кабеля от влияния окружающей среды, а главным образом от влияния влаги. Чем менее влагоустойчива изоляция кабеля или провода, тем более совершенная оболочка должна быть применена.

Физические условия работы кабеля также влияют на выбор материала защитной оболочки, например, если от кабеля требуется повышенная гибкость, то нужно применять гибкую защитную оболочку.

Материалы, используемые для защитных оболочек, немногочисленны, а именно: свинец, алюминий, резина, пластмассы и их комбинации.

Защитные покровы проводов и кабелей служат для защиты провода от механических воздействий при прокладке или в эксплуатации, а также для защиты кабельных оболочек от коррозии, поэтому из группы защитных покровов иногда выделяют антикоррозийные покрытия.

В качестве антикоррозийного покрытия чаще всего используют кабельную бумагу, накладываемую повивом с одновременным поливом битумными составами соответствующей вязкости.

Защитные покровы состоят из хлопчатобумажной или кабельной пряжи, наложенной в виде повива или оплетки поверх изолирующего слоя или защитной оболочки кабеля или оплетки поверх изолирующего слоя или защитной оболочки кабеля или провода.

Большое распространение получают покрытия защитных оболочек пластмассами с целью защиты их от коррозии и механических повреждений.

В качестве антикоррозийного покрытия чаще всего используют кабельную бумагу, накладываемую повивом с одновременным поливом битумными составами соответствующей вязкости.

Для механической защиты гибких проводов и кабелей часто применяется оплетка из тонких стальных проволок.

Оплетки из хлопчатобумажной и иной пряжи в ряде конструкций покрываются специальными лаками (покровными лаками), которые защищают проводник от воздействия окружающей среды, от действия озона и увеличивают влаго- и бензиностойкость провода.

Применяются также комбинированные покрытия из слоев пластмассы, металлической фольги и ткани или лакированной бумаги, которые в некоторых случаях могут заменить свинцовую оболочку (в особенности в таких кабелях, которые применяются для прокладки внутри помещений и для временных установок).

Материалы защитных оболочек

Свинец является основным материалом, из которого изготовляются наиболее надежные кабельные оболочки. Основным преимуществом свинцовом оболочки перед всеми другими оболочками и покрытиями — ее полная влагонепроницаемость, достаточная гибкость м возможность быстро и дешево наложить ее на кабель с помощью свинцового пресса.

Однако свинец имеет много и недостатков: большом удельный вес, малую механическую прочность, недостаточную стойкость против механической и электрохимической коррозии.

Все это с учетом ограниченности и природных запасов свинца вызывает необходимость улучшать качество свинцовых оболочек, вводить заменители и конструировать новые виды кабельной продукции без свинцовых оболочек.

Для и потоплении кабельных оболочек применяется свинец не ниже марки С-3, с содержанием свинца 99,86%.

Механическая прочность свинцовой оболочки в значительной степени определяется ее структурой. Мелкопористая структура, получающаяся при изготовлении оболочки из свинца марок С-2 и С-3 при быстром и интенсивном охлаждении выпрессованой оболочки, является наиболее механически прочной и устойчивой.

При средней и крупнозернистом структуре получаются обо точки низкого качества. Из таких оболочках происходит, даже в обычных условиях производства, рост кристаллов свинца, которые затем сдвигаются друг относительно друга по плоскостям спайности, м это ведет к преждевременному разрушению оболочки.

Очень чистый свинец весьма склонен к образованию и росту кристаллов даже при комнатной температуре, поэтому для изготовления свинцовых оболочек непригоден.

Мерой борьбы с кристаллизацией свинца является, помимо охлаждения после освинцевания, присадка к свинцу олова, сурьмы, кальция, теллура, меди и других металлов.

Кабель для линейного крейсера, построенного для Королевского флота Великобритании, введенного в эксплуатацию в 1920 году. Три проводника, в свинцовой оболочке, в броне.

Наилучшей присадкой является олово, которое при содержании в свинце в количестве 1 — 3% по весу обеспечивает устойчивую мелкозернистую структуру. Однако олово весьма дефицитно и в настоящее время заменяется в кабельных оболочках другими металлами.

Введение в свинец сурьмы в количестве от 0,6 до 0,8% благоприятно влияет на структуру свинцовой оболочки и увеличивает механическую прочность, понижая несколько эластичность, т. е. способность свинцовой оболочки к перегибам. Хорошие результаты дает присадка теллура в количестве около 0,05%. Также получил распространение получил так называемый медистый свинец, который представляет собой свинец с примесью меди — в количестве около 0,05%.

Помимо двойных сплавов, имеются тройные сплавы свинца с кадмием, оловом (0,15%), сурьмой и другими металлами. Эти сплавы менее удобны для производства, а результаты испытания их близки к таковым для некоторых двойных сплавов и медистого свинца.

Алюминий также может быть использован для изготовления кабельных оболочек. Для этой цели применяется как технический, так и особо чистый алюминий (с содержанием алюминия 99,5 и 99,99%), механические характеристики которого лучше, чем у свинца и свинцовых сплавов.

Прочность алюминиевой оболочки, по крайней мере, в 2 — 3 раза выше прочности свинцовой. Температура рекристаллизации алюминия, а также его стойкость против вибрации значительно выше, чем у свинца.

Удельный вес алюминия 2,7, а свинца — 11,4, поэтому при замене свинцовой оболочки алюминиевой могут быть получены большое снижение веса кабеля и увеличение механической прочности оболочки, что даст возможность в ряде случаев отказаться от бронирования кабеля стальными лентами.

Основным недостатком алюминия является его недостаточная коррозионная устойчивость. Значительно осложняют процесс наложения оболочки на кабель высокая температура плавления алюминия (657°С) и повышенное давление при опрессовании, которое достигает утроенной величины по сравнению с давлением при выпрессовании свинцовой оболочки.

Оболочка из алюминия может быть наложена не только опрессованием, но и холодным способом, для чего изолированные провода и кабели протягиваются в предварительно изготовленные выпрессованием алюминиевые трубы с последующей обсадкой их волочением или вальцеванием. Этот метод дает возможность использовать торговые сорта алюминия.

Некоторое распространение получает способ холодной сварки алюминиевой оболочки, который заключается в том, что края продольно наложенной на кабель алюминиевой ленты пропускаются между роликами, с помощью которых создается высокое удельное давление на алюминий, достаточное для холодной сварки его.

Пластмассы в настоящее время с успехом применяются для изготовления защитных оболочек проводов и кабелей взамен свинцовых. В тех случаях, когда необходима повышенная гибкость кабеля, оболочки из вулканизированной резины и пластмасс являются наиболее подходящими.

Наибольшее распространение в кабельном производстве получили шланговые оболочки из вулканизированной резины на натуральном или синтетических каучуках и из термопластических материалов, как, например, из полихлорвинилового пластиката, полиэтилена.

Механическая прочность таких оболочек достаточно высокая (разрывная прочность в пределах от 1,0 до 2,0 кг/мм 2 , удлинение от 100 до 300%).

Основным недостатком является заметная влагопроницаемость, под которой понимается величина, характеризующая способность материала пропускать водяной пар под действием разности давлений с двух сторон слоя материала.

Вулканизированная резина на натуральном каучуке может длительно работать в пределах изменения температуры от —60 до +65° С. Для большинства пластмасс эти пределы значительно уже, в особенности для температуры ниже нуля градусов.

Существуют силиконовые резины, новые каучукообразные материалы, представляющие собой кремнийорганические полимеры, Это — высокомолекулярные вещества, в основе строения которых атомы кремния сочетаются с атомами углерода.

Оболочка из термопластических материалов по сравнению со свинцовой оболочку кабелей позволяет значительно уменьшить вес кабеля и увеличить коррозийную стойкость оболочки и механическая прочность (смотрите также — Провода и кабели с резиновой изоляцией).

Разрушение свинцовой оболочки

Механическая прочность свинцовой оболочки необходима для того, чтобы обеспечить достаточную защиту изолирующего слоя от воздействия среды, окружающей кабель. Это свойство (механическая прочность) должна сохраняться длительно при эксплуатации кабеля в течение нескольких десятилетий и не изменяться с течением времени под воздействием механических (вибрации) и химических (коррозии) причин.

Механические свойства свинцовых оболочек и их устойчивость под воздействием различных причин зависит главным образом от структуры оболочки и ее изменений под влиянием нагревания и вибрации.

Кабели, имеющие свинцовую оболочку крупнозернистой структуры, часто не выдерживают длительной перевозки даже по железной дороге (в особенности в летнее время).

Под влиянием сотрясений и повышенной температуры начинают расти кристаллы свинца, на оболочке появляется сеть мелких трещин, которые все более и более углубляются и, наконец, приводят к разрушению оболочки. Особенно подвержены разрушению от вибрации свинцовые оболочки кабелей, проложенных на мостах.

Имели место случаи, когда освинцованные кабели, отправленные летом по железной дороге за несколько тысяч километров, приходили к месту назначения с совершенно разрушенной оболочкой.

Такие случаи чаще всего бывали на свинцовых оболочках, изготовленных из чистого свинца. Присадки олова, сурьмы, теллура и некоторых других металлов дают устойчивую мелкозернистую структуру и поэтому применяются при изготовлении свинцовых оболочек кабеля.

При выходе тока утечки из свинцовой оболочки кабеля, проложенного во влажной известковой почве, содержащей ионы С03, образуется карбонат свинца РbС03 в месте выхода, где впоследствии и разрушается свинцовая оболочка.

Электрохимическая коррозия свинца может привести к полному разрушению свинцовой оболочки в один-два года, так как ток в 1А в течение года может перенести около 25 кг свинца или 9 кг железа и, следовательно, при среднем, токе утечки в 0,005 А в один год будет разрушено около 170 г, свинца или около 41,0 г железа.

Радикальной мерой борьбы с электрохимической коррозией является так называемая катодная защита, основанная на том, что защищаемому металлу сообщается отрицательный потенциал по отношению к окружающим конструкциям, что делает этот металл невосприимчивым почти ко всем видам почвенной коррозии.

Минимальный электроотрицательный потенциал, при котором прекращаются все виды коррозии, равен 0,85 для стальных труб и 0,55 В для свинцовых оболочек электрических кабелей.

В ряде случаев хорошо защищает от электрокоррозии покрытие свинцовой оболочки защитным покровом, состоящим из слоя полупроводящего битума, двух лент полупроводящей резины и скрепляющей миткалевой ленты. В этом случае получается как бы электронный фильтр, который пропускает электрический ток, выходящий из оболочки, и отделяет свинец от непосредственного воздействия образующихся при электролизе ионов.

Механические усилия в оболочке кабеля

Механические усилия в оболочке кабеля возникают в результате стекания пропитывающего состава в вертикально подвешенных силовых кабелях, а также из-за теплового расширения пропитывающего состава при нагревании кабеля. В современных высоковольтных масло- и газонаполненных кабелях свинцовой оболочке приходится выдерживать значительные давления, приложенные изнутри.

По мере разогревания пропитывающего состава давление в кабеле увеличивается до величины, соответствующей гидростатичному давлению. Чем лучше пропитка изолирующего слоя, тем больше давление в кабеле получается при нагревании его, так как объем газовых включений уменьшается с улучшением пропитки кабеля.

Под влиянием давления, действующего изнутри оболочки, последняя стремится расшириться, и если при этом предел упругих деформаций свинца будет превзойден, то получится остаточная деформация, которая ослабляет свинцовую оболочку и понижает эксплуатационные свойства кабеля.

Повторение циклов нагрева и охлаждения кабеля, при которых получаются остаточные деформации в свинце, может повести к разрыву свинцовой оболочки.

Так как свинец без присадок при комнатной температуре почти не имеет предела упругости, то появление таких остаточных деформаций в свинцовой оболочке кабеля в эксплуатации несомненно приведет к нарушению ее механической прочности.

Наличие присадок в свинце повышает механические свойства, и в частности, предел упругости оболочки, поэтому для кабелей, подвергающихся давлению изнутри, обязательно применение легированного свинца или специальных двойных и тройных сплавов.

Снижение механических свойств свинцовой оболочки с течением времени определяет срок ее жизни. С этой точки зрения возникает понятие о «кривой жизни оболочки», под которой подразумевается зависимость между растягивающим усилием в оболочке и длительностью его действия до разрыва оболочки.

В тех случаях, когда требуется усиление свинцовой оболочки кабеля, например в газонаполненных кабелях или предназначенных для прокладки по крутонаклонной трассе, наложение ленточной брони из двух тонких латунных или стальных лент позволяет поднять механическую прочность оболочки и сделать ее пригодной для высоких давлений, развивающихся в кабеле.

Свинцовая оболочка не дает достаточной защиты от механических воздействий, например случайных ударов по кабелю во время прокладки, а в особенности — от растягивающих усилий, возникающих как при прокладке кабеля, так и при его эксплуатации.

В кабелях для вертикальной прокладки, речных и морских особенно, необходимо защитить свинцовую оболочку от растягивающих усилий, так как без такой защиты свинцовая оболочка будет с течением времени разорвана или повреждена.

Различают два основных вида брони: ленточную, предохраняющую кабель главным образом от случайных механических воздействий при прокладке, и проволочную — от растягивающих усилий.

Ленточная броня состоит из двух стальных лент, наложенных повивом поверх подушки из волокнистых материалов так, что зазоры между витками одной ленты перекрываются витками другой ленты. Зазоры между краями витков одной ленты равны примерно трети ширины ленты, а перекрытие витков одной ленты витками, другой должно быть не менее четверти ширины бронеленты.

Такое выполнение кабельной брони позволяет предохранить свинцовую оболочку от удара лопатой при прокладке кабеля и других не слишком сильных механических воздействий и в то же время сохраняет необходимую для прокладки кабеля гибкость, которая получается за счет перемещения «витков ленточной брони относительно друг друга.

Недостатком ленточной брони является возможность сдвига витков бронеленты при волочении кабеля по грунту при прокладке. Такая броня применяется главным образом для бронирования кабелей подземной прокладки, а также кабелей, прокладываемых внутри помещений в кабельных туннелях и по стенам зданий.

Стальная лента, применяемая в кабельной промышленности, должна иметь прочность на разрыв от 30 до 42 кг/мм 2 , так как лента с большим сопротивлением разрыву сильно пружинит и плохо ложится на кабель во время бронирования. Удлинение при разрыве требуется 20 — 36% (при расчетной длине образца 100 мм).

Для бронирования силовых кабелей применяется стальная лента толщиной 0,3, 0,5 и 0,8 мм и шириной — в зависимости от диаметра кабеля 15, 20, 25, 30, 35, 45 и 60 мм. Лента должна доставляться в кругах диаметром около 500 — 700 мм.

Проволока для брони употребляется круглая и сегментная (плоская). Круглая проволока применяется для бронирования кабелей, которые должны выдерживать при прокладке или в эксплуатации значительные растягивающие усилия (например, подводные кабели). Сегментная проволока применяется для кабелей, проложенных в шахтах и на крутонаклонных трассах.

Для защиты от коррозии проволока, применяемая для бронирования, должна быть покрыта плотным, сплошным слоем цинка.

При бронировании проволочная броня, как и ленточная, накладывается на кабель поверх подушки, которая может состоять из слоя предварительно пропитанной противогнилостным составом кабельной пряжи, покрытой сверху слоем битумного состава.

Для проволочной брони направление скрутки берут прогтивоположное направлению общей скрутки жил кабеля.

Для защиты бронепокрова от разъедания (коррозия) он покрывается битумным составом и слоем предварительно пропитанной кабельной пряжи, покрытой сверху таким же составом. Наружный слой кабельной пряжи предназначается не только для защиты бронеленты или бронепроволоки от коррозии, но, кроме того, служит для скрепления, т. е. не дает возможности сдвигаться бронелентам и сдерживает бронепроволоки в повиве.

Кабели, предназначенные для прокладки внутри помещений, не должны иметь слоя из пропитанной кабельной пряжи поверх бронепокрытия из соображений пожарной безопасности. Такие кабели, например кабели марки СБГ, должны бронироваться лакированной бронелентой.

Процесс бронирования состоит в наложении защитных покровов и брони. На освинцованный кабель должны быть последовательно наложены: слой битумного состава, повив двумя лентами кабельной бумаги (антикоррозийное покрытие), слой компаунда, кабельная пряжа или пропитанная сульфатная бумага (подушка под броню), слой битумного состава, броня из двух стальных лент или из стальных проволок, слой битумного состава, кабельная пряжа (наружный покров), слой битумного состава, и меловой раствор.

Источник