Активное сопротивление не зависит от длины кабеля

Зависимость электрического сопротивления от сечения, длины и материала проводника

Сопротивление различных проводников зависит от материала, из которого они изготовлены.

Можно проверить это практически на следующем опыте.

Рисунок 1. Опыт, показывающий зависимость электрического сопротивления от материала проводника

Подберем два или три проводника из различных материалов, возможно меньшего, но одинакового поперечного сечения, например, один медный, другой стальной, третий никелиновый. Укрепим на планке два зажима а и б на расстоянии 1 —1,5 м один от другого (рис. 1) и подключим к ним аккумулятор через амперметр. Теперь поочередно между зажимами а и б будем на 1—2 сек включать сначала медный, потом стальной и, наконец, никелиновый проводник, наблюдая в каждом случае за отклонением стрелки амперметра. Нетрудно будет заметить, что наибольший по величине ток пройдет по медному проводнику, а наименьший — по никелиновому.

Из этого следует, что сопротивление медного проводника меньше , чем стального, а сопротивление стального проводника меньше , чем никелинового.

Таким образом, электрическое сопротивление проводника зависит от материала, из которою он изготовлен.

Для характеристики электрического сопротивления различных материалов введено понятие о так называемом удельном сопротивлении.

Определение: Удельным сопротивлением называется сопротивление проводника длиной в 1 м и сечением в 1 мм 2 при температуре +20 С°.

Удельное сопротивление обозначается буквой ρ («ро») греческого алфавита.

Каждый материал, из которого изготовляется проводник, обладает определенным удельным сопротивлением. Например, удельное сопротивление меди равно 0,0175 Ом*мм 2 /м, т. е. медный проводник длиной 1 м и сечением 1 мм 2 обладает сопротивлением 0,0175 Ом.

Ниже приводится таблица удельных сопротивлений материалов, наиболее часто применяемых в электротехнике.

Удельные сопротивления материалов, наиболее часто применяемых в электротехнике

Материал Удельное сопротивление, Ом*мм 2 /м
Серебро 0,016
Медь 0,0175
Алюминий 0,0295
Железо 0,09-0,11
Сталь 0,125-0,146
Свинец 0,218-0,222
Константан 0,4-0,51
Манганин 0,4-0,52
Никелин 0,43
Вольфрам 0,503
Нихром 1,02-1,12
Фехраль 1,2
Уголь 10-60

Любопытно отметить, что например, нихромовый провод длиною 1 м обладает примерно таким же сопротивлением, как медный провод длиною около 63 м (при одинаковом сечении).

Разберем теперь, как влияют размеры проводника , т. е. длина и поперечное сечение, на величину его сопротивления.

Воспользуемся для этого схемой, изображенной на рис. 1. Включим между зажимами а и б для большей наглядности опыта проволоку из никелина. Заметив показание амперметра, отключим от зажима б проводник, которой соединяет прибор с минусом аккумулятора, и освободившимся концом проводника прикоснемся к никелиновой проволоке на некотором удалении от зажима а (рис. 2). Уменьшив таким образом длину проводника, включенного в цепь, нетрудно заметить по показанию амперметра, что ток в цепи увеличился.

Рисунок 2. Опыт, показывающий зависимость электрического сопротивления от длины проводника

Это говорит о том, что с уменьшением длины проводника сопротивление его уменьшается. Если же перемещать конец проводника по никелиновой проволоке вправо, т. е. к зажиму б, то, наблюдая за показаниями амперметра, можно сделать вывод, что с увеличением длины проводника сопротивление его увеличивается.

Таким образом, сопротивление проводника прямо пропорционально его длине, т. е. чем длиннее проводник, тем больше его электрическое сопротивление..

Выясним теперь, как зависит сопротивление проводника от его поперечного сечения, т. е. от толщины.

Подберем для этого два или три проводника из одного и того же материала (медь, железо или никелин), но различного поперечного сечения и включим их поочередно между зажимами а и б, как указано на рис. 1.

Наблюдая каждый раз за показаниями амперметра, можно убедиться, что чем тоньше проводник, тем меньше ток в цепи, а следовательно, тем больше сопротивление проводника. И, наоборот, чем толще проводник, тем больше ток в цепи, а следовательно, тем меньше сопротивление проводника.

Значит, сопротивление проводника обратно пропорционально площади его поперечного сечения, т. е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.

Чтобы лучше уяснить эту зависимость, представьте себе две пары сообщающихся сосудов (рис. 3), причем у одной пары сосудов соединяющая трубка тонкая, а у другой — толстая.

Рисунок 3. Вода по толстой трубке перейдет быстрее, чем по тонкой

Ясно, что при заполнении водой одного из сосудов (каждой пары) переход ее в другой сосуд по толстой трубке произойдет гораздо быстрее, чем по тонкой. Это значит, что толстая трубка окажет меньшее сопротивление течению воды. Точно так же и электрическому току легче пройти по толстому проводнику, чем по тонкому, т. е. первый оказывает ему меньшее сопротивление, чем второй.

Обобщая результаты произведенных нами опытов, можно сделать следующий общий вывод:

электрическое сопротивление проводника равно удельному сопротивлению материала, из которого этот проводник сделан, умноженному на длину проводника и деленному на площадь его поперечного сечения..

Математически эта зависимость выражается следующей формулой:

где R—сопротивление проводника в Ом;

ρ — удельное сопротивление материала в Ом*мм 2 /м;

l — длина проводника в м;

S—площадь поперечного сечения проводника в мм 2 .

Примечание. Площадь поперечного сечения круглого проводника вычисляется по формуле

где π —постоянная величина, равная 3,14;

Указанная выше зависимость дает возможность определить длину проводника или его сечение, если известны одна из этих величин и сопротивление проводника.

Так, например, длина проводника определяется по формуле:

Если же необходимо определить площадь поперечного сечения проводника, то формула принимает следующий вид:

Решив это равенство относительно ρ, получим выражение для определения удельного сопротивления проводника:

Последней формулой приходится пользоваться в тех случаях, когда известны сопротивление и размеры проводника, а его материал неизвестен и к тому же трудно определим по внешнему виду. Определив по формуле удельное сопротивление проводника, можно найти материал, обладающий таким удельным сопротивлением.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник

Уроки по электрическим цепям — линии передачи

Ещё не начав читать статью, попробуйте подумать над вопросом: побежит ли ток, если подключить к батарейке очень длинный провод(более чем 300 тысяч километров, сверхпроводник), если противоположные концы провода никуда не подключены? Сколько Ампер?

Прочитав эту статью, вы поймёте в чём смысл волнового сопротивления. Из лекций по теории волн я вынес только то, что волновое сопротивление — это сопротивление волнам. Большая часть студентов, кажется, поняла ровно то же самое. То есть ничего.

Эта статья — весьма вольный перевод этой книги: Lessons In Electric Circuits
Статьи по теме: На Хабре: Контакт есть, сигнала нет
Трэш в Википедии: Длинная линия

50-омный кабель?

В начале моего увлечения электроникой я часто слышал про волновое сопротивление коаксиального кабеля 50Ω. Коаксиальный кабель – это два провода. Центральный провод, изолятор, оплётка, изолятор. Оплётка полностью закрывает центральный проводник. Такой провод используется для передачи слабых сигналов, а оплётка защищает сигнал от помех.

Я был озадачен этой надписью – 50 Ω. Как могут два изолированных проводника иметь сопротивление друг с другом 50 Ω? Я измерил сопротивление между проводами и увидел, как и ожидалось, обрыв. Сопротивление кабеля с одной стороны до другой — ноль. Как бы я не подключал омметр, я так и не смог получить сопротивление 50 Ом.

То, что я не понимал в то время – так это как кабель реагирует на импульсы. Конечно, омметр работает с постоянным током, и показывает, что проводники не соединены друг с другом. Тем не менее, кабель, из-за влияния ёмкости и индуктивности, распределённой по всей длине, работает как резистор. И так же, как и в обычном резисторе, ток пропорционален напряжению. То, что мы видим как пара проводников – важный элемент цепи в присутствии высокочастотных сигналов.

В этот статье вы узнаете что такое линия связи. Многие эффекты линий связи не проявляются при работе с постоянным током или на сетевой частоте 50 Гц. Тем не менее, в высокочастотных схемах эти эффекты весьма значительны. Практическое применение линий передач – в радиосвязи, в компьютерных сетях, и в низкочастотных схемах для защиты от перепадов напряжения или ударов молний.

Провода и скорость света

Рассмотрим следующую схему. Цепь замкнута – лампа зажигается. Цепь разомкнута – лампа гаснет. На самом деле лампа зажигается не мгновенно. Ей как минимум надо раскалиться. Но я хочу заострить внимание не на этом. Хотя электроны двигаются очень медленно, они взаимодействуют друг с другом гораздо быстрее – со скоростью света.

Что произойдёт, если длина проводов будет 300 тысяч км? Так как электроэнергия передаётся с конечной скоростью, очень длинные провода внесут задержку.

Пренебрегая временем на разогрев лампы, и сопротивлением проводов, лампа зажжётся примерно через 1 секунду после включения выключателя. Несмотря на то, что строительство сверхпроводящих ЛЭП такой длины создаст огромные практические проблемы, теоретически это возможно, поэтому наш мысленный эксперимент реален. Когда переключатель выключается, лампа будет продолжать получать питание ещё 1 секунду.
Один из способов представить движение электронов в проводнике – это вагоны поезда. Сами вагоны движутся медленно, только начинают движение, и волна сцеплений передаётся гораздо быстрее.

Другая аналогия, возможно более подходящая – волны в воде. Объект начинает движение горизонтально вдоль поверхности. Создастся волна из-за взаимодействия молекул воды. Волна будет перемещаться гораздо быстрее, чем двигаются молекулы воды.

Электроны взаимодействуют со скоростью света, но движутся гораздо медленнее, подобно молекуле воды на рисунке выше. При очень длинной цепи становится заметна задержка между нажатием на выключатель и включением лампы.

Волновое сопротивление

Предположим, у нас есть два параллельных провода бесконечной длины, без лампочки в конце. Потечёт ли ток при замыкании выключателя?

Несмотря на то, что наш провод — сверхпроводник, мы не можем пренебречь ёмкостью между проводами:

Подключим питание к проводу. Ток заряда конденсатора определяется формулой: I = C(de/dt). Соответственно, мгновенный рост напряжения должен породить бесконечный ток.
Однако ток не может быть бесконечным, так как вдоль проводов есть индуктивность, ограничивающая рост тока. Падение напряжения в индуктивности подчиняется формуле: E = L(dI/dt). Это падение напряжения ограничивает максимальную величину тока.



Поскольку электроны взаимодействуют со скоростью света, волна будет распространяться с той же скоростью. Таким образом, нарастание тока в индуктивностях, и процесс зарядки конденсаторов будет выглядеть следующим образом:




В результате этих взаимодействий, ток через батарею будет ограничен. Так как провода бесконечны, распределённая емкость никогда не зарядится, а индуктивность не даст бесконечно нарастать току. Другими словами, провода будут вести себя как постоянная нагрузка.
Линия передачи ведёт себя как постоянная нагрузка так же, как и резистор. Для источника питания нет никакой разницы, куда бежит ток: в резистор, или в линию передачи. Импеданс (сопротивление) это линии называют волновым сопротивлением, и оно определяется лишь геометрией проводников. Для параллельных проводов с воздушной изоляцией волновое сопротивление рассчитывается так:

Для коаксиального провода формула расчёта волнового сопротивления выглядит несколько иначе:

Если изоляционный материал – не вакуум, скорость распространения будет меньше скорости света. Отношение реальной скорости к скорости света называется коэффициентом укорочения.
Коэффициент укорочения зависит только от свойств изолятора, и рассчитывается по следующей формуле:


Волновое сопротивление известно также как характеристическое сопротивление.
Из формулы видно, что волновое сопротивление увеличивается по мере увеличения расстояния между проводниками. Если проводники отдалить друг от друга, становится меньше их ёмкость, и увеличивается распределённая индуктивность (меньше эффект нейтрализации двух противоположных токов). Меньше ёмкость, больше индуктивность => меньше ток => больше сопротивление. И наоборот, сближение проводов приводит к большей ёмкости, меньшей индуктивности => больше ток => меньше волновое сопротивление.
Исключая эффекты утечки тока через диэлектрик, волновое сопротивление подчиняется следующей формуле:

Линии передачи конечной длины

Линии бесконечной длины – интересная абстракция, но они невозможны. Все линии имеют конечную длину. Если бы тот кусок 50 Ом кабеля RG-58/U, который я измерял с помощью омметра несколько лет назад, был бесконечной длины, я бы зафиксировал сопротивление 50 Ом между внутренним и внешним проводом. Но эта линия не была бесконечной, и она измерялась как открытая, с бесконечным сопротивлением.

Тем не менее, волновое сопротивление важно также и при работе с проводом ограниченной длины. Если к линии приложить переходное напряжение, потечёт ток, который равен отношению напряжения к волновому сопротивлению. Это всего лишь закон Ома. Но он будет действовать не бесконечно, а ограниченное время.

Если в конце линии будет обрыв, то в этой точке ток будет остановлен. И это резкое прекращение тока повлияет на всю линию. Представьте себе поезд, идущий вниз по рельсам, имеющий слабину в муфтах. Если он врежется в стенку, он остановится он не весь сразу: сначала первый, потом второй вагон, и т.д.

Сигнал, распространяющийся от источника, называют падающей волной. Распространение сигнала от нагрузки обратно к источнику называют отражённой волной.

Как только нагромождение электронов в конце линии распространяется обратно к батарее, ток в линии прекращается, и она ведёт себя как обычная открытая схема. Всё это происходит очень быстро для линий разумной длины так, что омметр не успевает померить сопротивление. Не успевает поймать тот промежуток времени, когда схема ведёт себя как резистор. Для километрового кабеля с коэффициентом укорочения 0,66 сигнал распространяется всего 5.05мкс. Отражённая волна идёт обратно к источнику ещё столько же, то есть в сумме 10,1 мкс.

Высокоскоростные приборы способны измерить это время между посылкой сигнала и приходом отражения для определения длины кабеля. Этот метод может быть применён также для определения обрыва одного или обоих проводов кабеля. Такие приборы называются рефлектометры для кабельных линий. Основной принцип тот же, что и у ультразвуковых гидролокаторов: генерация импульса и замер времени до эха.

Аналогичное явление происходит и в случае короткого замыкания: когда волна достигает конца линии, она отражается обратно, так как напряжение не может существовать между двумя соединёнными проводами. Когда отражённая волна достигает источника, источник видит, что произошло короткое замыкание. Всё это происходит за время распространения сигнала туда + время обратно.

Простой эксперимент иллюстрирует явление отражения волн. Возьмите верёвку, как показано на рисунке, и дёрните её. Начнёт распространяться волна, пока она полностью не погасится за счёт трения.

Это похоже на длинную линию с потерями. Уровень сигнала будет падать по мере продвижения по линии. Однако, если второй конец закрепить на твёрдую стенку, возникнет отражённая волна:

Как правило, назначением линии передачи является передача электрического сигнала от одной точки к другой.

Отражения могут быть исключены, если терминатор на линии в точности равен волновому сопротивлению. Например, разомкнутая или короткозамкнутая линия будет отражать весь сигнал обратно к источнику. Но если на конце линии включить резистор 50 Ом, то вся энергия будет поглощена на резисторе.

Это всё имеет смысл, если мы вернёмся к нашей гипотетической бесконечной линии. Она ведёт себя как постоянный резистор. Если мы ограничим длину провода, то он будет себя вести как резистор лишь некоторое время, а потом – как короткое замыкание, или открытая цепь. Однако, если мы поставим резистор 50 Ом на конец линии, она вновь будет себя вести как бесконечная линия.



В сущности, резистор на конце линии, равный волновому сопротивлению, делает линию бесконечной с точки зрения источника, потому что резистор может вечно рассеивать энергию так же, как и бесконечные линии могут поглощать энергию.

Отражённая волна, вернувшись обратно к источнику, может вновь отразиться, если волновое сопротивление источника не равно в точности волновому сопротивлению. Этот тип отражений особенно опасен, он делает вид, что источник передал импульс.

Короткие и длинные линии передачи

В цепях постоянного тока волновое сопротивление, как правило, игнорируется. Даже коаксиальный кабель в таких цепях применяется лишь для защиты от помех. Это связано с короткими промежутками времени распространения по сравнению с периодом сигнала. Как мы узнали в предыдущей главе, линия передачи ведёт себя как резистор до тех пор, пока отражённая волна на вернётся обратно к источнику. По истечении этого времени (10,1 мкс для километрового кабеля), источник видит полное сопротивление цепи.

В случае, если цепь передаётся низкочастотный сигнал, источник на какое-то время видит волновое сопротвление, а потом – полное сопротивление линии. Мы знаем, что величина сигнала не равна по всей длине линии из-за распространения со скоростью света(почти). Но фаза низкочастотного сигнала изменяется незначительно за время распространения сигнала. Так, мы можем считать, что напряжение и фаза сигнала во всех точках линии равна.

В этом случае мы можем считать что линия является короткой, потому что время распространения гораздо меньше периода сигнала. В противовес, длинная линия это такая, где за время распространения форма сигнала успевает измениться на большую часть фазы, либо даже передать несколько периодов сигнала. Длинными линиями считаются такие, когда фаза сигнала меняется более чем на 90 градусов за время распространения. До этого в данной книге мы рассматривали лишь короткие линии.

Чтобы определить тип линии(длинная, короткая), мы должны сравнить её длину и частоту сигнала. Например, период сигнала с частотой 60Гц равен 16,66мс. При распространении со скоростью света(300 тысяч км/с) сигнал пройдёт 5000км. Если коэффициент укорочения будет меньше 1, то и скорость будет меньше 300 тысяч км/с, и расстояние меньше во столько же раз. Но даже если использовать коэффициент укорочения коаксиального кабеля(0,66), расстояние всё равно будет велико — 3300км! Независимо от длины кабеля это называется длиной волны.

Простая формула позволяет вычислить длину волны:


Длинная линия – такая, где хотя бы умещается ¼ длины волны в длину. И теперь вы можете понять, почему все линии прежде относятся к коротким. Для систем питания переменного тока 60Гц длина кабеля должна превышать 825 км, чтобы эффекты распространения сигнала стали значительными. Кабели от аудио усилителя к колонкам должны быть более 7,5 км в длину, чтобы существенно повлиять на 10кГц звуковой сигнал!

Когда имеешь дело с радиочастотными системами, задача с длиной линии передачи является далеко не такой тривиальной. Рассмотрим 100МГц радиосигнал: его длина волны 3 метра даже на скорости света. Линия передачи должна быть более 75 см в длину, чтобы считаться длинной. С коэффициентом укорочения 0,66 эта критическая длина составит всего 50 см.

Когда электрический источник подключен к нагрузке через короткую линию передачи, доминирует импеданс нагрузки. То есть, когда линия короткая, волновое сопротивление не влияет на поведение схемы. Мы можем это увидеть при тестировании коаксиального кабеля омметром: мы видит разрыв. Хотя линия ведёт себя как резистор 50Ом (RG/58U кабель) на короткое время, после этого времени мы увидим обрыв. Так как время реакции омметра значительно больше времени распространения сигнала, мы видим обрыв. Эта очень большая скорость распространения сигнала не позволяет нам обнаружить 50Ом переходное сопротивление омметром.

Если мы будем использовать коаксиальный кабель для передачи постоянного тока, кабель будет считаться коротким, и его волновое сопротивление не будет влиять на работу схемы. Обратите внимание, что короткой линией будет называться любая линия, где изменение сигнала происходит медленнее, чем сигнал распространяется по линии. Почти любая физическая длина кабеля может являться короткой с точки зрения волнового сопротивления и отражённых волн. Используя же кабель для передачи высокочастотного сигнала, можно по разному оценивать длину линии.

Если источник подключен к нагрузке через длинные линии передачи, собственное волновое сопротивление доминирует над сопротивлением нагрузки. Иными словами, электрически длинная линия выступает в качестве основного компонента в цепи, и её свойства доминируют над свойствами нагрузки. С источник, подключенным к одному концу кабеля и передаёт ток на нагрузку, но ток в первую очередь идёт не в нагрузку, а в линию. Это становиться всё более верным, чем длиннее у нас линия. Рассмотрим наш гипотетический 50Ом бесконечный кабель. Независимо от того, какую нагрузку мы подключаем на другой конец, источник будет видеть лишь 50Ом. В этом случае сопротивление линии является определяющим, а сопротивление нагрузки не будет иметь значения.

Наиболее эффективный способ свести к минимуму влияние длины линии передачи – нагрузить линию сопротивлением. Если сопротивление нагрузки равно волновому сопротивлению, то любой источник будет видеть то же самое сопротивление, независимо от длины линии. Таким образом, длина линии будет влиять только на задержку сигнала. Тем не менее, полное совпадение сопротивления нагрузки и волнового сопротивления не всегда возможно.

В следующем разделе рассматриваются линии передачи, особенно когда длина линии равна дробной части волны.

Надеюсь, вы прояснили для себя основные физические принципы работы кабелей
К сожалению, следующая глава очень большая. Книга читается на одном дыхании, и в какой-то момент надо остановиться. Для первого поста, думаю, этого хватит. Спасибо за внимание.

Источник

Читайте также:  As cab004 кабель 4x0 22 слаботочный ramcro